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A filter algorithm with inexact line search is proposed for solving nonlinear programming prob-
lems. The filter is constructed by employing the norm of the gradient of the Lagrangian function to
the infeasibility measure. Transition to superlinear local convergence is showed for the proposed
filter algorithm without second-order correction. Under mild conditions, the global convergence
can also be derived. Numerical experiments show the efficiency of the algorithm.

1. Introduction

Fletcher and Leyffer [1] proposed filter methods in 2002 offering an alternative to traditional
merit functions in solving nonlinear programming problems (NLPs). The underlying concept
is that a trial point is accepted provided that there is a sufficient decrease of the objective
function or the constraint violation. Filter methods avoid the difficulty of determining a
suitable value of the penalty parameter in the merit function. The promising numerical
results in [1] led to a growing interest in filter methods in recent years. Two variants of trust-
region filter sequential quadratic programming (SQP) method were proposed by Fletcher et
al. [2, 3]. Chin and Fletcher [4] developed filter method to sequential linear programming
strategy that takes equality-constrained quadratic programming steps. Ribeiro et al. [5]
proposed a general filter algorithm that does not depend on the particular method used for
the step of computation. Ulbrich [6] argued superlinear local convergence of a filter SQP
method. Ulbrich et al. [7] and Wächter and Biegler [8] applied filter technique to interior
method and achieved the global convergence to first-order critical point. Wächter and Biegler
[9, 10] proposed a line-search filter method and applied it to different algorithm framework.
Gould et al. [11] and Shen et al. [12] developed new multidimensional filter technique.
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Su and Pu [13] extended the monotonicity of the filter technique. Nie [14] applied filter
method to solve nonlinear complementarity problems. In this paper, the global convergence
is analyzed widely. However, it has been noted by Fletcher and Leyffer [1] that the filter
approach can suffer from the Maratos effect as that of a penalty function approach. By the
Maratos effect, a full step can lead to an increase of both infeasibility measure and objective
function in filter components even if arbitrarily close to a regular minimizer. This makes the
full step unacceptable for the filter and can prohibit fast local convergence.

In this paper, we propose a filter algorithm with inexact line-search for nonlinear
programming problems that ensures superlinear local convergence without second-order
correction steps. We use the norm of the gradient of the Lagrangian function in the infea-
sibility measure in the filter components. Moreover, the new filter algorithm has the same
global convergence properties as that of the previous works [2, 3, 9]. In addition, since the
sufficient decrease conditions in an SQP framework can usually make the algorithm complex
and time-consuming, the presentedmethod is a line-search method without using SQP steps.
An inexact line-search criterion is used as the sufficient reduction conditions. In the end,
numerical experiences also show the efficiency of the new filter algorithm.

This paper is organized as follows. For the main part of the paper, the presented tech-
niques will be applied to general NLP. In Section 2, we state the algorithm mechanism. The
convergent properties are shown in Section 3. The global and superlinear convergence are
proved. Furthermore, the Maratos effect is avoided. Finally, Section 4 shows the effectiveness
of our method under some numerical experiences.

2. Inexact Line-Search Filter Approach

2.1. The Algorithm Mechanism

We describe and analyze the line-search filter method for NLPwith equality constraints. State
it as

min
x∈�n

f(x)

subject to ci(x) = 0, i ∈ E,

(2.1)

where the objective function f : �n → � and the constraints ci are assumed to be continu-
ously differentiable, and E = {i | i = 1, 2, . . . , m}.

The corresponding Lagrangian function is

L(x, λ) = f(x) + λTc(x), (2.2)

where the vector λ corresponds to the Lagrange multiplier. The Karush-Kuhn-Tucker (KKT)
conditions for (2.1) are

∇f(x) + λT∇c(x) = 0,

c(x) = 0.
(2.3)
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For a given initial estimate x0, the line-search algorithm generates a sequence of iter-
ates xk by xk+1 = xk +αkdk as the estimates of the solution for (2.1). Here, the search direction
dk is computed from the linearization at xk of the KKT conditions (2.3):

(
Wk ∇c(xk)

∇c(xk) 0

)(
dk

λ+

)
= −

(∇f(xk)

c(xk)

)
, (2.4)

where the symmetric matrix Wk denotes the Hessian ∇2
xxL(xk, λk) of (2.2) or a positive

definite approximation to it.
After a search direction dk has been computed, the step size αk ∈ (0, 1] is determined

by a backtracking line-search procedure, where a decreasing sequence of step size αk is tried
until some acceptable criteria are satisfied. Generally, the acceptable criteria are constructed
by a condition that if the current trial point xk can provide sufficient reduction of a merit
function. The filter method proposed by Fletcher and Leyffer [1] offers an alternative to merit
functions. In this paper, the filter notion is defined as follows.

Definition 2.1. Apair (Vk, fk) is said to dominate another pair (Vl, fl) if and only if both Vk ≤ Vl

and fk ≤ fl.

Here, we define V (x) := ‖c(x)‖2 +‖∇L(x)‖2 as the l2 norm of the infeasibility measure.
That is, we modify the infeasibility measure in filter, with this modification, the superlinear
convergence is possibly derived. Strictly, it is a stationarity measure. However, we still call
it infeasibility measure according to its function. In the rest of paper, the norm is always
computed by l2 norm excepting special noting.

Definition 2.2. A filter is a list of pairs (Vl, fl) such that no pair dominates any other. A point
(Vk, fk) is said to be acceptable for inclusion in the filter if it is not dominated by any point in
the filter.

When a pair (Vk, fk) is said to be acceptable to the filter, we also say the iterate xk is
acceptable to the filter. In filter notion, a trial point xk+1 is accepted if it improves feasibility
or improves the objective function. So, it is noted that filter criteria is less demanding than
traditional penalty function. When improving optimality, the norm of the gradient of the
Lagrangian function will tend to zero, so it offers a more precise analysis for the objective
function.

However, this simple filter concept is not sufficient to guarantee global convergence.
Fletcher et al. [3] replace this condition by requiring that the next iterate provides at least as
much progress in one of the measure V or f that corresponds to a small fraction of the current
infeasibility measure. Here, we use the similar technique to our filter. Formally, we say that a
trial point can be accepted to the current iterate xk or the filter if

V (xk) ≤ βV (xl) (2.5a)

or

f(xk) ≤ f(xl) − γV (xk), (2.5b)
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for some fixed constants β, γ ∈ (0, 1), and (V (xl), f(xl)) are points in current filter. In practical
implementation, the constants β close to 1 and γ close to 0. However, the criteria (2.5a) and
(2.5b)maymake a trial point always provides sufficient reduction of the infeasibility measure
alone, and not the objective function. To prevent this, we apply a technique proposed in
Wächter and Biegler [10] to a different sufficient reduction criteria. The switching condition
is

∇fT
k dk < 0, −αk

[
∇fT

k dk

]e1
> δ[V (xk)]e2 , (2.6)

where δ > 0, e2 > 1, e1 ≥ 2e2. If the condition (2.6) holds, we replace the filter condition (2.5b)
as an inexact line-search condition, that is, the Armijo type condition

f(xk+1) ≤ f(xk) + ηαk∇fT
k dk, (2.7)

where η ∈ (0, 1/2) is a constant. If (2.6) holds but not (2.7), the trial points are still determined
by (2.5a) and (2.5b).

If a trial point xk can be accepted at a step size by (2.7), we refer to xk as an f type
iterate and the corresponding αk as an f step size.

2.2. The Algorithm Analysis

By the right part of switching condition (2.6), it ensures that the improvement to the
objective function by the Armijo condition (2.7) is sufficiently large compared to the current
infeasibility measure V (xk). Thus, if iterate points remote from the feasible region, the
decrease of the objective function can be sufficient. By setting e2 > 1, the progress predicted
by the line model −αk[∇fT

k dk]
e1 of f can be a power of the infeasibility measure V (x). The

choice of e1 ≥ 2e2 makes it possible that a full step can be accepted by (2.7) when it closes to
a local solution.

In this paper, we denote the filter as a set Fk containing all iterates accepted by (2.5a)
and (2.5b). During the optimization, if the f type switching condition (2.6) holds and the
Armijo condition (2.7) is satisfied, the trial point is determined by (2.7) not by (2.5a) and
(2.5b), and the value of the objective function is strictly decreased. This can prevents cycling
of the algorithm (see [10]).

If the linear system (2.4) is incompatible, no search direction dk can be found and the
algorithm switches to a feasibility restoration phase. In it, we try to decrease the infeasibility
measure to find a new iterate xk+1 that satisfies (2.4) and is acceptable to the current filter.
Similarly, in case ∇fT

k
dk < 0, the sufficient decrease criteria for the objective function in

(2.5b) may not be satisfied. To inspect where no admissible step size α can be found and
the feasibility restoration phase has to be invoked, we can consider reducing α and define

αmin
k =

⎧⎪⎨
⎪⎩
min

{
1 − β,− γV (xk)

−∇fT
k dk

,
δ[V (xk)]e2[−∇fT

k dk

]e1
}
, if ∇fT

k
dk < 0,

1 − β, otherwise.
(2.8)

If the trial step size α < αmin
k , the algorithm turns to the feasibility restoration phase.
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By αmin
k

, it is ensured that the algorithm does not switch to the feasibility restoration
phase as long as (2.6) holds for a step size α < αk and that the backtracking line-search
procedure is finite. Thus, for a trial point xk, the algorithm eventually either delivers a new
iterate xk+1 or reverts to the feasibility restoration phase. Once finding a feasible direction, the
algorithm still implements the normal algorithm.

Of course, the feasibility restoration phase may not always be possible to find a point
satisfying the filter-accepted criteria and the compatible condition. It may converge to a
nonzero local minimizer of the infeasibility measure and indicate that the algorithm fails. In
this paper, we do not specify the particular procedure for the feasibility restoration phase.
Any method for dealing with a nonlinear algebraic system can be used to implement a
feasibility restoration phase.

2.3. The Algorithm

We are now in the place to state the overall algorithm.

Algorithm 2.3.

Step 1. Given: starting point x0, constants Vmax = max{104, 1.2V (x0)}, β, γ ∈ (0, 1), η ∈
(0, 1/2), δ > 0, e1 ≥ 2e2, e2 > 1, τ ∈ (0, 1).

Step 2. Initialize: F0 = {(Vmax, f(x0))}, the iteration counter k ← 0.

Step 3. For k = 0, 1, 2, . . ., stop if xk satisfies the KKT conditions (2.3).

Step 4. Compute the search direction dk from (2.4). If the system (2.4) is incompatible, go to
the feasibility restoration phase in Step 7.

Step 5. Set α0 = 1, compute αmin
k

.

(1) If αk < αmin
k

, go to Step 7. Otherwise, compute the new trial point xk+1 = xk + αkdk.

(2) If the conditions (2.6) and (2.7) hold, accept the trial step and go to Step 6, otherwise
set xk = xk+1, go to Step 5(3).

(3) In case where no αk make (2.7) hold, if xk+1 can be accepted to the filter, augment
the filter by Fk+1 = Fk ∪ {(V (xk+1), f(xk+1))}, go to Step 6; Otherwise set xk = xk+1,
go to Step 5(4).

(4) Compute αk+1 = ταk, go back to Step 5(1).

Step 6. Increase the iteration counter k ← k + 1 and go back to Step 4.

Step 7. Feasibility restoration phase: by decreasing the infeasibility of V to find a new iterate
xk+1 such that (2.4) is compatible. And if (2.7) holds at xk+1, continue with the normal
algorithm in Step 6; if (2.5a) and (2.5b) hold at xk+1, augment the filter by Fk+1 = Fk ∪
{(V (xk+1), f(xk+1))}, and then continue with the normal algorithm in Step 6; if the feasibility
restoration phase cannot find such a point, stop with insuccess.

Remark 2.4. In contrast to SQP method with trust-region technique, the actual step does not
necessarily satisfy the linearization of the constraints.
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Remark 2.5. Practical experience shows that the filter allows a large degree of nonmonotonic-
ity and this can be advantageous to some problems.

Remark 2.6. To prevent the situation in which a sequence of points for which are f type
iterative point with Vk → ∞ is accepted, we set an upper bound Vmax on the infeasibility
measure function V .

For further specific implementation details of Algorithm 2.3, see Section 4.

3. Convergence Analysis

3.1. Global Convergence

In this section, we give a global convergence analysis of Algorithm 2.3. We refer to the global
convergence analysis of Wächter and Biegler [10] in some places. First, state the necessary
assumptions.

Assumption A1. Let all iterates xk are in a nonempty closed and bounded set S of �n .

Assumption A2. The functions f and c are twice continuously differentiable on an open set
containing S.

Assumption A3. The matrix Wk is positive definite on the null space of the Jacobian ∇c(xk)
and uniformly bounded for all k, and the Lagrange multiply λ is bounded for all k.

Assumptions A1 and A2 are the standard assumptions. Assumption A3 plays an im-
portant role to obtain the convergence result and ensures that the algorithm is implementable.

For stating conveniently, we define a set J = {i | xi is accepted to the filter}. In addi-
tion, sometimes, it is need to reviseWk to keep it positive definite by some updating methods
such as damped BFGS formula [15] or revised Broyden’s method [16].

From Assumptions A1–A3, we can get

‖dk‖ ≤Md, mW‖dk‖2 ≤ dT
k
Wkdk ≤MW‖dk‖2, ‖λk‖ ≤Mλ, (3.1)

where Md, Mλ, MW , andmW are constants.

Lemma 3.1. Suppose Assumptions A1–A3 hold, if {xki} is a subsequence of iterates for which ‖dki‖ >
ε1 with a constant ε1 > 0 independent of ki, then for constant ε2 = (mW/2)ε1, if V (xki) ≤
(mW/2Mλ)ε1, then

∇f(xki)
Tdki ≤ −ε2. (3.2)

Proof. By the linear system (2.4) and (3.1),

∇fT
ki
dki = −λT

ki
∇c(xki)dki − dT

ki
Wkidki

= λT
ki
c(xki) − dT

ki
Wkidki

≤MλV (xki) −mW‖dki‖2
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≤Mλ
mW

2Mλ
ε1 −mWε1

= −ε2.
(3.3)

Lemma 3.1 shows that the search direction is a descent direction for the objective
function when the trial points are sufficiently close to feasible region.

Lemma 3.2. Suppose Assumptions A1–A3 hold, and that there exists an infinite subsequence {xki}
of {xk} such that conditions (2.6) and (2.7) hold. Then

lim
k→∞

V (xki) = 0. (3.4)

Proof. From Assumptions A1 and A2, we know that ∇f is bounded. Hence, it has with (3.1)
that there exists a constant Mm > 0 such that

∣∣∣∇fT
k dk

∣∣∣ ≤Mm. (3.5)

By (2.6) it has

δ[V (xki)]
e2 < −αki

[
∇fT

ki
dki

]e1 ≤Me1
mαki . (3.6)

As 1 − 1/e1 > 0, we have

(
δ

Me1
m

)1−1/e1
[V (xki)]

e2−e2/e1 < α1−1/e1
ki

. (3.7)

Then by (2.7) and (3.7),

f(xki+1) − f(xki) ≤ ηαki∇fT
ki
dki

< −ηδ1/e1α1−1/e1
ki

[V (xki)]
e2/e1

< −ηδ1/e1
(

δ

Me1
m

)1−1/e1
[V (xki)]

e2 .

(3.8)

Hence, for c1 := ηδ1/e1(δ/Me1
m )1−1/e1 , an integer K and all j = 1, 2, . . .,

f
(
xK+j

)
= f(xK) +

K+j−1∑
ki=K

(
f(xki+1) − f(xki)

)
< f(xK) − c1

K+j−1∑
ki=K

[V (xki)]
e2 . (3.9)

Since f(xK+j ) is bounded below as j → ∞, the series on the right hand side in the last line of
(3.8) is bounded, then implies the conclusion.
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Lemma 3.3. Let {xki} ⊂ {xk} be an infinite subsequence of iterates so that (V (xki), f(xki)) is entered
into the filter. Then

lim
i→∞

V (xki) = 0. (3.10)

Proof. Here, we refer to the proof of [2, Lemma 3.3]. If the conclusion is not true, there exists
an infinite subsequence {kj} ⊂ {ki} ⊂ J such that

V
(
xkj

)
≥ ε, (3.11)

for all j and for some ε > 0. This means that no other (V, f) pair can be added to the filter at a
later stage within the region

[
Vkj −

(
1 − β)ε, Vkj

]
×
[
fkj − γε, fkj

]
, (3.12)

or with the intersection of this region with

S0 = [0, Vmax] ×
[
fmin,∞

]
(3.13)

for some constants fmin ≤ f(xk). Now, the area of each of these regions is (1−β)γε2. Hence, the
set S0 ∪ {(V, f) | f ≤Mf} is completely covered by at most a finite number of such regions,
for any Mf ≥ fmin. Since the pairs (Vkj , fkj ) keep on being added to the filter, fkj tends to
infinity when i tends to infinity. Without loss of generality, assume that fkj+1 ≥ fkj for all j is
sufficiently large. But (2.5a) and (3.11) imply that

Vkj+1 ≤ βVkj , (3.14)

so Vkj → 0, which contradicts (3.11). Then, this latter assumption is not true and the
conclusion follows.

Next, we show that if {xk} is bounded, there exists at least one limit point of the
iterative points is a first-order optimal point for (2.1).

Lemma 3.4. Suppose Assumptions A1–A3 hold. Let {xki} be a subsequence with ∇fT
ki
dki < −ε2 for

a constant ε2 > 0 independent of ki. Then, there exists a constant α > 0 so that for all ki and αki < α,

f(xki + αkidki) − f(xki) ≤ ηαki∇fT
ki
dki . (3.15)
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Proof. From Assumptions A1 and A2, dT∇2f(x)d ≤ cf‖d‖2 for some constant cf > 0. Thus, it
follows from the Taylor Theorem and (3.1) that

f(xki + αkidki) − f(xki) − αki∇fT
ki
dki

= α2
ki
dT
ki
∇2f

(
y1
)
dki ≤ cfα

2
ki
‖dki‖2 ≤ αki

(
1 − η)ε2

≤ −(1 − η)αki∇fT
ki
dki ,

(3.16)

if αki ≤ αki := (1 − η)ε2/cfM2
d, where y1 denotes some point on the line segment from xki to

xki + αkidki . Then the conclusion follows.

Lemma 3.5. Suppose Assumptions A1–A3 hold, and the filter is augmented only a finite number of
times, then

lim
k→∞

‖dk‖ = 0. (3.17)

Proof. Since the filter is augmented only a finite number of times, there exists an integer K1

so that for all iterates {xk}k>K1
the filter is not augmented. If the claim is not true, there must

exist a subsequence {xki} and a constant ε > 0 so that ‖dki‖ ≥ ε for all i. Then by Lemma 3.1,
it has ∇fT

ki
dki ≤ −ε2 for all ki ≥ K2, K2 is some integer and K2 > K1. And from Lemmas 3.2

and 3.4, it has V (xki) ≤ ε and

f(xki+1) − f(xki) ≤ ηαki∇fT
ki
dki ≤ −αkiηε2. (3.18)

Since f(xki) is bounded below andmonotonically decreasing for all k ≥ K2, one can conclude
that limi→∞αki = 0. This means that for ki > K2 the step size α = 1 has not been accepted. So,
we can get a αki < 1 such that a trial point xki+1 = xki + αkidki satisfies

(
V (xki+1), f(xki+1)

)
/∈ Fki (3.19)

or

f(xki+1) − f(xki) > ηαki∇fT
ki
dki . (3.20)

Let Vmin = min{Vk | (Vk, fk) ∈ Fk}. From Lagrange’s Theorem, it has

V (xki+1) = V (xki) + αki∇V
(
y2
)T
dki

≤ V (xki) + αki

∥∥∇V (
y2
)∥∥‖dki‖

≤ V (xki) + cV αkiMd,

(3.21)

for some constant cV , where y2 denotes some point on the line segment from xki to xki + αdki .
Since limi→∞αki = 0 and limi→∞V (xki) = 0 by Lemmas 3.2 and 3.3, it has V (xki+1) < Vmin
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for ki sufficiently large, so (3.19) is not true. In case (3.20), since αki → 0 for sufficiently
large ki, we have αki ≤ α with α from Lemma 3.4, that is, (3.20) can not be satisfied. Then the
conclusion follows.

Lemma 3.6. Suppose Assumptions A1–A3 hold. Let {xki} be a subsequence of {xk} with ∇fT
ki
dki ≤

−ε2 for a constant ε2 > 0 independent of ki. Then, there exists trial points can be accepted to the filter.

Proof. The mechanisms of Algorithm 2.3 ensure that the first iterate can be accepted to
the filter. Next, we can assume that (V (xk), f(xk)) is acceptable to the kth filter and
(V (xl), f(xl)) ∈ Fk, l < k. If αki ≤ c2 := ε2/M

2
dcf , it has

α2
ki
≤ αkiε2

M2
d
cf
≤
−αki∇fT

ki
dki

cf‖dki‖2
, (3.22)

that is, αki∇fT
ki
dki + cfα

2
ki
‖dki‖2 ≤ 0, so by (3.16)

f(xki + αkidki) ≤ f(xki). (3.23)

Similarly, if αki ≤ c3V (xki) ≤ V (xki)/‖d‖2cV , with c3 := 1/M2
d
cV and cV from Lemma 3.5, it

has

−αkiV (xki) + cV α
2
ki
‖dki‖2 ≤ 0,

V (xki + αkidki) ≤ V (xki).
(3.24)

Hence, we have

f(xki+1) = f(xki + αkidki) ≤ f(xki) ≤ f(xl) − γV (xl),

V (xki+1) = V (xki + αkidki) ≤ V (xki) ≤ βV (xl).
(3.25)

The claim then follows from (3.25).

The last Lemma 3.6 shows, for case V (xk) > 0, Algorithm 2.3 either accepts a new
iterate to the filter or switches to the feasibility restoration phase. For case V (xk) = 0 and the
algorithm does not stop at a KKT point, then ∇fT

k
dk < 0, αmin

k
= 0, and the Armijo condition

(2.7) is satisfied for sufficiently small step size αk, so an f type iterate is accepted. Hence, the
inner loop in Step 5 always terminates in a finite number of trial steps, and Algorithm 2.3 is
well defined.

Lemma 3.7. Suppose Assumptions A1–A3 hold. Let {xki} be a subsequence with ‖dki‖ ≥ ε for a
constant ε > 0 independent of ki. Then, there exists an sufficient large integer K such that for all
ki > K the algorithm can generate some trial points either be accepted to the filter or be f type steps.

Proof. By Lemmas 3.1, 3.2, and 3.3, there exist constants ε1, ε2 > 0 so that

V (xki) ≤ ε1, ∇fT
ki
dki < −ε2 (3.26)

for all ki > K.
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If V (xki) = 0, the f type switching condition (2.6) is true, there must exist iterates for
which are f type iterates. For the remaining iterates with V (xki) > 0, if

V (xki) < min

⎧⎨
⎩ α

c3
,
c2
c3
,

[
τc3ε

e1
2

δ

]1/e2−1
⎫⎬
⎭, (3.27)

with α from Lemma 3.4 and c2, c3 from Lemma 3.6, it implies with e2 > 1

δ[V (xki)]
e2

εe12
< τc3V (xki), (3.28)

as well as

c3V (xki) < min{α, c2}. (3.29)

Now choose an arbitrary ki ≥ K with V (xki) > 0 and define

c4 := c3V (xki) = min{α, c2, c3V (xki)}. (3.30)

Lemmas 3.4 and 3.6 then imply that a trial step size αki ≤ c4 satisfies both

f(xki + αkidki) ≤ f(xki) + ηαki∇fT
ki
dki ,(

V (xki + αkidki), f(xki + αkidki)
) ∈ Fki .

(3.31)

Since α > ταk > ταmin
k by the definition of αmin

k , the method does not switch to the
feasibility restoration phase for those trial step sizes. Then the claim follows.

Based on the above lemmas, we can give the main global convergence result.

Theorem 3.8. Suppose Assumptions A1–A3 hold, then

lim
k→∞

V (xk) = 0, (3.32)

lim
k→∞

‖dk‖ = 0, (3.33)

that is, there exits a limit point x of {xk} which is a first-order optimal point for (2.1).

Proof. (3.32) follows from Lemmas 3.2 and 3.3.
If the filter is augmented a finite number of times, then the claim (3.33) holds from

Lemma 3.5. For either case, there exists a subsequence {xki} so that ki ∈ J for all i. Suppose
the conclusion (3.33) is not true, there must exist a subsequence {xkj} of {xki} such that
‖dkj‖ ≥ ε for some constant ε > 0. Hence by Lemmas 3.1 and 3.3, it has ∇fT

kj
dkj < −ε2 and

limi→∞V (xkj ) = 0 for all kj . Then by Lemma 3.7, when α < min{α, c2, c3V (xkj )}, the algorithm



12 Mathematical Problems in Engineering

can generate a f type iterate, that is, the filter is not augmented, this contradicts the choice of
{xkj}, so that (3.33) holds.

3.2. Local Convergence

In this section, we show the local convergence of Algorithm 2.3.

Assumption A4. The iterates xk converge to a point x that satisfies

V (x) = 0, ∇xL
(
x, λ

)
= 0, ∇xxL

(
x, λ

)
is positive definite on

{
d : ∇c(x)Td = 0

}
,

∇c(x) has full-row rank .
(3.34)

Assumption A 5. There is a neighborhood N(x) of x such that Wk = ∇xxL(xk, λk), for all
xk ∈ N(x).

Remark 3.9. Under Assumption A4, the point x is a strict local minimum of (2.1).

Remark 3.10. Under Assumptions A4 and A5, it is well known that with the choice xk+1 =
xk + dk, the sequence {xk} converges q-superlinearly to x and that the convergence is q-
quadratic if ∇xxf and ∇xxci are lipschitz continuous in a neighborhood of x. That is, for any
given ζ ∈ [0, 1], xj ∈ N(x), j = k, k + 1, . . ., and xj+1 = xj + dj , it has

∥∥dj+1
∥∥ ≤ ζ

∥∥dj

∥∥, ∥∥xj+1 − x
∥∥ ≤ ζ

∥∥xj − x
∥∥. (3.35)

We use the proof techniques of local convergence in [6]. In proof, define lρ(x, λ) =
L(x, λ) + (ρ/2)‖c(x)‖22 and l̂ρ(x, λ) = f(x) + (ρ/2)V (x) with ρ is a parameter.

Lemma 3.11. Suppose Assumptions A1–A3 hold. Let x satisfy the Assumption A4. Then, there exist
constants 0 < r < t, ρ0 > 0 and a neighborhoodNσ(x) = {x : ‖x − x‖ < σ} ⊂ N(x) such that

r

2
‖x − x‖2 + ρ − ρ0

2
‖c(x)‖2 ≤ lρ(x, λ) − lρ

(
x, λ

)
≤ t

(
1 + ρ

)‖x − x‖2, (3.36)

for all ρ ≥ ρ0 and all x ∈ Nσ(x).
Moreover, possibly after increasing t > 0, ρ0 > 0 and reducing σ > 0, we have that for all

ρ ≥ ρ0 and all x ∈Nσ(x)

r

2
‖x − x‖2 + ρ − ρ0

2
V (x) ≤ l̂ρ(x, λ) − l̂ρ

(
x, λ

)
≤ t

(
1 + ρ

)‖x − x‖2. (3.37)
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Proof. Let x ∈ N(x). Using Taylor’s Theorem and ∇xlρ(x, λ) = 0,∇λlρ(x, λ) = 0, we have with
some (x′, λ′) on the line segment between (x, λ) and (x, λ)

lρ(x, λ) − lρ
(
x, λ

)
=

1
2
(x − x)T∇xxlρ

(
x′, λ′

)
(x − x)

+ (x − x)T∇xλlρ
(
x′, λ′

)(
λ − λ

)
.

(3.38)

Obviously, it has

∇xxlρ
(
x′, λ′

)
= ∇xxlρ/2

(
x′, λ′ +

ρ

2
c
(
x′
))

+
ρ

2
∇c(x′)T∇c(x′). (3.39)

Under Assumption A4, there exists ρ > 0 such that for all ρ ≥ ρ,

dT∇xxlρ/2
(
x, λ

)
d ≥ 4r‖d‖2, ∀d ∈ �n , (3.40)

with a constant r > 0, see [15, Theorem 17.5].
Suppose λ(x) is Lipschitz continuous and Ly is the Lipschitz constant of λ, and ρ > 0

is a constant. Let ρ0 := max{ρ, 4L2
y/r} for all x with ‖x − x‖ ≤ σ, it has by continuity

dT∇xxlρ0/2
(
x, λ +

ρ0

2
c(x)

)
d ≥ 2r‖d‖2, ∀d ∈ �n . (3.41)

Thus, we obtain for all x ∈ Nσ(x) by (3.38), (3.39), and (3.41)

lρ0(x, λ) − lρ0
(
x, λ

)
≥ r‖x − x‖2 + ρ0

4
∥∥∇c(x′)(x − x)∥∥2 +

(
λ − λ

)T
∇c(x′)(x − x). (3.42)

It is obvious for all s > 0 that

2
(
λ − λ

)T∇c(x′)(x − x) ≥ −1
s

∥∥∇c(x′)(x − x)∥∥2 − s
∥∥∥λ − λ∥∥∥2

≥ −1
s

∥∥∇c(x′)(x − x)∥∥2 − sL2
y

∥∥∥λ − λ∥∥∥2
.

(3.43)

If s = r/L2
y, 1/s = L2

y/r ≤ ρ0/4, then it has

lρ0(x, λ) − lρ0
(
x, λ

)
≥ r

2
‖x − x‖2 + ρ0

8
∥∥∇c(x′)(x − x)∥∥2

. (3.44)

Since c(x) = 0, lρ(x, λ) = lρ0(x, λ) = f(x), and by (3.44) it has

lρ(x, λ) − lρ
(
x, λ

)
= lρ0(x, λ) − lρ0

(
x, λ

)
+
ρ − ρ0

2
‖c(x)‖2

≥ r

2
‖x − x‖2 + ρ − ρ0

2
‖c(x)‖2,

(3.45)
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that is the left inequality in (3.36). For the right inequality in (3.36), it is obvious from (3.38)
that for all x ∈ N(x),

lρ(x, λ) − lρ
(
x, λ

)
≤ t

(
1 + ρ

)‖x − x‖2, (3.46)

with a constant t > 0. This proves the inequality (3.36).
ChooseK large enough such that for j ≥ k ≥ K, c(xj) → 0. We can assume ‖c(x)‖ < 1.

Then, if ρ0 is large enough, it has from (3.44) and l̂ρ(x, λ) = lρ0(x, λ) = f(x) that

l̂ρ0(x, λ) − l̂ρ0
(
x, λ

)
≥ lρ0(x, λ) − lρ0

(
x, λ

)
≥ r

2
‖x − x‖2. (3.47)

By an analogue of (3.45) holds for l̂ρ, this proves the left inequality in (3.37).
On the other hand, it has

l̂ρ(x, λ) − l̂ρ
(
x, λ

)
= f(x) +

ρ

2
V (x) − f(x). (3.48)

Since f(x) and c(x) are twice continuously differentiable on closed set S, we have f(x) −
f(x) = O(‖x−x‖2) and V (x) = O(‖x−x‖2). This shows the right inequality in (3.37) possibly
after increasing t.

Lemma 3.12. Let x satisfy Assumptions A4 and A5. Then for any ζ ∈ [0, 1] and M ≥ 1, there is an
index K such that for all k ≥ K, with

‖xk − x‖ ≤M min
(Vl,fl)∈Fk

‖xl − x‖, (3.49)

the points xj+1, j = k, k + 1, . . ., with αk = 1 are acceptable to

Fj := Fk ∪
(
Vk, fk

) ∪ (Vk+1, fk+1
) ∪ · · · ∪ (Vj, fj

)
. (3.50)

Proof. Let N(x) as in Assumption A5, ζ = 1/2, ρ0 and Nσ(x) ⊂ N(x) be given by
Lemma 3.11. For all k ≥ K1,K1 is a sufficient large integer, and choose ρ ≥ ρ0 so large that

β
(ρ
2
− γ

)
≥ β

ρ

4
,

ρ − ρ0
2

≥
(
1 − β

4

)
ρ

2
. (3.51)

Then, it has from (3.37) in Lemma 3.11

r

2
‖x − x‖2 +

(
1 − β

4

)
ρ

2
V (x) = l̂ρ(x, λ) − l̂ρ

(
x, λ

)
≤ t

(
1 + ρ

)‖x − x‖2. (3.52)

Let

V ′ := min
(Vj ,fj)∈FK1

Vj. (3.53)
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By V ′ > 0 and continuity there exists 0 < σ1 < σ such that V (x) ≤ βV ′ for all x ∈ Nσ1(x), so
the point x is acceptable to FK1 . Since xk → x, xk ∈ Nσ1(x) for all k ≥ K2 > K1, K2 is an
integer. By (3.35), we can choose σ1 so small that for all k ≥ K2, the sequence {xj}j≥k with
αk = 1 converges linearly with a contraction factor of at least

∥∥xj+1 − x
∥∥ ≤

√
1
2

(
1 − 1 − β/2

1 − β/4
)

r

2M2t
(
1 + ρ

)∥∥xj − x
∥∥ ≤ 1

2
∥∥xj − x

∥∥. (3.54)

Suppose an arbitrary k2 ≥ K2 such that (3.49) holds, and set σ2 := ‖xk − x‖. By (3.54), it has
xk+1 ∈ Nσ2(x) and xk+1 is acceptable to FK1 . Next, it is a need to show that xk is acceptable
with respect to (Vl, fl) ∈ Fk ∪ (Vk, fk) for K1 ≤ l ≤ k. By (3.49), it has xl ∈ Nσ(x) \Nσ2/M(x),
so by (3.52)

l̂ρ(xl, λl) − l̂ρ
(
x, λ

)
≥ r

2M2σ
2
2 +

(
1 − β

4

)
ρ

2
Vl. (3.55)

And, by (3.52) and (3.54)

l̂ρ(xk+1, λk+1) − l̂ρ
(
x, λ

)
≤ t

(
1 + ρ

)‖xk+1 − x‖2 ≤ 1
2

(
1 − 1 − β/2

1 − β/4
)

r

2M2 σ
2
2 . (3.56)

Next, suppose (x, λ) with x ∈ Nσ2(x) is not acceptable to (Vl, fl) then

V (x) > βVl, f(x) + γV (x) > fl. (3.57)

Thus, it has with (3.51) and (3.52)

l̂ρ(x, λ) = f(x) +
ρ

2
V (x) > fl +

(ρ
2
− γ

)
V (x)

> fl + β
(ρ
2
− γ

)
Vl ≥ fl + β

(ρ
4

)
Vl

= l̂ρ(xl, λl) −
(
1 − β

2

)
ρ

2
Vl

≥ l̂ρ(xl, λl) −
1 − β/2
1 − β/4

(
l̂ρ(xl, λl) − l̂ρ

(
x, λ

))
.

(3.58)

This shows with (3.55) that

l̂ρ(x, λ) − l̂ρ
(
x, λ

)
>

(
1 − 1 − β/2

1 − β/4
)(

l̂ρ(xl, λl) − l̂ρ
(
x, λ

))

≥
(
1 − 1 − β/2

1 − β/4
)

r

2M2 σ
2
2 .

(3.59)
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This produces a contradiction to (3.56), so xk+1 is acceptable to Fk ∪ (Vk, fk). Then, the
acceptability of (Vj+1, fj+1) for Fl follows by induction.

Next, we show that the sequence {xj}j≥k with αk = 1 canmake the sufficient decreasing
condition (2.7) hold.

Lemma 3.13. Suppose Assumptions A1–A3 hold. Let x satisfy Assumptions A4 and A5 and let K
be as in Lemma 3.11. Then for all k > K the sequence {xj}j≥K with αj = 1 satisfies

f
(
xj+1

) ≤ f
(
xj

)
+ ηαj∇fT

j dj . (3.60)

Proof. Suppose αj∇fT
j dj < 0 and αj[∇fT

j dj]e1 < −δ[V (xj )]e2 hold. By αj = 1, thus

∇fT
j dj < −(δ)1/e1

[
V
(
xj

)]e2/e1 . (3.61)

On the other hand, with αj = 1 the assertion f(xj+1) ≤ f(xj) + η∇fT
j dj yields

η∇fT
j dj ≥ ∇fT

j dj +
1
2
dT
j ∇2

xxf
(
x′
)
dj. (3.62)

Thus,

∇fT
j dj ≤ − 1

2
(
1 − η)dT

j ∇2
xxf

(
x′
)
dj , (3.63)

where x′ on the line segment between xj and xj+1.
Obviously, we can prove the conclusion if with K > 0 large enough and for all j ≥ k ≥

K the following holds

−(δ)1/e1[V (
xj

)]e2/e1 ≤ − 1
2
(
1 − η)dT

j ∇2
xxf

(
x′
)
dj. (3.64)

Since cj + ∇cTj dj = 0, dj = −∇cTj (∇cj∇cTj )−1cj . By Assumption A4, ∇cj has full-row
rank, there exists cd > 0 such that

∥∥dj

∥∥ ≤ cdV
(
xj

)
, (3.65)

thus,

∥∥dj

∥∥2 ≤ c2d
[
V
(
xj

)]2
. (3.66)

Choose K large enough such that V (xj) ≤ 1 for all j ≥ k ≥ K. By e1 > 2e2 and (3.66) it
has

∥∥dj

∥∥2 ≤ c2dc5
[
V
(
xj

)]e2/e1 , (3.67)
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Table 1: Description on headers.

Header Description

Problem The name of the CUTE problem being solved
n Number of variables of the problem
m The total number of constraints
mnl Number of nonlinear constraints
NIT1 Number of iterations of Algorithm 2.3
NIT2 Number of iterations of algorithm Tri-filter
NIT3 Number of iterations of algorithm SNOPT
NF1 Number of f evaluations of Algorithm 2.3
NF2 Number of f evaluations of algorithm Tri-filter
NF3 Number of f evaluations of algorithm SNOPT

for a constant c5 := 2δ1/e1(1 − η)/cfc2d, we can choose suitable parameters such that the last
inequality holds. Thus,

δ1/e1
[
V
(
xj

)]e2/e1 ≥ 1
2
(
1 − η)cf

∥∥dj

∥∥2 ≥ 1
2
(
1 − η)dT

j ∇2
xxf

(
x′
)
dj. (3.68)

This completes the proof.

Theorem 3.14. Suppose Assumptions A1–A5 hold. Then, there existsK > 0 such that Algorithm 2.3
takes steps with αk = 1 for all k ≥ K, that is,

xk+1 = xk + dk. (3.69)

In particular, xk converges q-superlinearly to x. If ∇xxf and ∇xxci are Lipschitz continuous in a
neighborhood of x then xk converges q-quadratically.

Proof. Since Assumptions A4 and A5 hold, xk → xwith x satisfying A4. By Lemmas 3.12 and
3.13, the iterate (xk+1, λk+1) = (xk + dk, λ(xk + dk)) is acceptable to the filter Fk ∪ (Vk, fk) and
satisfies the sufficient decreasing condition (2.7). Thus, the trial iterate (xk + dk, λ(xk + dk)) is
accepted by the algorithm and it has

xk+1 = xk + dk, λk+1 = λ(xk + dk). (3.70)

That is in both cases the algorithm takes the steps with αk = 1. And according to Remark 3.10,
{xk} converges q-superlinearly to x.

4. Numerical Experience

In this section, we give some numerical results of Algorithm 2.3. We take some CUTE prob-
lems [17], which are available freely on NEOS, to test our algorithm. The test codes are edited
in MATLAB. The details about the implementation are described as follows.
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Table 2: Numerical results of small-scale problems.

Problem n m mnl NIT1/NIT2 NF1/NF2

hs017 2 5 3 11/14 14/20

hs019 2 6 4 2/5 5/6

hs024 2 4 2 1/4 2/5

hs037 3 7 6 5/7 6/10

hs042 3 5 4 6/7 8/10

hs043 4 3 0 11/14 12/16

hs046 5 4 2 19/30 41/102

hs047 5 6 3 9/19 28/70

hs049 5 4 2 17/23 27/26

hs056 7 15 11 8/18 16/41

hs059 2 7 4 13/16 25/20

hs063 3 7 5 13/15 30/44

hs071 4 11 9 6/28 12/103

hs076 4 7 4 5/6 6/7

hs077 5 4 2 15/26 25/36

hs078 5 6 3 8/6 18/29

hs079 5 6 3 6/9 10/11

hs092 6 1 1 25/18 35/52

hs098 6 16 12 6/6 6/7

hs099 19 42 28 15/19 25/78

hs104 8 22 16 16/23 33/60

hs106 8 22 21 32/36 12/37

hs108 9 14 10 15/12 13/13

hs111 10 26 23 42/48 50/52

hs112 10 16 16 25/52 25/30

hs113 10 8 1 9/13 15/19

hs114 10 34 23 25/28 23/29

hs116 13 41 35 37/44 30/54

hs117 15 20 15 15/16 15/23

hs118 15 59 59 12/18 22/19

hs119 16 48 40 13/18 16/19

Table 3: Numerical results of mid-scale problems.

Problem n m mnl NIT1/NIT3 NF1/NF3

Ngone 97 1371 1369 16/72 21/20

Grouping 100 450 350 1/0 4/2

Eigen a2 110 110 55 8/11 5/6

Eigen a 110 110 110 52/226 158/208
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(a) The parameters are set to β = 0.99, γ = 0.0001, η = 0.4, δ = 1, τ = 0.6, e1 = 2.3,
e2 = 1.1, the termination tolerance ε = 1E − 6.

(b) The optimal residual is defined as

res = max
{∥∥∇f(xk) +∇c(xk)λ

∥∥, V (xk)
}
. (4.1)

That is, the algorithm terminates when res < ε.

(c) Wk is updated by damped BFGS formula [15].

The detailed results of the numerical test on small-scale problems are summarized in
Table 2. For comparison purposes, we also give the numerical results of tridimensional line-
search filter solver (Tri-filter) in Shen et al. [12] in Table 2. The row headers in Tables 2 and 3
are presented in Table 1.

The results in Table 2 indicate that Algorithm 2.3 has a good effect.
In addition, we also test some mid-scale problems. And we compare the numerical

results which are summarized in Table 3 in Algorithm 2.3 and SNOPT solver in Gill et al. [18]
since no mid-scale problems are given in trifilter solver.

From Table 3, we find the efficiency of Algorithm 2.3 is also improved significantly.
From both Tables 2 and 3, in general, the behavior of the proposed algorithm is rather stable.
Finally, we may conclude that, as far as our limited computational experience is concerned,
the proposed algorithm is well comparable to trifilter solver and SNOPT solver.
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