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In view of the issue of rapid attitude maneuver control of agile satellite, this paper presents an
attitude-tracking control algorithm with path planning based on the improved genetic algorithm,
adaptive backstepping control as well as sliding mode control. The satellite applies double gimbal
control moment gyro as actuator and is subjected to the external disturbance and uncertain inertia
properties. Firstly, considering the comprehensive mathematical model of the agile satellite and
the double gimbal control moment gyro, an improved genetic algorithm is proposed to solve the
attitude path-planning problem. The goal is to find an energy optimal path which satisfies certain
maneuverability under the constraints of the input saturation, actuator saturation, slew rate limit
and singularity measurement limit. Then, the adaptive backstepping control and sliding mode
control are adopted in the design of the attitude-tracking controller to track accurately the desired
path comprised of the satellite attitude quaternion and velocity. Finally, simulation results indicate
the robustness and good tracking performance of the derived controller as well as its ability to
avert the singularity of double gimbal control moment gyro.

1. Introduction

Rapid attitude maneuver control as one of the key technologies of agile satellite, has been
extensively studied. Because of the superior properties such as large output torque and
momentum storage, control moment gyro (CMG) is the ideal actuator for the rapid attitude
maneuver control of agile satellite [1]. Compared with single gimbal CMG (SGCMG), double
gimbal CMG (DGCMG) has many advantages, including the output control torque with
two degrees of freedom, nearly spherical angular momentum envelop, good configuration
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efficiency, no striking singularity problem, low computation complexity of the steering law,
and so on [2]. In the early 1970s, DGCMG has been successfully applied. For example, three
orthogonally-mounted DGCMGs were used in the NASA’s Skylab [3]. And the International
Station is controlled by four parallel-mounted DGCMGs [4].

Many researches on satellite attitude control using CMG as actuator has been present-
ed abundantly in the past decades [5–8]. The existing control systems are usually separated
into the attitude control law and the CMG steering law. When the control torque is calculated
by the attitude control law, the geometric singularity problem of the CMG is not taken into
account. As a result, the singularity problem cannot be considered from a global perspective.
An effective singularity avoidance method is to use a tracking controller to track the
planned attitude trajectories accurately. And the planned attitude trajectories are based on
the comprehensive mathematic model of agile satellite and CMG in the whole maneuvering
process [9–11]. The attitude path planning problem of the agile satellite using SGCMGs is
converted to an optimal control problem in [10]. And the Legendre pseudospectral method
is used to solve the optimal control problem so that the comprehensive optimal attitude
path is obtained in the aspect of the time and energy. Finally, a sliding mode controller is
designed to track accurately the desired path. A feedback control with nominal inputs for
agile satellites using SGCMGs is proposed in [11]. The feedforward control law using an
energy optimal path planned by Fourier basis algorithm is used to solve the singularity
problem of the SGCMGs. Moreover, a feedback control system is also designed in order to
acquire the robustness against errors and disturbances. However, the attitude paths obtained
in [10, 11] are local optimal [12]. The Legendre pseudospectral method and the Fourier basis
algorithm are fundamentally gradient methods. The gradient method is a local method in
that a locally optimal solution will generally be obtained. Whereas, the heuristic method is
a global technique. In recent years, a path planning problem is introduced to new heuristic
techniques such as fuzzy logic [13], ant colony optimization [14, 15], neural network [16],
simulated annealing [17], genetic algorithm (GA) [18–21], and so on. Each method has its
own strength over others in certain aspects. However, GA has attracted significant attention
because of efficient use of large numbers of parallel processors, each of implementation
for both continuous and discrete problems, no requirement for the continuity in response
functions, and more robust solution generations to search for global or near global solutions.

Sliding mode control is widely applied in spacecraft attitude control for its strong
robustness against disturbances and uncertainties when the system states are sliding on
the sliding surface [22, 23]. However, these design methods require the information on
the bounds of the uncertainties/disturbances for the computation of the controller gains.
Nevertheless, it is difficult to know the bounds of the uncertainties/disturbances in practical
situation. Unlike these methods, nonlinear adaptive control methods do not require these
bounds. They include the adaptive mechanism for estimating the uncertainties/disturbances
[24]. Therefore, a variety of adaptive controllers are developed [25, 26]. Meanwhile, the
adaptive robust spacecraft controllers based on the combination of sliding mode control
and adaptive control are also designed [27, 28]. However, the methods mentioned above
do not explicitly investigate the effects of constant disturbance toques on the attitude control.
More recently, the backstepping control method is proposed to address the attitude control
problem [24, 29, 30], due to its remarkable capability in designing cascaded systems, and it is
well established that the spacecraft systems just satisfy the cascaded structure. Furthermore,
the added integrator with backstepping control can improve the robustness of the system
against the constant disturbance torques. For drawbacks of the simple linear backstepping
controller, such as sluggish motion and excessive control input, the arctangent nonlinear
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tracking function is adopted in [29, 30]. Combined with the existing results in the literature,
there are four advantages which make the adaptive backstepping sliding mode control
attractive. Firstly, the adaptive backstepping sliding mode controller can be implemented
easily and systematically by incorporating the backstepping design processes. Secondly, the
convergence of the attitude tracking error for possible initial conditions can be guaranteed
by selecting the Lyapunov function. Thirdly, the bounds of the uncertainties/disturbances
do not require to be known because the uncertainties/disturbances can be estimated by the
adaptation mechanism. Finally, the system robustness against modeling uncertainties and
external disturbances can be improved because of the added integrator with backstepping
control, so that the accuracy of steady-state control can be enhanced.

This paper addresses the design of the closed-loop control system of the rapid attitude
maneuver of agile satellite using DGCMGs. An improved GA is adopted to plan the
energy optimal attitude trajectory based on the comprehensive model of agile satellite and
DGCMGs. Moreover, the desired path planned by the improved GAmust satisfy the variable
constrained conditions, such as control input saturation, actuator saturation, slew rate limit,
and singularity measurement limit. Then, an attitude tracking controller is proposed based
on the sliding mode control method and adaptive backstepping control method using
hyperbolic tangent function as a nonlinear tracking function. Finally, to realize the rapid
attitude maneuver, the attitude tracking controller is applied to track accurately the desired
path composed of the satellite attitude quaternion and velocity.

2. Dynamic Modeling of Rigid Agile Satellite Using DGCMGs

In this paper, the agile satellite has a DGCMG system that is an orthogonal configuration of
two DGCMGs in Figure 1. This section describes the dynamic model of agile satellite and the
output torque equation of DGCMGs. The objective of this section is to construct a numerical
calculation model of the satellite attitude maneuver using DGCMGs.

2.1. Dynamic Modeling of Rigid Agile Satellite

The unit quaternion is adopted to describe the attitude of agile satellite to obtain the global
representation without singularities. The unity quaternion Q is defined as Q = [q0 q]T.
Where q0 and q = [q1 q2 q3]

T are the scalar and vector components of the unit quaternion,
respectively. Let Qd = [qd0 qd]

T denote the desired quaternion. The error quaternion Qe =
[qe0 qe]

T is described as

qe0 = q0qd0 + qTqd,

qe = qd0q − q0qd + q × qd.
(2.1)

Let ω ∈ R3 and ωd ∈ R3 denote the satellite angular velocity and the desired one.
q× is the skew-symmetric matrix of the vector q. The skew-symmetric matrix of the vector
a = [a1 a2 a3]

T is defined by

a× =

⎡
⎣

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦. (2.2)
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Figure 1: Two DGCMGs orthogonal configuration.

Then the error of angular velocity is given as

ωe = ω − Cb
dωd, (2.3)

where Cb
d
= (q2e0 − qeTqe)I3×3 + 2qeqeT − 2qe0qe×, I3×3 represents the identity matrix.

The kinematic differential equations can be written as [31]

q̇e0 = −1
2
qeTωe,

q̇e =
1
2
Ξ(qe)ωe,

(2.4)

where

Ξ(qe) = qe0I3×3 + qe × . (2.5)

The control torque of DGCMG is generated through changing the direction of the
angular momentum. Let h denote the total angular momentum of the DGCMGs, then the
output torque of the DGCMGs can be represented as

T = −ḣ. (2.6)

According to the Euler equation, the error dynamic model can be expressed as [31]

Jω̇e = Γ(J0,ωe) + u + Fd, (2.7)

where

Γ(J0,ωe) = −
(
ωe + Cb

dωd

)
×
[
J0
(
ωe + Cb

dωd

)
+ h

]
+ J0

(
ωe × Cb

dωd − Cb
dω̇d

)
,

Fd = −
(
ωe + Cb

dωd

)
×
[
ΔJ

(
ωe + Cb

dωd

)]
+ ΔJ

(
ωe × Cb

dωd − Cb
dω̇d

)
+ Td,

(2.8)
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where J = J0 + ΔJ is the satellite inertia matrix, and J0 and ΔJ are the nominal and uncertain
components of the inertia matrix. u = T ∈ R3 is the command torque, Td ∈ R3 is the external
disturbance torque, including the gravity gradient torque, aerodynamic torque, and torque of
solar radiation. It is assumed that Td is an unknown bounded function. Fd that results from
ΔJ and Td is the uncertain part in the dynamic equation, and it is also an unknown bounded
function.

2.2. Output Torque Equation of DGCMGs

In order to realize the three-axis attitude control, an orthogonal configuration of two
DGCMGs is adopted. The configuration diagram is given in Figure 1.

The vector set {Xb,Yb,Zb} is the unit vector of the satellite body coordinate frame. Xb,
Yb, and Zb are orthogonal to each other. xi, yi, and zi are parallel to the outer gimbal axis,
spin axis and inner gimbal axis of the ith DGCMG, i = 1, 2. αi and βi are the inner gimbal
angle and outer gimbal angle of the ith DGCMG. Let h0 denote the angular momentum
magnitude of the individual DGCMG. Then the angular momentum of the DGCMGs is a
function depending on the gimbal angles δ = [δ1 δ2]

T. It is expressed as

h = h0

⎡
⎣
cosα1 cos β1 + cosα2 cos β2

− cosα1 sin β1 − sinα2
− sinα1 + cosα2 sin β2

⎤
⎦, (2.9)

where δi = [αi βi]
T, i = 1, 2. According to the principle of angular momentum exchange, the

time derivative of h is equal and opposite to the output torque T from the DGCMGs to the
satellite body, and their relationship is

T = −ḣ = −h0Cδ̇, (2.10)

where

C =

⎡
⎣
− sinα1 cos β1 − cosα1 sin β1 − sinα2 cos β2 − cosα2 sin β2
sinα1 sin β1 − cosα1 cos β1 − cosα2 0
− cosα1 0 − sinα2 sin β2 cosα2 cos β2

⎤
⎦. (2.11)

An obstacle when using a CMG system in practice is the existence of singular gimbal
angle states for which the CMGs cannot generate torque along arbitrary directions. The
singularity measurement is given as [4]

d = det
(
CCT

)
. (2.12)

This determinant is an indicator of how close the CMG cluster is to a singular point.
Where d is a positive scalar. When d = 0, DGCMGs are strapped into the singularity state.
The distance from the singularity state is farther when d is larger.
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3. Attitude Tracking Control with Path-Planning

The whole attitude control system consists of the attitude path planning and the attitude
tracking control, which applies DGCMGs as actuator. In the attitude path planning, an
improved GA algorithm is adopted to find the energy optimal path without separating
the whole control system into the attitude control law and the CMG steering law.
Moreover, the desired path planned by GA satisfies certain maneuver ability and various
physical constrains, including input saturation, actuator saturation, angular velocity limit
and singularity measurement limit. In the attitude tracking control, to guarantee the
system robustness to the external disturbance and uncertain inertia properties, an adaptive
backstepping sliding mode controller is designed to track accurately the desired path
comprised of the attitude quaternion and velocity instead of gimbal angular velocity of the
DGCMGs. Using the attitude quaternion and velocity as reference trajectory will lead to
the few deviation of gimbal angular velocity of the DGCMGs from the desired path in the
practical maneuvering process. Consequently, the singularity of DGCMGs cannot be avoided
completely. However, the robustness of the system will be enhanced. The whole control
system block diagram is shown in Figure 2.

3.1. Reference Maneuver Path Planning Using GA

This section deals with the trajectory planning problem for agile satellite using DGCMGs as
actuator. An improvedGAusing a floating representation is proposed to search for the energy
optimal path. To overcome the premature convergence or get into local optimal problem of
the classic GA, considering the characteristics of rapid attitudemaneuver of the agile satellite,
a heuristic method is utilized to produce the initial population. Then, in order to guarantee
the DGCMGs away from the singularity state, a fitness function is defined based on the
energy consumed by DGCMGs. Moreover, for purpose of making the command torque and
the angular velocity of satellite smoothing, the smooth mutation operator for the angular
velocity and the angular acceleration is presented.

(1) Individual Representation

Compared with the binary representation, the floating representation can be implemented
easily, and computer memory is saved. Moreover, it is more suitable for solving multidi-
mensional, high-precision numerical problem [18]. Therefore, the floating representation
is used to encode attitude quaternion path. The chromosome structure is denoted as
(qe,1,qe,2, . . . ,qe,n). Where qe,1 and qe,n are the vector components of the initial attitude and
target attitude, respectively. qe,i (i = 1, 2, . . . n − 1) is the vector components of the attitude
quaternion of the intermediate nodes. The path length n is calculated according to the
simulation time T and the simulation step Ts, n = T/Ts.

(2) Population Initialization

In order to improve the searching efficiency, a heuristic method is adopted to produce
the initial population. In this problem, the boundary conditions of the state variables are
described as

qe(0) = qe0, qe(T) = qed,

ω(0) = ω0, ω(T) = ωd, ω̇(T) = ω̇d.
(3.1)
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Figure 2: Block diagram of the proposed control system.

To satisfy the boundary conditions, qe,2, qe,n−2, and qe,n−1 are calculated based on
the comprehensive mathematic model of the agile satellite using DGCMGs as actuator. In
addition, qe,i (i = 3, . . . n − 3) is produced by the following rules:

(1) To make the energy minimal, qe → 0 is monotone increasing or decreasing. So part
of the initial population is generated as follows:

qe,i = (qe,i−1 − qe,n−2)x + qe,n−2, x ∈ (0, 1), i ∈ (3, 4, . . . , n − 3). (3.2)

(2) If the singular point is not taken into account, the connection between qe,2 and qe,n−2
is the shortest and the most smooth. Based on this idea, part of initial population is
produced.

(3) When the agile satellite realizes the fastest maneuver, the angular velocity of the
agile satellite usually includes acceleration and deceleration that are similar to the
S function derivative curve. Therefore, part of the initial population is initialized as
follows:

qe,i =
sign(qe,2)|qe,2|

1 + expn[−(ciTs + (a − 2)Ts −m)]
+ qe,2, i ∈ (3, . . . , n − 3), (3.3)

wherem ∈ (0, T/2), n ∈ (0, 30). a and c are given as

f2(t) =
sign(qe,2)|qe,2|

1 + expn[−(t −m)]
+ qe,2,

Δf2(i) = f2((i + 1)Ts) − f2(iTs),
a = min

(
find

(
Δf2 > 1e − 3

))
,

b = max
(
find

(
Δf2 > 1e − 3

))
,

c =
b − a + 1
n − 4

(3.4)

where t ∈ (0, Ta), Ta is an appropriate constant greater than T .

(3) Fitness Function

A fitness function is designed based on the energy consumed by DGCMGs for ensuring the
DGCMGs away from the singularity state. Usually, the energy consumption is estimated
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by the norm of control inputs. However, the energy consumption of DGCMGs cannot be
estimated precisely because the satellite angular velocities cannot be ignored with respect
to the DGCMGs gimbal angular velocities in the agile satellite. Therefore, the energy
consumption of the DGCMGs required to run a given path Ij is set up as follows:

E
(
Ij
)
=

n∑
k=1

W′
kWk,

Wk = Tk −ωk × hk,

(3.5)

where Wk is an output torque vector of the DGCMGs on the kth point in the path Ij .
This evaluation term for the energy consumption is derived from an assumption of the
proportional property between the output torque and the electrical energy consumption of
the DGCMG gimbal [11].

Moreover, the trajectory planned by the improved GA must satisfy various physical
constrained conditions, including the input saturation, gimbal angular velocity of DGCMGs
limit, angular velocity of agile satellite limit, and singularity measurement limit. Then the
evaluation function is adjusted to the following constrained conditions:

Ω1 = {u | |ui| < um, i = 1, 2, 3},
Ω2 =

{
δ̇ | ∣∣δ̇i

∣∣ < δ̇m, i = 1, 2, 3, 4
}
,

Ω3 = {ω | |ωi| < ωm, i = 1, 2, 3},
d > dmin,

(3.6)

where um, δ̇m, ωm and dmin denote the maximal command torque, the maximal gimbal
angular velocities of the DGCMGs, the maximal angular velocity of satellite, and the minimal
singularity measurement, respectively. To guarantee the system robustness, um, δ̇m, and ωm

are less than the actual maximal command umax, actual maximal gimbal angular velocities of
DGCMGs δ̇max, and the actual maximal angular velocity of satellite ωmax, respectively.

To satisfy these constrained conditions with keeping the energy consumption of the
DGCMGs low, the evaluation function of this optimization is modified in the following form:

F
(
Ij
)
=

n∑
k=1

W′
kWk + num × inf 1,

Wk = Tk −ωk × hk,

(3.7)

where num is the number of the unfeasible points in the path Ij , and inf 1 is an appropriate
positive constant. Equation (3.7) represents that those pathswith unfeasible nodes are heavily
penalized with an extra energy cost.

(4) Next Generation Process

For purpose of making the command torque and the angular velocity of satellite smoothing,
a smooth mutation operator for the angular velocity and angular acceleration is presented.
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Selection. TheN/2 individuals with the lowest energy cost (strongest) are chosen from
the current population.

Crossover. New individuals (called offspring) are generated from the selected path
by using a crossover operator. Therefore, a total of N/4 pairs are formed. The first two
offspring of each pair are equal to their parents. The two other offspring are produced as the
recombination of their parents. The recombination process between the two selected paths is
defined as follows [18].

Supposing the selected two chromosomes are

Ii =
{
qe,1,i qe,2,i . . . qe,(n−1),i qe,n,i

}
,

Ij =
{
qe,1,j qe,2,j . . . qe,(n−1),j qe,n,j

}
.

(3.8)

Thus supposing the split position is at i, the offspring is produced as follows:

I ′i =
{
(1 − α)qe,1,i + αqe,1,j . . . (1 − α)qe,n,i + αqe,n,j

}
,

I ′j =
{
(1 − α)qe,1,j + αqe,1,i . . . (1 − α)qe,n,j + αqe,n,i

}
,

(3.9)

where α ∈ (0, 1). The greatest possible information exchange is obtained by choosing α that
is very important for the crossover operator. In this paper, α is randomly selected. However,
for different chromosomes, α is different.

Mutation. To satisfy the boundary conditions described as (3.1), themutation operation
is performed on qe,i (i = 3, . . . n − 3). When the path is feasible, a small percentage of feasible
points is mutated at random and ensure that the path is still feasible. On the other hand, when
the path is unfeasible, a large percentage of unfeasible points is mutated at random.

Moreover, due to the smooth requirement of the angular velocity and the command
torque, the smooth mutation operator for the angular velocity and the angular acceleration
is executed. If one point that is more or less than its adjacent points is found, this point is
mutated between the two adjacent points.

Finally, to avoid that the strongest individual is destroyed, the excellent individual
protection method is adopted. The best individual of each generation is directly inherited
into the next generation, and not be mutated. This method will improve the convergence
speed of the algorithm.

3.2. Attitude Tracking Controller Design

In the attitude path planning, various physical constrained conditions are considered and
have a certain margin for the external disturbances and uncertainties. Therefore, these phys-
ical constrained conditions including the input limitation is not required to be considered in
the attitude tracking controller design. In order to track accurately the desired path, and to
overcome the external disturbance and the uncertain inertial properties, the attitude tracking
controller is derived based on the sliding mode control method and the backstepping control
method using hyperbolic tangent function as a nonlinear tracking function. Because it is
difficult to know the uncertain inertial and the external disturbances in practical situation,
it is necessary to assume that the uncertainties that result from the external disturbance and
inertial properties is an unknown bounded function. Then, the adaptive control method is
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utilized to estimate the uncertainties that result from the external disturbance and inertial
properties.

(1) Adaptive Backstepping Sliding Mode Controller Design Method

The attitude control system described by (2.4) and (2.7) has a cascaded structure. The error of
the angular velocity vectorωe can be thought of as a pseudoinput vector, while the command
torque u is a real control input vector that affects ωe. Thus, the backstepping control method
can be easily employed in the satellite attitude control system.

The first step in the backstepping control method is to find the control law for the
subsystem described by (2.4). The state variable x1 is defined by

x1 = qe. (3.10)

Let us consider the following candidate Lyapunov function

V1 =
1
2
xT1x1 +

1
2
(
1 − qe0

)2
. (3.11)

Substituting (2.4) into the time derivative of (3.11) yields

V̇1 =
1
2
xT1ωe. (3.12)

In accordance with the discussion performed in [29], the simple linear tracking law is
not effective for the satellite maneuver for the reason of sluggish motion, trivial nonlinear
term cancellation, and excessive control input at the initial stage of the maneuver. To
overcome these defects, an effective nonlinear tracking function φ(x1) is proposed. When
it is adopted, the nonlinear tracking law is obtained:

ωe = −kφ(x1). (3.13)

Supporting the nonlinear function φ(x1) satisfies

V̇1 = −1
2
kxT1φ(x1) ≤ 0, (3.14)

where k > 0. Only when x1 = 0, V̇1 = 0. Then x1 is asymptotic stability.
After designing the tracking law, the real control input u should be determined such

that (3.13) is achieved. The state variable x2 is selected as

x2 = ωe + kφ(x1). (3.15)

By choosing the following sliding surface

s = cx1 + x2, (3.16)
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where c > 0, then

Jṡ = −1
2
kJ0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
φ(x1) +

1
2
J0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
x2 + Γ(J0,ωe) + u + F,

(3.17)

where ∂φ(x1)/∂x1 is the Jacobian matrix of φ(x1), F is the total uncertain, and is expressed as

F = Fd − 1
2
kΔJΞ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
φ(x1) +

1
2
ΔJΞ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
x2. (3.18)

Because ΔJ and Td are difficult to be known in practical situation, the uncertainties
F that result from ΔJ and Td is an unknown bounded function. Consider the following
candidate Lyapunov function for the overall system

V2 = V1 +
1
2
sTJs +

1
2γ

F̃TF̃, (3.19)

where γ is a positive constant. F̂ is the estimation of F, F̃ = F − F̂ is the estimation error of F.
Because the uncertain inertial momentum and external disturbance are changing gradually,
˙̃F = − ˙̂F.

The derivative of (3.19) is obtained

V̇2 = −1
2
ksTJ0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
φ(x1) +

1
2
sTJ0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
x2 +

1
2
xT1x2

+ sT
(
Γ(J0,ωe) + u + F̂

)
− 1
2
kxT1φ(x1) −

1
γ
F̃T

( ˙̂F − γs
)
.

(3.20)

Letting

u =
1
2
kJ0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
φ(x1) − Γ(J0,ωe) − F̂

− 1
2
J0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
x2 − g

(
s + β sign(s)

)
.

(3.21)

For the reason that F is an unknown bounded function, an adaptive law is utilized to
estimate it. And the adaptive law is selected as follows:

˙̂F = γs, (3.22)

Where g, β and γ are positive constants. Substituting (3.21) and (3.22) into (3.20) gives

V̇2 =
1
2
xT1x2 −

1
2
kxT1φ(x1) − gsTs − gβsT sign(s). (3.23)
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Letting

R =

⎡
⎢⎣
1
2
k + gc2 gc − 1

4
gc − 1

4
g

⎤
⎥⎦ (3.24)

Owing to

xTRx = −1
2
xT1x2 +

1
2
kxT1x1 + gs

Ts, (3.25)

Where x = [x1 x2]
T. Then (3.23) can be rewritten as

V̇2 = −xTRx − 1
2
kxT1

(
φ(x1) − x1

) − gβsT sign(s). (3.26)

Duing to

|R| =
(
1
2
k + gc2

)
g −

(
gc − 1

4

)2

=
1
2
g(k + c) − 1

16
. (3.27)

By choosing the values of g, c, and k, it can be guaranteed that R is a positive definite
matrix. Simultaneously, xT1 (φ(x1) − x1) ≥ 0 can be guaranteed by choosing the nonlinear
tracking function φ(x1). Therefore, V̇2 ≤ 0 can be ensured by selecting the values of g, c,
k, β, and the nonlinear tracking function φ(x1).

(2) Nonlinear Tracking Function Selection

According to the design process of the adaptive backstepping sliding mode controller, to
guarantee V̇1 ≤ 0 and V̇2 ≤ 0, the nonlinear tracking function φ(x1) must satisfy

xT1φ(x1) ≥ 0,

xT1
(
φ(x1) − x1

) ≥ 0.
(3.28)

According to [29], the following condition can contribute to reduce the peak control
torque

φ(x1) ≈ 1, if qei =
[
1 − μ, 1

]
,

φ(x1) ≈ −1, if qei =
[−1, −1 + μ],

(3.29)
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where 0 < μ < 1. The above condition prescribes that the nonlinear tracking function value
does not produce a large value when |qei| → 1. Meanwhile, if the following condition is
imposed, the convergence speed can be increased when |qei| → 0.

φ(x1) > κx1, if qei −→ +0,

φ(x1) < −κx1, if qei −→ −0,
(3.30)

where κ > 1. Equation (3.30) requires that φ(x1) produce higher absolute value than the linear
tracking function when |qei| is small. This condition contributes to the removal of sluggish
motion. The following hyperbolic tangent function would be one of the candidate functions
that satisfy (3.28)–(3.30)

φ(x1) = tanh(αx1), (3.31)

where α ≥ 4. In this paper, (3.31) is chosen as the nonlinear tracking function because of its
simplicity and smoothness. Moreover, it has fewer parameters than the arctangent function.
Differentiating (3.31) with respect to time gives

∂φ(x1)
∂x1

= diag
{
α sech2(qe1

)
, α sech2(qe2

)
, α sech2(qe3

)}
. (3.32)

To avoid the chattering of the control input, the sign function in (3.21) can be replaced
by

sat(si, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1 si > ξ,
si
ξ

|si| ≤ ξ,
−1 si < −ξ,

(3.33)

where ξ is a small positive constant. Equation (3.21) can be rewritten as

u =
1
2
kJ0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
φ(x1) − Γ(J0,ωe) − F̂

− 1
2
J0Ξ(qe)

(
cI3×3 + k

∂φ(x1)
∂x1

)
x2 − g

(
s + β sat(s)

)
.

(3.34)

From above, the adaptive backstepping sliding mode controller includes (3.22), (3.31),
(3.32) and (3.34).

4. Numerical Simulation

This section presents the simulation results to illustrate the effectiveness of the attitude track-
ing control with path-planning.
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Table 1: Simulation parameters.

Simulation parameters Value
angular momentum magnitude of a DGCMG h0 6N·m·s
Initial attitude angle [ϕ0 θ0 ψ0] [0 0 0]T

Desired attitude angle [ϕd θd ψd] [30◦ 0 0]T

Initial angular velocity ω0 [1.1 1.2 1.6]T ◦/s
Desired angular velocityωd [0 0 0]T ◦/s
Initial gimbal angle δ0 [0 0 0 −90◦]T
Maximal angular velocity ωm 8◦/s
Maximal control torque um 1.5N·m
Maximal gimbal angular velocity δ̇m 10◦/s

In the simulation, the agile satellite is assumed to be a rigid body, and two DGCMGs
are installed as illustrated in Figure 1. Consider the spacecraft model (2.4) and (2.7) with the
nominal inertia matrix

J =

⎡
⎣

12 0.12 0.12
0.13 13 0.13
0.15 0.15 15

⎤
⎦kg ·m2. (4.1)

The uncertainties of the inertia matrix is

ΔJ =

⎡
⎣

1 0.12 0.12
0.13 1.5 0.13
0.15 0.15 2

⎤
⎦kg ·m2. (4.2)

The other parameters for satellite and DGCMGs are given in Table 1. The external
disturbance is

Td =

⎡
⎣

3 cosω0t + 2
1.5 sinω0t + 3 cosω0t + 1

−3 cosω0t + 1

⎤
⎦ × 10−3 N ·m, (4.3)

where ω0 = 0.0011 rad/s. The parameters for attitude tracking controller are chosen as α = 8,
k = 1.5, c = 1.5, g = 2.6, β = 0.1, and γ = 0.1.

The simulation results are shown in Figures 3, 4, 5, 6, 7, and 8. The solid line denotes
the desired path planned by the improved GA. The dotted line expresses the results of the
practical numerical simulation. The planning time and the whole maneuvering time are 7 s
and 12 s, respectively.

The solid line in Figures 3–8 indicates that the proposed GA is effective. The trajectory
planned by the improved GA not only satisfies the desired maneuver ability, but also meets
various physical constrains, such as input saturation, actuator saturation, angular velocity
limit, and singularity measurement limit.

Figures 3–5 shows that the practical maneuvering curves of the state variables of the
agile satellite are essentially consistent with the planning path. The results indicate good
tracking performance of the derived controller.
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Figure 3: Euler angle of agile satellite.
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Figure 4: Angular velocity of agile satellite.
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Figure 5: Control torque.
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Figure 6: Gimbal angle of DGCMGs.
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Figure 7: Gimbal angle velocity of DGCMGs.
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The conventional controller without path planning will cause the actuator saturation
at the initial time because the initial error is large in the rapidmaneuvering process. However,
the results in Figure 5 show that, the proposed control law not only keep the control torque
away from the input restriction um, but also guarantee its smoothness.

From the results in Figures 6–8, there is few deviation of state variables curve of
DGCMGs in the practical maneuvering process from the desired path. These errors are caused
by using the attitude quaternion and velocity as reference trajectory. However, Figure 8
indicates that the singularity measurement curve is smooth and always away from the
singularity in the practical maneuvering process. It is carried out to verify the ability to avoid
DGCMG singularity of the proposed control law.

5. Conclusion

Agile satellite requires large-angle and rapid attitude maneuver ability. CMGs are expected
to be applied to attitude control actuators of agile satellite. However, in the existing satellite
attitude control systems using CMGs, the singularity problem cannot be considered from
a global perspective. To solve the problem, an attitude tracking control algorithm with
path planning is provided. Firstly, an improved GA is proposed to plan an energy optimal
attitude path. Moreover, the desired path planned by GA satisfies certain maneuverability
and various physical constrains, including input saturation, actuator saturation, angular
velocity limit and singularity measurement limit. Then an attitude tracking controller is
designed based on the sliding mode control method and the backstepping control method
using hyperbolic tangent function as the nonlinear tracking function. And the adaptive
control method is utilized to estimate uncertainties that results from the external disturbance
and the inertial properties. From the results of the numerical simulations, the robustness and
good tracking performance of the derived controller as well as its ability to avoid DGCMG
singularity are verified.
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