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We consider a two-stage tandem queue with single-server first station and multiserver second sta-
tion. Customers arrive to Station 1 according to a batch Markovian arrival process (BMAP). A
batch may consist of heterogeneous customers. The type of a customer is determined upon com-
pletion of a service at Station 1. The customer’s type is classified based on the number of servers
required to process the request of the customer at Station 2. If the required number of servers is not
available, the customer may leave the system forever or block Station 1 by waiting for the required
number of servers. We determine the stationary distribution of the system states at embedded
epochs and derive the Laplace-Stieltjes transform of the sojourn time distribution. Some key perfor-
mance measures are calculated, and illustrative numerical results are presented.

1. Introduction

Queueing networks are widely used in capacity planning and performance evaluation of
computer and communication systems, service centers, and manufacturing systems among
several others. Some examples of their application to real systems can be found in [1]. Tandem
queues can be used for modeling real-life two-node networks as well as for the validation
of general decomposition algorithms in networks (see, e.g., [2, 3]). Thus, tandem queueing
systems have found much interest in the literature. An extensive survey of early papers on
tandem queues can be seen in [4]. Most of these papers are devoted to exponential queueing
models. Over the last two decades or so, the efforts of many investigators in tandem queues
were in weakening the distribution assumptions on the service times as well as on the arri-
vals. In particular, the arrival process should be able to capture any correlation and burstiness
that are commonly seen in the traffic of modern communication networks [3]. Such an arrival
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process was introduced in [5] and ever since this process is referred to as a batch Markovian
arrival process (BMAP). In this paper, we deal with a tandem queue under the assumption
that the customers arrive according to a BMAP.

Tandem queues with the BMAP input were considered in [6–10]. The papers [6, 7, 10]
are devoted to the MAP/PH/1 → •/G/1 system with blocking. In [8], the tandem queues
BMAP/G/1/N → •/PH/1/M − 1 with losses are studied. The tandem-queue of the
BMAP/G/1 → •/PH/1/M − 1 type with losses and feedback has been studied in [9].

In the present paper, we consider a BMAP/G/1 → •/M/N/0 tandem queueing
system where the (possibly heterogeneous) customers arrive in batches of random sizes to
Station 1. Here the customers receive service individually, and upon completion of a service
the customer’s type is determined. This type identification is necessary to determine the
nature of service, if any, offered at Station 2. The customer’s type is classified based on the
number of servers (resources) required to process the request of the customer. The simul-
taneous initiation or occupation of several servers to a customer’s request is typical for the
so-called nonelastic traffic in communication networks. If the required number of servers is
not available at that instant of the request, the customer either leaves the system forever, or
awaits until the requirement is met through the release of the sufficient number of servers. In
the latter case, Station 1 will be blocked.

Possible applications of the tandem queue under study lie in the modeling of the dis-
tributed server application or web server application, see, for example, [11]. Station 1 is
interpreted as an authentication or an access step while Station 2 represents the computing
step or data base server if the processing of a job is produced by several parallel threads.
This tandem queue can model also multiaddress transmission of information. Station 1 is
interpreted as a transmission channel while Station 2 regulates the transmission rate by
providing necessary transmission windows (timers that are switched on at the moment of
a message transmission and switched off when the receipt of this message is acknowledged
or time-out expires). The performance evaluation of wireless IP networks providing hete-
rogeneousmultimedia services with different QoS demands, (see [12, Chapter 8]), is the other
possible application of the model under study.

In this paper, we derive the stability condition of the model under study, and briefly
touch calculation of the stationary distribution of the system states at the service completion
epochs at Station 1 and calculation of the system performance measures. Furthermore, we
derive the Laplace-Stieltjes transform of the virtual and the actual sojourn time distributions
at both stations and in the whole system. The procedures for calculation of the moments of
the virtual sojourn time distribution and the mean actual sojourn time are discussed. Some
numerical results illustrating the behavior of the system characteristics are presented. The
problem of optimal design is numerically investigated.

To the best of our knowledge, the results of our paper are novel even for the case of
homogeneous customers. The most important and valuable, from the mathematical point of
view, result concerns the sojourn time distribution. Previously, the sojourn time distribution
in tandem queues with MAP input was considered only in [13, 14]. There, the service time
distribution at both the single-server stations is of phase type which allows the authors to
model the sojourn time as the time until absorption in suitably defined quasi-birth-and-death
processes and continuous-time Markov chains. Because we assume general service time
distribution at Station 1, we need to analyze a more complicated stochastic process.

The rest of the paper is organized as follows. In Section 2, the mathematical model is
described. In Section 3, the results concerning the stationary distribution of the embedded
Markov chain in Station 1 service completion epochs are presented. In Section 4, we focus
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on the analysis of the virtual and actual sojourn time distributions and their moments.
In Section 5, the numerical results are presented. The paper is concluded with Section 6.
Appendices contain auxiliary results, proofs, and formulas useful for computations.

2. The Mathematical Model

We consider a tandem queue consisting of two stations, say, Station 1 and Station 2. We
assume that there is no buffer between the two stations. Station 1 is represented by the
BMAP/G/1 queue. That is, the arrivals to Station 1 are described by a BMAP. The BMAP
is defined by the underlying process νt, t ≥ 0, which is an irreducible continuous time
Markov chain with state space {0, . . . ,W}, and with the matrix generating function D(z) =
∑∞

k=0Dkz
k, |z| ≤ 1. Arrivals occur only at epochs of the jumps in the underlying process

νt, t ≥ 0. The intensities of the transitions of the process νt accompanied by a batch of size
k are defined by the matrices Dk, k ≥ 0. The matrix D(1) is the infinitesimal generator of
the process νt. The stationary distribution vector θ of this process satisfies the equations
θD(1) = 0,θe = 1, where e is a column vector consisting of 1′s, and 0 is a row vector of 0

′
s.

The average intensity λ (fundamental rate) of the BMAP is given by λ = θD′(z)|z=1e.
We assume that λ < ∞. The average intensity λb of group arrivals is defined by λb = θ(−D0)e.
The coefficient of variation, cvar, of intervals between successive group arrivals is defined by
c2var = 2λbθ(−D0)

−1e − 1. The coefficient of correlation ccor of the successive intervals between
group arrivals is given by ccor = (λbθ(−D0)

−1(D(1) − D0)(−D0)
−1e − 1)/c2var. For more

information about the BMAP and related research see, for example, [5, 15].
All arriving customers enter into Station 1. The successive service times of customers at

Station 1 are independent random variables with general distribution B(t), Laplace-Stieltjes
transform β(s) =

∫∞
0 e−stdB(t), and finite first moment b1 =

∫∞
0 t dB(t).

After receiving a service at Station 1, the customer proceeds to Station 2. At this station,
there are N identical servers. Each of these servers offers services that are exponentially
distributed with parameter μ. Customers are heterogeneous with respect to the number of
servers that are required to process a customer at Station 2. With probability qm, qm ≥ 0, m =
0,N,

∑N
m=0qm = 1, the customer will require exactlym servers to provide a service at Station 2

and will be called type m customer. Here and in the sequel, notation such as m = 0,N, means
thatm assumes values from the set {0, 1, . . . ,N}. Note that customers who are all in the same
batch (at the time of arriving) may belong to different types after receiving service at Station
1. Type 0 customer leaves the system for good after the service at Station 1. We assume that
q0 /= 1. Otherwise, the queue under consideration will be reduced to the BMAP/G/1 queue
which has been studied extensively.

If the customer is of typem,m = 1,N, and the required number of servers is available,
the customer’s service will begin immediately. Each of these m servers processes the cus-
tomer’s request independently of the others, and furthermore any server who becomes free
after completing his/her share of the processing will be available to process waiting or future
customers’ requests.

If the required number of servers is not available, with probability γ, 0 ≤ γ ≤ 1, the
customer will choose to leave the system for good and with probability 1 − γ will decide to
wait until the required number of servers is available. In the latter case, the customer will
block Station 1 since we assume that there is no buffer between the two stations. Such an
assumption of blocking and loss will allow us to unify these two classes of models which are
studied separately in the literature.
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In the following, we are interested in the steady state analysis of the model under
study. For further use in the sequel, we introduce the following notation:

(i) I is an identity matrix of appropriate dimension;

(ii) ⊗ and ⊕ are symbols of the Kronecker product and sum of matrices;

(iii) D̃k = IN+1 ⊗Dk, k ≥ 0, D̃(z) =
∑∞

k=0D̃kz
k, |z| ≤ 1;

(iv) P(j, t), j ≥ 0, is a matrix function defined by the expansion
∑∞

j=0P(j, t)z
j = eD(z)t;

(v) F(t) = (Fr,r ′(t))r,r ′=0,N , where Fr,r ′(t) = 0 for r ≤ r ′ and for r > r ′, Fr,r ′(t) is
the generalized Erlang distribution function with the Laplace-Stieltjes transform
fr,r ′(s) =

∏r
l=r ′+1lμ(lμ + s)−1;

(vi) Qm, m = 1, 4, are square matrices: Q2 = diag{∑N
m=N−r+1qm, r = 0,N},

Q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q0 q1 . . . qN

0 q0 . . . qN−1
...

...
. . .

...

0 0 . . . q0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 qN

0 . . . 0 qN−1
...

. . .
...

...

0 . . . 0 q0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q0 q1 . . . qN−1 qN

q0 q1 . . . qN−1 0

...
...

. . .
...

...

q0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

(2.1)

(vii) Q̃m = Qm ⊗ IW, m = 1, 3, W = W + 1;

(viii) Q̂ = Q̃1 + γQ̃2 + (1 − γ)
∫∞
0 (dF(t) ⊗ eD0t)Q̃3, Q = Q1 + γQ2 + (1 − γ)EQ3;

(ix)

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 0

1 0 . . . 0 0

...
...

. . .
...

...

1 1 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Î =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Ĩ = I − Î, ê = (1, 0, . . . , 0). (2.2)

3. The Stationary Distribution of the Embedded Markov Chain

Let tn denote the time of the nth service completion at Station 1. Consider the process ξn =
{in, rn, νn}, n ≥ 1, where in, in ≥ 0, is the number of customers at Station 1 (not counting
the blocked customer, if any) at epoch tn + 0; rn, rn = 0,N, is the number of busy servers at
Station 2 at epoch tn − 0; νn, νn = 0,W , is the state of the BMAP at epoch tn.

It is easy to verify that the process ξn = {in, rn, νn}, n ≥ 1, is a Markov chain. Enu-
merating the states of this Markov chain in lexicographic order, and denoting by Pl,k, l, k ≥ 0,
the square matrix of order (W + 1)(N + 1) governing the transition probabilities of the chain
from the set of states {l, ·, ·} to the set {k, ·, ·}, the following lemma gives the entries of the
transition probability matrix of the Markov chain ξn.
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Lemma 3.1. The transition probability matrix of the chain ξn, n ≥ 1, has the following block struc-
ture:

P = (Pl,k)l,k≥0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C0 C1 C2 C3 · · ·
Y0 Y1 Y2 Y3 · · ·
0 Y0 Y1 Y2 · · ·
0 0 Y0 Y1 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.1)

where

Ci =
i+1∑

k=1

[
−Q̂(Δ ⊕D0)−1D̃k +

(
1 − γ

)
FkQ̃3

]
Ωi−k+1,

Yi =
(
Q̃1 + γQ̃2

)
Ωi +

(
1 − γ

) i∑

k=0

FkQ̃3Ωi−k,

Ωj =
∫∞

0
eΔt ⊗ P

(
j, t
)
dB(t), Fj =

∫∞

0
dF(t) ⊗ P

(
j, t
)
, j ≥ 0,

Δ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0

μ −μ 0 · · · 0 0

0 2μ −2μ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · Nμ −Nμ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.2)

Proof. First, we write the transition probability matrices Ci, Yi in block forms as Ci =
(C(r,r ′)

i )r,r ′=0,N, Yi = (Y (r,r ′)
i )r,r ′=0,N , where the blocks C(r,r ′)

i , Y (r,r ′)
i correspond to the transitions

of the number of busy servers from r to r ′ at Station 2.
Denote by δr,r ′(t) the probability that during the time interval of the length t the num-

ber of busy servers at Station 2 decreases from r to r ′ conditioned on the fact that none arrive
from Station 1.

For use in the sequel, we register the following probabilistic interpretations of the mat-
rices.

The (ν, ν′)th entry of the matrix P(j, t) gives the probability that j customers arrive in
the BMAP during the interval (0, t] and the state of the BMAP at epoch t is ν′ given ν0 = ν.

The (ν, ν′)th entry of the matrix
∫∞
0 δr,r ′(t)P(j, t)dB(t) gives the probability that during

the service time of a customer at Station 1, exactly j customers arrive, the number of busy
servers at Station 2 decreases from r to r ′ and the BMAP has changed from ν to ν′.

The (ν, ν′)th entry of the matrix
∫∞
0 δr,r ′(t)eD0tDkdt gives the probability that at an arbi-

trary time instant with the number of busy servers at Station 2 equal to r, and the BMAP in
state ν, the first batch to arrive is of size k; soon after that instant, the number of busy servers
at Station 2 equals r ′ and the BMAP is in state ν′.
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Fr,r ′(t) is the distribution function of the time interval during which the number of
busy servers at Station 2 decreases from r to r ′ conditioned on the fact that none arrive to this
station. Then the (ν, ν′)th entry of the matrix

∫∞
0 P(j, t)dFr,r ′(t) defines the probability that

exactly j customers arrive with the BMAP moving from ν to ν′ and that the number of busy
servers at Station 2 decreases from r to r ′ during that time interval.

From the above probabilistic interpretations, analyzing the one-step transitions of the
chain ξn with a careful analysis of the service completion epochs, in which the customers may
get lost due to lack of servers or wait (and thus block Station 1) until enough servers are avai-
lable, we obtain the following expressions for the matrices C(r,r ′)

i , Y
(r,r ′)
i , i ≥ 0:

C
(r,r ′)
i =

N−r∑

m=0

qm
r+m∑

l=r ′

∫∞

0
δr+m,l(t)eD0tdt

i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)

+ γ
N∑

m=N−r+1
qm

r∑

l=r ′

∫∞

0
δr,l(t)eD0tdt

i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)

+
(
1 − γ

) N∑

m=N−r+1
qm

[∫∞

0
eD0tdFr,N−m(t)

N∑

l=r ′

∫∞

0
δN,l(t)eD0tdt

×
i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)+

i+1∑

k=1

∫∞

0
P(k, t)dFr,N−m(t)

×
∫∞

0
δN,r ′(t)P(i − k + 1, t)dB(t)

]

,

Y
(r,r ′)
i =

N−r∑

m=0

qm

∫∞

0
P(i, t)δr+m,r ′(t)dB(t)

+
N∑

m=N−r+1
qm

[

γ

∫∞

0
δr,r ′(t)P(i, t)dB(t)

+
(
1 − γ

) i∑

k=0

∫∞

0
P(k, t)dFr,N−m(t)

∫∞

0
δN,r ′(t)P(i − k, t)dB(t)

]

.

(3.3)

In order to arrive at equations (3.2) from (3.3), we use the matrix notations introduced above
and the relation: (δr,r ′(t))r,r ′=0,N = eΔt, which follows from the fact that under the case when
none arrive to Station 2, the process rt governing the number of busy servers at this station is
Markovian with generator Δ.

It is easy to see that the Markov chain ξn belongs to the class of M/G/1 type Markov
chains, see [16]. We can use this fact to derive the ergodicity condition and calculate the sta-
tionary distribution of the chain.

Let C(z) =
∑∞

i=0Ciz
i, Y (z) =

∑∞
i=0Yiz

i, |z| ≤ 1, be the generating functions of the transi-
tion probability matrices Ci and Yi, i ≥ 0.
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Corollary 3.2. The matrix generating functions C(z),Y (z) can be written as

C(z) =
1
z

[
−Q̂(Δ ⊕D0)−1

(
D̃(z) − D̃0

)
+
(
1 − γ

)
(F(z) − F0)Q̃3

]
Ω(z), (3.4)

Y (z) =
[
Q̃1 + γQ̃2 +

(
1 − γ

)
F(z)Q̃3

]
Ω(z), (3.5)

where

Ω(z) =
∞∑

n=0

Ωnz
n =

∫∞

0
eΔt ⊗ eD(z)tdB(t), F(z) =

∞∑

n=0

Fnz
n =

∫∞

0
dF(t) ⊗ eD(z)t. (3.6)

Theorem 3.3. The necessary and sufficient condition for ergodicity of the Markov chain ξn, n ≥ 1, is
the fulfillment of the inequality

ρ = λ

[

b1 +
(
1 − γ

) N∑

r=1

ϑr

N∑

m=N−r+1
qm

r∑

l=N−m+1

(
lμ
)−1
]

< 1. (3.7)

Here (ϑ1, . . . , ϑN) is a part of the vector ϑ = (ϑ0, . . . , ϑN), which is the unique solution to the system

ϑQB∗(0) = ϑ, ϑe = 1, (3.8)

where B∗(s) =
∫∞
0 e−steΔtdB(t).

Proof. It can be verified that thematrix Y (1) is irreducible. Hence, from [16], the necessary and
sufficient condition for ergodicity of the chain ξn is the fulfillment of the inequality

xY ′(1)e < 1, (3.9)

where the vector x is the unique solution of the system

xY (1) = x, xe = 1. (3.10)

The theorem will be proven if we show that inequality (3.9) is equivalent to inequality
(3.7).

Let the vector x be of the form

x = ϑ ⊗ θ. (3.11)

By the direct substitution into the system (3.10), where Y (1) is calculated using (3.5), we
verify that such a vector provides the unique solution of this system. Differentiating (3.5) at
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Table 1: The value of the system load ρ for different value of the mean service time and service time varia-
tion.

cvar = 0 cvar = 1 cvar = 5 cvar = 9.95
b1 = 0.1 0.42754 0.43016 0.45557 0.47940
b1 = 0.2 0.47460 0.48228 0.53677 0.57784
b1 = 0.3 0.53173 0.54515 0.62243 0.67725
b1 = 0.4 0.59698 0.61590 0.71010 0.77695
b1 = 0.5 0.66879 0.69247 0.79902 0.87678
b1 = 0.6 0.74579 0.77339 0.88883 0.97667
b1 = 0.7 0.82687 0.85763 0.97937 1.07663
b1 = 0.8 0.91116 0.94440 1.07051 1.17655

the point z = 1 and substituting the resulting expression for Y ′(1) and the vector x of form
(3.11) into the inequality (3.9), we get

ρ = λ

[

b1 +
(
1 − γ

)
ϑ

∫∞

0
tdF(t)Q3e

]

< 1. (3.12)

The stated expression in (3.7) follows from (3.12) and the expression for
∫∞
0 tdF(t) given in

(C.3)-(C.4) (see Appendix C).

Remark 3.4. The inequality (3.7) is intuitively clear on noting that the vector ϑ gives the
stationary distribution of the number of busy servers at Station 2 at the service comple-
tion epochs at Station 1 given the latter station works non-stop. Then (1 − γ)

∑N
r=1ϑr∑N

m=N−r+1qm
∑r

l=N−m+1(lμ)
−1 defines the average blocking time of Station 1 under overload

condition and ρ is the system load.

Remark 3.5. In a majority of queueing systems, the system load depends only on the first
moment of the service time distribution. In the model under study, the value of ρ depends
not only on the first moment b1 of the service time distribution at Station 1, but also on the
shape of this distribution. In particular, ρ depends on variance of the service time. This fact is
illustrated in Table 1 in Section 5.

In what follows, we assume that the inequality (3.7) holds true.
Denote the stationary state probabilities of the Markov chain ξn = {in, rn, νn} by

π(i, r, ν), i ≥ 0, r = 0,N, ν = 0,W . Introduce the notation for the row vectors of these proba-
bilities

π(i, r) = (π(i, r, 0), π(i, r, 1), . . . , π(i, r,W)), π i = (π(i, 0),π(i, 1), . . . ,π(i,N)), i ≥ 0.
(3.13)

Let also Π(z) =
∑∞

i=0π iz
i, |z| ≤ 1, be the vector generating function of vectors π i, i ≥ 0. To

compute these vectors as well as the vectorsΠ(1) andΠ′(1), known algorithms, see, for exam-
ple, [16], can be applied.
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Once the stationary distribution has been computed, we can calculate some key perfor-
mance measures of the system as follows.

(i) The mean number of customers at Station 1 at the service completion epochs L =
Π′(1)e.

(ii) The vector of the stationary distribution of the number of busy servers at Station 2
at the service completion epoch at Station 1: r = Π(1)(IN+1 ⊗ eW).

(iii) The mean number of busy servers at Station 2 at the service completion epoch at
Station 1

Nbusy = r diag
{
r, r = 0,N

}
e. (3.14)

(iv) The probability that an arbitrary customer leaves the system or causes the blocking
of the server at Station 1

Ploss = γΠ(1)Q̃2e, Pblock =
(
1 − γ

)
Π(1)Q̃2e. (3.15)

(v) The probability that the server of Station 1 is idle at an arbitrary time pidle =
τ−1π0Q̂(−D̃0)

−1e, where τ is the mean interdeparture time at Station 1,

τ = b1 +π0Q̂
(
−D̃0

)−1
e − (1 − γ

)
Π(1)(IN+1 ⊗ e)F(1)Q3e, (3.16)

the matrix F(1) is defined by formula (C.3) below.

(vi) The probability that the server of Station 1 processes a customer at an arbitrary time
pserve = τ−1b1.

(vii) The probability that the server of Station 1 is blocked at an arbitrary time pblock =
1 − pidle − pserve.

4. Stationary Distribution of the Sojourn Time

4.1. The Virtual Sojourn Time

The virtual sojourn time in the system consists of the virtual sojourn time at Station 1 and the
sojourn time at Station 2. We assume that customers are served according to FIFO (first-in-
first-out) discipline.

For use in the sequel, we define the generalized service time of an arbitrary customer as
the service time of this customer by the first server and the possible blocking time of the ser-
ver by the previous customer.

4.1.1. The Virtual Sojourn Time at Station 1

The virtual sojourn time at Station 1 consists of (i) the residual time from an arbitrary time
instant (associated with virtual customer arrival) to the next service completion epoch at
Station 1 (ii) the generalized service times of customers staying in the queue at an arbitrary time,
and (iii) the generalized service time of the virtual customer.
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First, we study the residual time. To this end, we consider the process χt = {it, mt, rt,
νt, ṽt}, t ≥ 0, whose components are defined as follows: it is the number of customers in
Station 1 (including the blocked customer, if any), mt takes values 0, 1, 2, respectively, based
on the server at Station 1 is idle, busy, or blocked at time t, νt is the state of the BMAP, rt is
the number of busy servers at Station 2 just before the service completion epoch following
the time t, ṽt is the residual time from t to that service completion epoch.

Using the definition of semiregenerative processes given in [17], it can be verified that
the process χt is a semi-regenerative one with the embeddedMarkov renewal process {ξn, tn},
n ≥ 1. Let

Ṽ (i,m, r, ν, x)

= lim
t→∞

P{it = i,mt = m, rt = r, νt = ν, ṽt < x}, i ≥ 0, m = 0, 2, r = 0,N, ν = 0,W, x ≥ 0,

(4.1)

be the stationary distribution of the process χt, t ≥ 0.
From [17], the limits in (4.1) exist if the process {ξn, tn}, n ≥ 1, is irreducible aperiodic

recurrent and the value τ of the mean inter-departure time at Station 1 (given by (3.16)) is
finite. All these conditions hold if inequality (3.7) is satisfied.

Let Ṽ(i,m, x) be the row vector of the steady state probabilities Ṽ (i,m, r, ν, x) arranged
according to the lexicographic order of the components (r, ν), and let ṽ(i,m, s) be the
corresponding vector of the Laplace-Stieltjes transforms, that is, let ṽ(i,m, s) =

∫∞
0 e−sxdṼ(i,

m, x), i ≥ 0, m = 0, 2.

Lemma 4.1. The vector Laplace-Stieltjes transforms ṽ(i,m, s) are calculated by

ṽ(0, 1, s) = 0, ṽ(i, 0, s) = 0, i > 0, ṽ(0, 2, s) = 0, (4.2)

ṽ(0, 0, s) = −τ−1π0Q̂(Δ ⊕D0)−1
[
B∗(s) ⊗ IW

]
, (4.3)

ṽ(i, 1, s) = τ−1
{

π0

i∑

k=1

[
−Q̂(Δ ⊕D0)−1D̃k +

(
1 − γ

)
FkQ̃3

]

×
∫∞

0

(
eΔu ⊗ IW

)∫u

0
IN+1 ⊗ P

(
i − k, y

)
e−s(u−y)dy dB(u)

+
i∑

j=1

π j

[(
Q̃1 + γQ̃2

)∫∞

0

(
eΔu ⊗ IW

)∫u

0
IN+1 ⊗ P

(
i − j, y

)
e−s(u−y)dy dB(u)

+
(
1 − γ

) i−j∑

k=0

FkQ̃3

∫∞

0
eΔu ⊗ P

(
i − k − j, y

)
e−s(u−y)dy dB(u)

]}

,

(4.4)
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ṽ(i, 2, s) = τ−1
(
1 − γ

) i−1∑

j=0

π j

(∫∞

0
dF(u) ⊗ IW

)

Q̃3

×
∫u

0
e−s(u−y)

[
IN+1 ⊗ P

(
i − j − 1, y

)]
dy
[
B∗(s) ⊗ IW

]
, i > 0.

(4.5)

Proof. Let κ(i,m,x,t)
j (r, ν; r ′, ν′) denote the conditional probability that, given time 0 is an instant

of the service completion at Station 1 and the embeddedMarkov chain ξn is in the state (j, r, ν)
at that time, the next service completion epoch at Station 1 occurs later than t, the discrete
components of the process χt take values (i,m, r ′, ν′) at time t and the continuous-time com-
ponent ṽt < x.

Let us arrange the probabilities κ(i,m,x,t)
j (r, ν; r ′, ν′), for fixed values i, j, m, according to

the lexicographic order of the states (r, ν; r ′, ν′) and form the square matrices

K̃j(i,m, x, t) =
(
κ
(i,m,x,t)
j

(
r, ν; r ′, ν′

))

ν,ν′=0,W ;r,r ′=0,N
. (4.6)

Then, using the ergodic theorem for semi-regenerative processes, (see [17, Theo-
rem 6.12]), the probability vectors Ṽ(i,m, x) can be related to the stationary distribution π j ,
j ≥ 0, of the embedded Markov chain ξn, n ≥ 1, by

Ṽ(i,m, x) = τ−1
∞∑

j=0

π j

∫∞

0
K̃j(i,m, x, t)dt, i ≥ 0, m = 0, 2. (4.7)

The corresponding vector Laplace-Stieltjes transforms ṽ(i,m, s) are defined by

ṽ(i,m, s) = τ−1
∞∑

j=0

π j

∫∞

0
K̃∗

j (i,m, s, t)dt, i ≥ 0, m = 0, 2, (4.8)

where K̃∗
j (i,m, s, t) =

∫∞
0 e−sxdK̃j(i,m, x, t).

From (4.8), formulas (4.2) follow immediately when we note that K̃∗
j (i,m, s, t) = 0 for

the range of arguments {j ≥ 0, i = 0, m = 1, 2} and {j ≥ 0, i > 0, m = 0}.
Let m = 1. The lengthy but straightforward expressions for the matrices K̃∗

j (i, 1, s, t),
i > 0, are presented in Appendix A. Substituting these expressions into (4.8) and after routine
algebraic manipulations including rearranging the order of integration, we get formula (4.4)
for the vectors ṽ(i, 1, s), i > 0. Similar calculations yield (4.3) and (4.5).
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Further, we study the generalized service time distribution at Station 1.

Let B̂(x) be thematrix distribution function of generalized service time. More specifically,
let B̂(x) = (B̂(x)r,r ′)r,r ′=0,N , where B̂(x)r,r ′ = P{tn+1 − tn < x, rn+1 = r ′ | rn = r, in /= 0}. Denote
B(s) = ∫∞0 e−stdB̂(t).

Lemma 4.2. The matrix Laplace-Stieltjes transform of the generalized service time distribution at
Station 1 is calculated as

B(s) = [Q1 + γQ2 +
(
1 − γ

)
F∗(s)Q3

]
B∗(s), (4.9)

where F∗(s) =
∫∞
0 e−stdF(t).

Proof. To prove, we need to analyze the structure of the generalized service time. The gene-
ralized service time of a tagged customer is just the service time of the customer at Station 1 if
the previous customer did not block the server of this station. In this case, the matrix Lap-
lace-Stieltjes transform of the generalized service time distribution is calculated by (Q1 +
γQ2)B∗(s). However, when blocking occurs, the generalized service time consists of the time
during which the server is blocked by the previous customer and the service time of the
tagged customer. The corresponding Laplace-Stieltjes transform is defined by (1 − γ)∫∞
0 e−stdF(t)Q3B

∗(s). The stated result (4.9) follows immediately.

Now we are ready to derive the equation for the vector Laplace-Stieltjes transform
v1(s) of the distribution of the virtual sojourn time at Station 1. Let v1(r, ν, x) be the proba-
bility that, at an arbitrary epoch, the BMAP is in state ν, the virtual sojourn time at Station 1
is less than x, and the number of busy servers at Station 2 just before the end of the virtual
sojourn time is r. Then v1(s) is defined as a vector of Laplace-Stieltjes transforms v1(r, ν, s) =∫∞
0 e−sxdv1(r, ν, x) written in lexicographic order.

Theorem 4.3. The vector Laplace-Stieltjes transform v1(s) satisfies the equation

v1(s)A(s) = π0Φ(s), (4.10)

where

A(s) = sI +
∞∑

r=0

Br(s) ⊗Dr, Φ(s) = τ−1Q̂(Δ ⊕D0)−1
(
Δ ⊗ IW − sI

)[
B∗(s) ⊗ IW

]
. (4.11)

Proof. As mentioned above, the virtual sojourn time at Station 1 consists of the residual time
from an arbitrary time t to the next service completion epoch, the generalized service times of
customers that await for a service at time t, and the generalized service time of the virtual cus-
tomer.

Taking into account the structure of the virtual sojourn time and using the law of total
probability, we express the vector Laplace-Stieltjes transform v1(s) as follows:

v1(s) = ṽ(0, 0, s) +
∞∑

i=1

ṽ(i, 1, s)
[
Bi(s) ⊗ IW

]
+

∞∑

i=1

ṽ(i, 2, s)
[
Bi−1(s) ⊗ IW

]
. (4.12)
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Further, wemultiply (4.12) by the matrix sI+
∑∞

r=0Br(s)⊗Dr , and, after some laborious
calculations, get

v1(s)

(

sI +
∞∑

r=0

Br(s) ⊗Dr

)

= τ−1

⎧
⎨

⎩
π0

∞∑

i=0

⎡

⎣Ci +
i+1∑

j=1

π jYi−j+1

⎤

⎦
[
Bi+1(s) ⊗ IW

]

+π0Q̂
[
−(Δ ⊕D0)−1

(
sI + D̃0

)
+ I
][
B∗(s) ⊗ IW

] −
∞∑

j=0

π j

[
Bj+1(s) ⊗ IW

]
⎫
⎬

⎭
.

(4.13)

Multiplying the balance equations for stationary probability vectors π i of the form

π i = π0Ci +
i+1∑

l=1

π lYi−l+1, i ≥ 0, (4.14)

by Bi+1(s) ⊗ IW and summing over i we obtain

∞∑

i=0

π i

[
Bi+1(s) ⊗ IW

]
= π0

∞∑

i=0

Ci

[
Bi+1(s) ⊗ IW

]
+

∞∑

i=0

i+1∑

j=1

π jYi−j+1
[
Bi+1(s) ⊗ IW

]
. (4.15)

Using (4.15) to simplify equation (4.13), we obtain (4.10).

4.1.2. The Sojourn Time at Station 2

Let v2(s) be the column vector of the Laplace-Stieltjes transforms of the conditional sojourn
time distributions at Station 2. The rth entry of this vector is the Laplace-Stieltjes transform of
the sojourn time distribution of a customer at Station 2 given that the number of busy servers
is equal to r just before the end of the sojourn time of this customer at Station 1.

Lemma 4.4. The vector Laplace-Stieltjes transform of the sojourn time distribution at Station 2 is
given by

v2(s) =
[
Q4(F∗(s) + I)Î + γQ2 +

(
1 − γ

)
F∗(s)diag

{
fr,0(s), r = N,N − 1, . . . , 0

}
Q3

]
e. (4.16)

Proof. The sojourn time of a customer who requires m servers at Station 2 consists of:

(i) the service time of the customer when at leastm servers are available at the time of
the request;

(ii) zero time, if the required number of servers is not available and the customer leaves
the system;
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(iii) the blocking time and the service time of a customer when the required number of
servers is not available and the customer awaits the release of sufficiently many ser-
vers.

Note that we assume that the service of type m is performed by m servers indepen-
dently of each other and finishes when allm servers complete the service. The distribution of
this service time is defined by the Laplace-Stieltjes transform fm,0(s), m = 1,N.

Taking into account this fact together with (i)–(iii) and using the matrix notation, we
obtain expression (4.16) for the vector v2(s). In the expression, the first summand corresponds
to the case (i), the second and the third summands give the Laplace-Stieltjes transform under
study in the cases (ii) and (iii), respectively.

4.1.3. The Virtual Sojourn Time in the System

Theorem 4.5. The Laplace-Stieltjes transform of the virtual sojourn time distribution in the system is
given by

v(s) = v1(s)
(
IN+1 ⊗ eW

)
v2(s), (4.17)

where the vectors v1(s) and v2(s), respectively, are as given in (4.10) and (4.16).

Proof. Formula (4.17) readily follows from the structure of the virtual sojourn time in the
system which consists of the virtual sojourn time at Station 1 and the sojourn time at
Station 2.

4.2. The Actual Sojourn Time

Let v(a)
1 (s) and v(a)(s) be the Laplace-Stieltjes transforms of the distribution of the actual soj-

ourn time at Station 1 and in the whole system.

Theorem 4.6. The Laplace-Stieltjes transform of the actual sojourn time distribution at Station 1 is
calculated as follows:

v
(a)
1 (s) = λ−1v1(s)

∞∑

k=0

[
Bk(s)(B(s) − I)−1 ⊗Dk

]
e. (4.18)

Proof. The actual sojourn time at Station 1 of an arbitrary-tagged customer, who arrived in
a group of size k and placed at the jth position within the group, consists of (a) the actual
sojourn time at Station 1 of the first customer in the group, which coincides with the virtual
sojourn time at Station 1; (b) the generalized service times at Station 1 of the j−2 customers of
the group who arrived with the tagged customer; (c) the generalized service time of the tag-
ged customer at Station 1.

The vector Laplace-Stieltjes transform of the sojourn time distribution at Station 1 of
the first customer of the k-size group that contains the tagged customer is evidently given by
the vector v1(s)(IN+1 ⊗ kDke/λ).

Assuming that an arbitrary customer arriving in a group of size k is placed on the jth
position with probability 1/k and using the law of total probability, we immediately obtain
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the following expression:

v
(a)
1 (s) =

∞∑

k=1

v1(s)
(

IN+1 ⊗ kDke
λ

) k∑

j=1

1
k
Bj−1(s)e. (4.19)

After some algebraic manipulations (4.19) is reduced to (4.18).

Corollary 4.7. The Laplace-Stieltjes transform of the actual sojourn time distribution in the whole
system is calculated as follows:

v(a)(s) = λ−1v1(s)
∞∑

k=0

[
Bk(s)(B(s) − I)−1 ⊗Dk

](
IN+1 ⊗ eW

)
v2(s). (4.20)

4.3. Moments of the Sojourn Time Distribution

The formulas for the moments of the virtual sojourn time distribution can be obtained by
differentiating the expression in (4.10) at the point s = 0. This requires the calculation of the
derivatives of v1(s) at the point s = 0. However, the matrix A(s) in (4.10) is singular at the
point s = 0 and calculation of the derivatives at this point is the nontrivial task. The results
given below allow one to develop a procedure for calculating the required derivatives.

We will use notation v(m)
1 (s) for the mth derivative of the vector v1(s), m ≥ 1, and set

v(0)1 (s) = v1(s). Similar notations will be used for other functions of s.

Theorem 4.8. Let
∫∞
0 tmdB(t) < ∞, m = 1,M + 1, where M is an arbitrary positive integer. Then

the vectors v(m)
1 (0), m = 1,M, are computed recursively by

v(m)
1 (0) =

[(

π0Φ(m)(0) −
m−1∑

l=0

(
m

l

)

v(l)1 (0)A(m−l)(0)

)

Ĩ

+
1

m + 1

(

π0Φ(m+1)(0) −
m−1∑

l=0

(
m + 1

l

)

v(l)1 (0)A(m+1−l)(0)

)

eê

]

Ã−1,

(4.21)

with the initial condition

v(0)1 (0) = v1(0) =
[
τ−1π0Q̂(Δ ⊕D0)−1

(
ΔB∗(0) ⊗ IW

)
Ĩ + pidle ê

]
Ã−1, (4.22)

where Ã = A(0)Ĩ +A′(0)eê.

Proof of the theorem is presented in Appendix B. In what follows we assume that
∫∞
0 tkdB(t) < ∞, k = 1, 2.
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Corollary 4.9. The mean virtual sojourn time at Station 1 is given by

v1 =
{[

τ−1π0Q̂(Δ ⊕D0)−1
((

B∗(0) −ΔB∗′(0)
)
⊗ IW

)
+ v1(0)A′(0)

]
Ĩ

+
[

pidleb1 +
1
2
v1(0)A′′(0)e

]

ê
}

Ã−1e,
(4.23)

where the vector v1(0) is defined by formula (4.22).

Proof follows from the relation v1 = −v′1(0)e and formula (4.21).

Theorem 4.10. The mean virtual sojourn time in the system is given by

v = v1 + v1(0)
(
IN+1 ⊗ eW

)
v2, (4.24)

where v1(0) and v1 are given in (4.22) and (4.23), respectively, and v2 is a vector of conditional means
of the sojourn time at Station 2,

v2 = −
{

Q4F
(1)êT +

(
1 − γ

)
[

F(1) − Ediag

{
r∑

l=1

(
lμ
)−1

, r = N,N − 1, . . . , 0

}]

Q3e

}

, (4.25)

where F(1) is given by formula (C.3) below.

Proof. To calculate the value v we differentiate the expression in (4.17). Setting s = 0 and rep-
lacing the sign, we have that

v = −v′1(0)
(
IN+1 ⊗ eW

)
v2(0) − v1(0)

(
IN+1 ⊗ eW

)
v′2(0). (4.26)

Putting s = 0 in (4.16) we get v2(0) = [Q4(E + I)Î + γQ2 + (1 − γ)EQ3]e = e. This implies
that the first term in the right-hand side of (4.26) is equal to −v′1(0)e = v1. Using the relation
v2 = −v′2(0) and differentiating (4.16) at the point s = 0, we readily verify that v2 has form
(4.25). This completes the proof.

Theorem 4.11. The mean actual sojourn time at Station 1 is given by

v
(a)
1 = −λ−1

{

v′1(0)

(

e ⊗
∞∑

k=1

kDke

)

+ v1(0)
∞∑

k=1

(IN+1 ⊗Dke)

[
k−1∑

n=1

n−1∑

l=0

Bl(0)B′(0)e

]}

. (4.27)

Proof of the theorem follows from the relation v
(a)
1 = −dv(a)

1 (s)/ds|s=0 and formula
(4.19).

Corollary 4.12. The mean actual sojourn time in the system is given by

va = v
(a)
1 + λ−1v1(0)

∞∑

k=1

(IN+1 ⊗Dke)
k−1∑

n=0

Bn(0)v2. (4.28)
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5. Numerical Examples

In this section, we demonstrate feasibility of the algorithms developed here and show numer-
ically some interesting features of the system under consideration.

Experiment 1. In this experiment, we investigate the impact of coefficient of variation in the
service process at Station 1 on the main performance measures of the system.

To this end, we consider four service processes with the same mean service time b1 =
0.1, but different values for the coefficient of variation, cvar. The first process is coded asD and
corresponds to the deterministic service time distribution. The second process is coded asM
and corresponds to the exponential service time. The third and the fourth service processes
are coded as HM

(1)
2 , HM

(2)
2 and correspond to hyperexponential service time distributions

of order 2. These distributions are defined by the mixing probabilities (0.05, 0.95) and the
intensities 0.62025, 48.9998 in the case of HM

(1)
2 and (0.98, 0.02) and the intensities 10000,

0.2 in the case of HM
(2)
2 . The coefficients of variation of processes D, M, HM

(1)
2 , and HM

(2)
2

are, respectively, equal to 0, 1, 5, 9.95.
The input process is defined by the matrices

D0 =

⎛

⎜
⎜
⎝

−15.7327 0.6062 0.5924

0.5178 −2.2897 0.4679

0.5971 0.5653 −1.9597

⎞

⎟
⎟
⎠, D =

⎛

⎜
⎜
⎝

14.1502 0.3021 0.0818

0.1071 1.032 0.1646

0.0858 0.1979 0.5136

⎞

⎟
⎟
⎠. (5.1)

The matricesDk, k = 1, 5, are calculated as follows:Dk = Dhk−1(1−h)/(1−h5), where h = 0.8.
Then we normalize the matrices Dk, k = 0, 5, so as to get the arrival rate λ = 1. This BMAP
has coefficient of correlation ccor = 0.2. The other parameters of the system are as follows:
N = 5, μ = 0.8, γ = 0.5, q0 = 0.1, q1 = q2 = 0.3, q3 = q4 = q5 = 0.1.

We vary the mean service time b1 for all considered service processes in the interval
[0.1, 0.95] by scaling appropriately. The coefficients of variation do not change under such
scaling. Note that, as it was mentioned in Remark 3.5 above, the system load ρ depends not
only on the mean service time, but also on the variance of the service time. In Table 1, the
value of ρ is given as function of b1 and cvar. The values of ρ that exceed 1 are printed in bold
face. The tandem queueing system is not stable for these values.

Figures 1 and 2 show the dependence of the main performance measures of the system
on the value of the mean service time b1 for service processes with different service time dis-
tribution. From these figures, it is very clear that the key performance measures of the system
are very sensitive with respect to the service time variance. We also ran other examples,
besides the one presented here, involving Erlangian and uniform distributions for the service
time distribution. Since all these distributions have coefficient of variation in the range (0, 1),
the corresponding curves, as expected, were located between the two lower curves in Figures
1 and 2.

Experiment 2. Here we solve numerically the following optimization problem. Find an
optimal choice for the number N of servers at Station 2 that will minimize the expected total
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Figure 1: The mean virtual and actual sojourn time as functions of the mean service time for different ser-
vice time distributions.
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Figure 2: The loss probability and the mean number of busy servers at Station 2 as functions of the mean
service time for different service time distributions.

cost per unit of time:

J = J(N) = aN + c1λPloss + c2v
(a), (5.2)

where a is the cost of utilization per unit time of a server at Station 2 (maintenance cost), c1
is the cost of a customer leaving the system after a service at Station 1 due to lack of required
servers, and c2 is the cost per unit of time of holding (the sojourn time) an arbitrary customer
in the system (holding cost).

Using the MAP characterized by the matrices

D0 =

( −6.74538 5.45412 × 10−6

5.45412 × 10−6 −0.219455

)

, D =

(
6.700685 0.044695

0.122427 0.097023

)

, (5.3)

we construct the BMAPwith the matricesDk, k = 0, 5, similar to Experiment 1 and normalize
so as to have λ = 3. The BMAP has the coefficient of correlation ccor = 0.2 and the coefficient
of variation cvar = 3.5.
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Table 2: The value of the objective function for different number of servers and different service rate at
Station 2.

μ = 1 μ = 2 μ = 3 μ = 4 μ = 5
N = 1 ∞ 457.0346 74.9351 51.0311 42.5146
N = 2 353.7378 48.6349 34.1130 27.0826 22.9120
N = 3 71.0480 34.6565 25.8441 22.2656 20.6657
N = 4 51.7822 30.4068 25.8202 24.6008 24.2393
N = 5 45.2556 31.2080 29.3925 29.1141 29.0630
N = 6 43.0750 34.6437 34.0980 34.0535 34.0486
N = 7 43.6867 39.0715 39.0533 39.0504 39.0476
N = 8 47.2564 44.0527 44.0514 44.0495 44.0474
N = 9 51.9854 49.0521 49.0511 49.0491 49.0473
N = 10 57.0056 55.0458 54.6001 54.0489 54.0472

J

100

60

20

2 4 6 8 10

N

μ = 2

μ = 3

μ = 1

μ = 4

μ = 5

Figure 3: The objective function as a function of the number of servers in Station 2 for different service
rates.

The service time distribution at Station 1 is assumed to be Erlang of order 3 with para-
meter 20. The probability γ is taken to be 0.5. The components of the vector q are: q0 =
0.1, q1 = 0.9, qm = 0, m = 2,N. The various costs are taken as follows: a = 5, c1 = 50, c2 = 3.

The objective function, J , as a function of the numberN of servers under different ser-
vice rates μ is plotted in Figure 3. Table 2 contains the values of the objective function.

The optimal values J∗ of the objective function for each of the five service rates are dis-
played in bold face. It is seen from Figure 3 and Table 2 that as the service rate decreases from
5 to 1, the optimal number of serversN∗ increases from 3 to 6. The relative gain of the optimal
configuration in comparison to a system with an arbitrary numberN of the servers at Station
2 is defined as Rrel(N) = ((J(N) − J∗)/J∗)100%.

We now focus on the result of optimal value in the case μ = 5. It is seen from Figure 3
and Table 2 that the optimal value of the objective function J∗ is 20.6657 and the optimal num-
ber of servers N∗ = 3. It should be also noted that for the case under consideration the mini-
mal relative gain is more than 10% if we install the optimal number of serversN∗ = 3 instead
of 2 servers and maximal relative gain is more than 161% if we use N∗ = 3 servers instead of
10 servers.

Experiment 3. In this experiment, we show that the correlation in the input flow has a great
impact on the performance measures of the system. In addition to the BMAP defined in the
first experiment and having the coefficient of correlation ccor = 0.2, let us consider two ano-
ther BMAPs, having the samemean arrival rate, but different coefficients of correlation. These
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Figure 4: The mean virtual and actual sojourn time as functions of the system load for the BMAPs with dif-
ferent correlation.

BMAPs are defined by the matricesD0 andD1 = D, from which the matricesDk, k = 0, 5, are
defined in the same way as in Experiment 1.

The BMAP having the coefficient of correlation ccor = 0.1 is characterized by the mat-
rices

D0 =

⎛

⎜
⎜
⎝

−13.3346 0.5886 0.6173

0.6927 −2.4466 0.4229

0.6823 0.4144 −1.6354

⎞

⎟
⎟
⎠, D =

⎛

⎜
⎜
⎝

11.5469 0.3631 0.2187

0.3842 0.8659 0.0809

0.2852 0.0425 0.2111

⎞

⎟
⎟
⎠. (5.4)

The BMAP having the coefficient of correlation ccor = 0.3 is defined by the matrices

D0 =

⎛

⎜
⎜
⎝

−25.5398 0.3933 0.3612

0.1452 −2.2322 0.2000

0.2960 0.3874 −1.7526

⎞

⎟
⎟
⎠, D =

⎛

⎜
⎜
⎝

24.2421 0.4669 0.0763

0.0341 1.6668 0.1861

0.0090 0.2555 0.8047

⎞

⎟
⎟
⎠. (5.5)

All the three defined BMAPs have the coefficient of variation cvar = 2.
In addition, we consider the BMAP which is a group Poisson process. It has the same

mean arrival rate as three other BMAPs, coefficient of correlation ccor = 0 and the coefficient
of variation cvar = 1.

The service time at Station 1 has the Erlangian distribution of order 3 with parameter
20. The mean service time b1 = 3/20 and the squared coefficient of variation c2var = 1/3.

The number of servers at Station 2N = 5. Service rate μ is equal to 5. Probability γ that
a customer will await the release of servers is equal to 0.5. The components of the vector q,
which defines the type of the customer, are q0 = 0.1, q1 = q2 = 0.3, and q3 = q4 = q5 = 0.1.

Figures 4 and 5 illustrate the dependence of the mean virtual sojourn time v, the mean
actual sojourn time va, the loss probability Ploss, and the mean number Nbusy of busy servers
at Station 2 on the system load ρ. The load ρ varies by means of scaling the fundamental rate
λ. Note that the coefficients of correlation and variation of the BMAP do not change under
such scaling.

Figures 4 and 5 confirm the fact that values of v, va, Ploss, andNbusy increase when the
system load, ρ, increases. We also note that, under the same scenario for the system load
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Figure 5: The loss probability and the mean number of busy servers at Station 2 as functions of the system
load for the BMAPs with different correlation.

the correlation of the interarrival times shows a strong (negative) impact on the system per-
formance characteristics.

6. Conclusion

In this paper, the BMAP/G/1 → •/M/N/0 tandem queue with heterogeneous customers is
studied. The system is studied by looking at selected embedded epochs. The condition for the
existence of the stationary distribution is derived. Expressions for the loss probability, block-
ing probability, and some other performance characteristics of the system are obtained. The
Laplace-Stieltjes transforms of the distribution of the virtual and the actual sojourn time at
both stations as well as at the whole system are derived. Although the required analytical
derivations are very complicated and cumbersome, the resulting formulas have very simple
forms. The procedure for calculating the moments of the virtual and the actual sojourn time
distribution is elaborated. Illustrative numerical results highlight the important role played
by the variance of the service time. An optimization problem to illustrate the usefulness of
such problems in practice involving tandem queues is discussed. The results of this paper can
be applied to areas such as capacity planning, performance evaluation, and optimization of
real-world tandem queues and two-node networks.

Appendices

A. Expressions for the Matrices K̃∗
j (i, 1, s, t), j > 0, i > 0

K̃∗
0(i, 1, s, t) =

(
Q̃1 + γQ̃2

)∫ t

0

[

IN+1 ⊗ eD0x
i∑

k=1

DkdxP(i − k, t − x)

]

×
∫∞

0
e−sueΔ(t+u) ⊗ IWdB(t − x + u) +

(
1 − γ

)
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×
{∫ t

0

[

dF(x) ⊗
i∑

k=1

P(k, x)P(i − k, t − x)

]

Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB(t − x + u)

+
∫ t

0

∫y

0

[

dF(x) ⊗
(

eD0y
i∑

k=1

DkdyP
(
i − k, t − y

)
)]

Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB

(
t − y + u

)
}

, i > 0,

K̃∗
j (i, 1, s, t) =

(
Q̃1 + γQ̃2

)[
IN+1 ⊗ P

(
i − j, t

)]
∫∞

0
e−sueΔ(t+u) ⊗ IWdB(t + u)

+
(
1 − γ

)
∫ t

0

[

dF(x) ⊗
i−j∑

k=0

P(k, x)P
(
i − k − j, t − x

)
]

Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB(t − x + u).

(A.1)

B. Proof of Theorem 4.8.

Proof. Successively differentiating the expression in (4.10), we get

v(m)
1 (0)A(0) = π0Φ(m)(0) −

m−1∑

l=0

(
m

l

)

v(l)1 (0)A(m−l)(0), m ≥ 0. (B.1)

It follows from (4.11) thatA(0) =
∑∞

r=0Br(0)⊗Dr , where B(0) is an irreducible stochastic mat-
rix. This implies that A(0) is an irreducible infinitesimal generator, and hence A(0) is a sin-
gular matrix. Thus, it is not possible to develop a recursive scheme for computing the vectors
v(m)
1 (0), m ≥ 0, directly from (B.1). We will now modify the system (B.1) to get the system

with a nonsingular matrix. To this end, we postmultiply the expression for m + 1 in (B.1) on
both sides with e. Taking into account that A(0)e = 0T , we get

v(m)
1 A′(0)e =

1
m + 1

[

π0Φ(m+1)(0) −
m−1∑

l=0

(
m + 1

l

)

v(l)1 (0)A(m+1−l)(0)

]

e. (B.2)

It can be shown that the right-hand side of (B.2) is not equal to zero. It is positive if m = 2k
and it is negative ifm = 2k+1, k ≥ 0. Thus, replacing one of the equations in the system (B.1)
(without loss of generality, we replace the first equation) with equation (B.2), we get the
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following (inhomogeneous) system of linear algebraic equations for the entries of the vector
v(m)
1 (0) :

v(m)
1 (0)Ã =

[

π0Φ(m)(0) −
m−1∑

l=0

(
m

l

)

v(l)1 (0)A(m−l)(0)

]

Ĩ

+
1

m + 1

[

π0Φ(m+1)(0) −
m−1∑

l=0

(
m + 1

l

)

v(l)1 (0)A(m+1−l)(0)

]

eê, m ≥ 0.

(B.3)

The above system has the unique solution if Ã is non-singular. We prove this by showing that
det Ã /= 0.

Let us calculate det Ã as

det Ã = ∇A′(0)e, (B.4)

where ∇ is a vector of algebraic cofactors of the first column of the matrix A(0). Since A(0) is
irreducible, the vector ∇ is proportional to any solution of the system

xA(0) = 0, (B.5)

that is,

∇ = cx, (B.6)

where the scalar c /= 0.
Let the vector ϑ be the unique solution to the system

ϑB(0) = ϑ, ϑe = 1. (B.7)

Then, by the direct substitution it can be verified that the vector x = ϑ ⊗ θ is a solution to the
system (B.5).

From (B.6), ∇ = c(ϑ ⊗ θ). Substituting the vector ∇ into (B.4), we obtain

det Ã = c(ϑ ⊗ θ)A′(0)e = c(ϑ ⊗ θ)

(

sI +
∞∑

r=0

Br(s) ⊗Dr

)′∣∣
∣
∣
∣
s=0

e

= c + c
∞∑

r=1

rϑB′(0)e ⊗ θDre = c
(
1 + λϑB′(0)e

)
.

(B.8)

In further evaluation of det Ã, we use the ergodicity condition given in Theorem 3.3.
Setting s = 0 in (4.9) and noting that Q1 + γQ2 + (1 − γ)F∗(0)Q3 = Q, we see that

B(0) = QB∗(0) and that the vector ϑ defined by (B.7) is the unique solution of system (3.8). It
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can be easily verified that

ϑB′(0)e = −
[

b1 +
(
1 − γ

)
ϑ

∫∞

0
tdF(t)Q3e

]

. (B.9)

Multiplying (B.9) by λ and comparing the obtained equation with the equality in (3.12) we
see that

λϑB′(0)e = −ρ. (B.10)

It follows from (B.8) and (B.10) that det Ã = c(1−ρ). Since the stability condition implies that
ρ < 1 and since c /= 0, we have det Ã /= 0. This competes the proof of the theorem.

C. Formulas for Calculation of the Mean Virtual Sojourn Time

The expressions (4.21)-(4.22) for the mean virtual sojourn time involve the matrices Ã, A′(0)
and the vector A′′(0)e for which we derive explicit expressions below.

Ã =

[ ∞∑

r=0

Br(0) ⊗Dr

]

Ĩ +

[

I +
∞∑

r=1

r−1∑

n=0

Bn(0)B′(0) ⊗Dr

]

eê,

A′(0) = I +
∞∑

r=1

r−1∑

n=0

(
Bn(0)B′(0)Br−n−1(0) ⊗Dr

)
,

A′′(0)e =

{ ∞∑

r=1

r−1∑

n=1

[

2
n−1∑

l=0

Bl(0)B′(0)Bn−l−1(0)B′(0) + Bn(0)B′′(0)

]

⊗Dr

}

e,

(C.1)

where

B(0) = QB∗(0), B′(0) = QB∗(1) +
(
1 − γ

)
F(1)Q3B

∗(0),

B′′(0) = QB∗(2) − 2
(
1 − γ

)
F(1)Q3B

∗(1) +
(
1 − γ

)
F(2)Q3B

∗(0),
(C.2)

F(m) = (−1)m
∫∞

0
tmdF(t) =

(
f
(m)
r,r ′

)

r,r ′=0,N
, m = 1, 2, (C.3)

f
(1)
r,r ′ =

⎧
⎪⎪⎨

⎪⎪⎩

0, r ≤ r ′,

−
r∑

l=r ′+1

(
lμ
)−1

, r > r ′,
(C.4)
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f
(2)
r,r ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, r ≤ r ′,

2
r∑

l=r ′+1

(−1)l−r ′+1
⎛

⎝
r − r ′

l − r ′

⎞

⎠
(
lμ
)−2

, r > r ′,

B∗(m) = (−1)m
∫∞

0
tmeΔtdB(t) =

(
β
∗(m)
r,r ′

)

r,r ′=0,N
, m = 0, 2,

β
∗(m)
r,r ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, r < r ′,
⎛

⎝
r

r ′

⎞

⎠

⎧
⎨

⎩

r−r ′∑

i=0
(−1)i

⎛

⎝
r − r ′

i

⎞

⎠β(m)(μ(r ′ + i)
)

⎫
⎬

⎭
, r ≥ r ′.

(C.5)

Remark C.1. Formulas for Ã,A′(0), A′′(0) contain infinite sums. However, the calculations of
these should not create any difficulty as for overwhelming majority of interesting and useful
queueing models; the parameter matrices, Dk, of the BMAP process are equal to zero for k
greater than some threshold, say, K. Thus, all sums become finite. In alternative case, some
analytical formula for computing the infinite sequence ofmatricesDk, k ≥ 1, should be given.
If this sequence is generated such as Dk = D(1 − σ)σk−1, k ≥ 1, where D and 0 < σ < 1 are
given parameters, the infinite sums can be computed explicitly.
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