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The success of the Genesis spacecraft, as well as the current Artemis mission, continue to generate
interest in expanding the trajectory options for future science and exploration goals throughout the
solar system. Incorporating multi-body dynamics into the preliminary design can potentially offer
flexibility and influence the maneuver costs to achieve certain objectives. In the current analysis,
attention is focused on the development and application of design tools to facilitate preliminary
trajectory design in a multi-body environment. Within the context of the circular restricted three-
body problem, the evolution of a trajectory in the vicinity of the smaller primary is investigated.
Introduced previously, periapse Poincaré maps have emerged as a valuable resource to predict
both short- and long-term trajectory behaviors. By characterizing the trajectories in terms of radius
and periapse orientation relative to the P1-P2 line, useful trajectories with a particular set of desired
characteristics can be identified and computed.

1. Introduction

Spacecraft exploration activities increasingly involve trajectories that reach the vicinity of
the libration points in various types of three-body systems. Libration point trajectories and
low-energy transfers, in particular, have garnered much recent attention because of their
potential to incorporate the natural dynamics, to generate new types of design options and,
for some spacecraft applications, reduce propellant. A number of successful missions within
the last decade have successfully exploited the natural dynamics of multiple gravity fields,
for example, NASA’s Genesis mission, launched in 2001 with a return to Earth in 2004
[1, 2]. In a Sun-Earth rotating view in Figure 1, the trajectory for the Genesis spacecraft
leveraged the gravity of the Earth, Sun, and the Moon to supply a gravitational balance and
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Figure 1: Genesis trajectory as viewed in the Sun-Earth rotating frame. Samples of solar material were
collected on the spacecraft over two years in an L1 libration point orbit and returned to Earth. During the
return, the lunar gravity was also leveraged as the spacecraft shifted to the L2 region prior to Earth reentry.
CoutesyNASA/JPL-Caltech, http://genesismission.jpl.nasa.gov/gm2/mission/halo.htm.

deliver a trajectory that met the goals and satisfied the constraints with a path that does
not emerge within the context of a two-body problem. In another example from an ongoing
mission, Artemis involves two identical spacecraft identified as P1 and P2, originally two
of the five Themis spacecraft [3–5]. Employing the Sun-Earth-Moon multi-body dynamical
environment, these two vehicles were directed from the outermost of five elliptical Earth
orbits to eventually arrive in Earth-Moon libration point orbits on August 25, 2010, and
October 10, 2010. The transfer phase appears in Figure 2(a) as viewed in the Sun-Earth
rotating fame; both spacecraft are to be inserted into elliptical lunar orbits (see Figure 2(b))
on June 27 and July 17, 2011, respectively.

Although much has been learned about the design space for such missions in the
last few decades, as is evident from Genesis and Artemis as well as a number of other
libration point missions, trajectory design in this type of regime remains a nontrivial problem.
Typical challenges in the use of non-Keplerian orbits in a multi-body environment include (i)
complexity: there are many destinations and competing goals; (ii) the search for solutions
in new dynamical environments with frequent attempts to blend arcs from various models
with different levels of fidelity; (iii) new types of scenarios that are explored to offer options
for extended missions and contingencies. To exploit the gravity of multiple bodies requires a
capability to deliver the trajectory characteristics that meet the requirements for a particular
mission. Without analytical solutions, increasing insight into the dynamical structure in the
three-body problem has been developed, beginning with Hénon and resulting in a wide
variety of investigations, frequently with a focus toward applications [6–27]. In many of
these analyses, the invariant manifolds associated with the L1 and L2 Lyapunov orbits have
been increasingly used to predict the behavior of trajectories that originate near the smaller
primary in the circular restricted three-body problem. In addition, the use of Poincaré maps to
identify trajectories with various short- and long-term behaviors is effective. As noted in some
of these recent publications, however, a major barrier to the development of a simple orbit
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Figure 2: (a) Artemis trajectory for one spacecraft during transfer from Earth to lunar vicinity viewed in
the Sun-Earth rating frame. The trajectory reaches the vicinity of the Sun-Earth L1 libration point after two
relatively high energy lunar flybys (a trajectory “backflip”) to eventually reach a low-energy trajectory
in the vicinity of the Moon. http://www.nasa.gov/mission pages/artemis/news/lunar-orbit.html. (b)
Artemis trajectory at arrival in lunar vicinity viewed in Earth-Moon rotating frame. Both spacecraft employ
Earth-Moon L1 and L2 libration point orbits to modify the path and eventually insert into lunar orbit later
this year. http://www.nasa.gov/mission pages/artemis/news/lunar-orbit.html.
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design process is the overwhelming nature of the design space. The trajectory design process
remains challenging due to the varied, and sometimes chaotic, nature of trajectories that are
simultaneously influenced by two gravitational bodies. To effectively select a trajectory to
satisfy a given requirement, it is necessary to simplify and organize the design space as
much as possible. The invariant manifold structure associated with the collinear libration
points, in particular, has offered a geometrical framework for this dynamical environment.
Yet, harnessing this information to supply relatively quick and efficient options for trajectory
designers is a formidable challenge. Thus, the design difficulties remain significant, but a
wider range of tools is emerging.

The motivation for this investigation originated from a general need to repeatedly
develop design concepts for potential applications. A major challenge involved in orbit
design within the context of the circular restricted three-body problem (CR3BP) is the
organization of the vast set of options that is available within the design space; it is difficult
to locate the specific initial conditions that lead to a trajectory with a particular set of
characteristics. The invariant manifolds and the corresponding phase space yield a rich
dynamical structure, and one method for visualizing the space involves the use of Poincaré
maps, which reduce the dimensionality of the problem. Suchmaps are successfully employed
in a number of analyses including Koon et al. [11, 12], Gómez et al. [13, 17], Howell et al.
[14], Topputo et al. [18], and Anderson and Lo [27]. However, an alternative representation
is sought to capture this knowledge and further facilitate trajectory design. A different
parameterization of a Poincaré map involves the surface of section at the plane corresponding
to periapsis. Its advantage is based on the fact that the map is viewed within position
space. This type of map is denoted by a periapse Poincaré map and was first defined and
introduced by Villac and Scheeres [28] to relate a trajectory escaping the vicinity of P2 back
to its previous periapsis in the planar Hill problem. Paskowitz and Scheeres [29, 30] extend
this analysis, using periapse Poincaré maps to define lobes corresponding to the first four
periapse passages after capture into an orbit about P2. For application to the Europa orbiter
problem, the authors define “safe zones” where a spacecraft is predicted to neither escape
nor impact the surface of the satellite for a specified period of time. Davis and Howell
[31, 32] build on the analysis for short- and long-term trajectories to illustrate some of the
structures associated with manifold tubes corresponding to the L1 and L2 Lyapunov orbits
as viewed in terms of periapse maps. Long-term periapsis Poincaré maps aid in organizing
large numbers of trajectories and can deliver initial conditions that yield trajectories with
specific characteristics. Davis and Howell [32] as well as Haapala and Howell [33] employ
such maps to compute specific types of trajectories in the region near P2. For trajectory design
in this regime, good initial guesses are critical and a technique that supplies geometrical
insight concerning the structure and delivers good approximate solutions is a practical
alternative to construct trajectory options. Poincaré maps generally do require large amounts
of computation, but such capabilities are expanding very quickly. In addition, as more
design is accomplished within an interactive visual environment, techniques that are easily
adaptable to visual interfaces are appealing and likely to be incorporated into the next
generation of design tools. Ultimately, any of the design approaches that successfully leverage
computational speed and visual interfaces possess advantages.

This analysis is focused on exploring periapse maps to construct trajectory options
in multi-body regimes. The CR3BP frequently serves as a basis for the preliminary analysis
in such problems, and, thus, for this investigation, the primary focus is the region near the
smaller primary, P2. The goal is a strategy that facilitates preliminary trajectory design in
the CR3BP but still embraces the invariant manifold framework. Periapse Poincaré maps are
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defined and the structure that is apparent in such types of maps is summarized. The map
appears in position space, and different parameters at periapsis are represented depending
on the application. Examples serve to demonstrate how the maps can be exploited to deliver
different types of solutions. Periapse maps can also be used in conjunction with other types of
analysis tools. Such an approach has proved useful to isolate specific arcs and, in some cases,
blend them with other arcs for design.

2. Background

2.1. Dynamical Model

The dynamical model that is assumed for this analysis is consistent with the formulation
in the circular restricted three-body problem (CR3BP), where the motion of a particle of
infinitesimal mass, P3, is examined as it moves in the vicinity of two larger primary bodies, P1

and P2. A rotating frame, centered at the system barycenter, B, is defined such that the rotating
x̂-axis is directed from the larger primary (P1) to the smaller (P2), the ẑ-axis is parallel to the
direction of the angular velocity of the primary system with respect to the inertial frame, and
the ŷ-axis completes the dextral orthonormal triad. Let the nondimensional mass μ be the
ratio of the small mass of P2 to the total systemmass. The system then admits five equilibrium
solutions comprised of the three collinear points (L1, L2, and L3) and two equilateral points
(L4 and L5) as depicted in Figure 3(a). Note that the magnitude of the Hill radius [8] is

rH =
(

μ

3

)1/3

, (2.1)

and is nearly equal to the distance between P2 and the Lagrange points L1 and L2. A single
integral of motion exists in the CR3BP. Known as the Jacobi integral, it is evaluated as

C = x2 + y2 +
2μ
r23

+
2
(

1 − μ
)

r13
− v2, (2.2)

where v is the magnitude of the spacecraft velocity relative to the rotating frame. The scalar
nondimensional distances r13 and r23 reflect the distance to P3 from the primaries P1 and
P2, respectively. Then, the Jacobi constant restricts the motion of the spacecraft to regions in
space, where v2 ≥ 0; these regions are bounded by surfaces of zero velocity. In the planar
problem, the surfaces reduce to the zero velocity curves (ZVCs). For values of the Jacobi
integral higher than that associated with the L1 libration point, the ZVCs form closed regions
around the two primaries. As the energy of the spacecraft is increased, the Jacobi value
decreases until, at the L1 value of the Jacobi integral, that is, CL1 , the ZVCs open at the L1

libration point, exposing a gateway. The particle P3 is now free to move between the two large
primaries. Similarly, when the value of the Jacobi integral decreases to the value associated
with L2,CL2 , the ZVCs open at L2 and the particle, that is, spacecraft, may escape entirely from
the vicinity of the primaries. For values of such that CL3 < C < CL2 , the ZVCs appear as in
Figure 3(b); the gray area cannot be reached by P3 at this Jacobi level and is thus “forbidden.”
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Figure 3: Regions of position space delineated by the zero velocity curves.

The exterior and interior regions in the figure are denoted to be consistent with Koon et al.
[11].

2.2. Invariant Manifolds

For unstable periodic orbits in the CR3BP, in particular the periodic Lyapunov orbits in the
planar problem, higher-dimensional manifold structures exist and supply a framework for
this region via the stable and unstable manifolds. For L1 and L2 Lyapunov orbits to exist at a
given level of Jacobi constant, both the L1 and L2 gateways are open. Let to be the initial time
and the symbol T identify the time for one period. Assume that λs < 1 and λu = 1/λ2 are the
stable and unstable eigenvalues from the monodromy matrix, Φ(to + T, to), as determined for
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Figure 4: Stable (blue) and unstable (red) manifolds associated with periodic L1 and L2 Lyapunov orbits
for C = 3.1672 in the Earth-Moon three-body problem.

a given Lyapunov orbit. Let ws and wu be the associated eigenvectors, computed by solving
the equation Φ(to + T, to) ws = λsws, Φ(to + T, to) wu = λuwu. Define w+, w− as the
two directions associated with an eigenvector. The local half-manifolds, WU−

loc and WS−
loc , are

approximated by introducing a perturbation relative to a fixed point, x∗, along the periodic
orbit in the direction w−

u and w−
s , respectively. Likewise, a perturbation relative to x∗ in the

direction w+
u and w+

s , respectively, produces the local half-manifolds WU+
loc and WS+

loc . The
step along the direction of the eigenvector is denoted d and the initial states along the local
stable and unstable manifolds are evaluated as x±

s = x∗ ± d · w±
s . The local stable manifolds

are globalized by propagating the states x+
s and x−

s in reverse time in the nonlinear model.
This process yields the numerical approximation for the global manifolds WS+

x∗ and WS−
x∗ ,

respectively. Propagating the state x±
u = x∗ ± d ·w±

u in forward-time yields the unstable global
manifoldsWU+

x∗ andWU−
x∗ . The collection of the stable and unstable manifolds corresponding

to each fixed point along sample L1 and L2 Lyapunov orbits in the Earth-Moon system appear
in Figure 4 in configuration space.

3. Periapse Poincaré Maps

3.1. Creation of Periapse Maps

Connecting arcs in the CR3BP by exploiting the invariant manifold structures and the use of
Poincaré maps has been successfully demonstrated by Koon et al., Gómez et al., and others
[11–14, 16, 17]. A Poincaré map is commonly used to interpret the behavior of groups of
trajectories, relating the states at one point in time to a future state forward along the path. By
fixing the value of the Jacobi integral and selecting a surface of section, the dimensionality of
the problem is reduced by two; the four-dimensional planar problem is thus reduced to two
dimensions. Poincaré maps, with various parameterizations, have proven to be a useful tool
for trajectory analysis and design. An alternative parameterization that facilitates exploration
of the design space and selection of certain types of characteristics is the periapse Poincaré
map, first defined and applied by Villac and Scheeres [28]. In this type of map, the surface of
section is the plane of periapse passage. Villac and Scheeres, [28] as well as Paskowitz and
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Scheeres, [29] employ periapse Poincaré maps to explore the short-term behavior of escaping
trajectories as well as captured trajectories within the context of the Hill three-body problem
with applications to the Jupiter-Europa system. Building on these results, the short- and long-
term behavior of trajectories in the CR3BP as viewed in terms of periapse maps is explored
by Davis and Howell [31, 32] as well as Haapala and Howell [33]. Periapsis and apoapsis
relative to P2 are defined such that the radial velocity, ṙ, of P3 relative to P2 is zero and are
distinguishable by the direction of radial acceleration, r̈ ≥ 0 at periapsis and r̈ ≤ 0 at apoapsis
[34].

The periapse maps are relatively simple to create. Each point within the periapse
region corresponds to an initial condition that is associated with a specific trajectory about
P2 at a specified level of Jacobi constant. The initial condition always reflects a periapsis.
Given an initial position, velocity can be selected to produce a prograde or retrograde path;
all initial velocities are assumed prograde in this analysis. The initial state corresponding
to each trajectory is then propagated forward in time for a specified number of revolutions
to generate a series of subsequent periapse points. After the first revolution, the state is
evaluated against four possible outcomes: the particle impacts P2, the particle escapes out
the L1 gateway; the particle escapes through the L2 gateway, or the particle remains captured
near P2, that is, it continues to evolve within the ZVCs. Impact trajectories are defined as
those possessing a position vector, at any time, that passes on or within the radius of the body
P2. Escape trajectories are identified by an x-coordinate lying more than 0.01 nondimensional
units beyond either L1 or L2. Finally, the initial periapse position is colored consistent with the
outcome. Any states that continue to evolve are evaluated after the return to the next periapse
condition and the process continues until a predetermined time or number of revolutions.
Thus, maps are created to isolate certain types of behavior. Maps are produced in the Sun-
Saturn system for both short- and long-term propagations in Davis and Howell [32] and
Haapala and Howell [33]. Once a region is isolated, relationships between other periapsis
parameters are also exploited [32, 33].

3.2. Defining Regions in the Maps

As an example, the periapse structures in the Sun-Saturn system, associated with the
invariant manifolds corresponding to the planar Lyapunov orbits and a specified Jacobi
constant value, appear in Figure 5. Note that the Sun and Saturn are simply a representative
system. The manifolds in Figure 5(a) are propagated through their first periapses which
are indicated as blue points along the manifold trajectories. Observe that the periapses
along the manifold tubes define well-defined lobes that identify the escaping trajectories.
These lobes are analogous to the lobes defined for the Hill restricted three-body problem in
Villac and Scheeres [28] and Paskowitz and Scheeres [29]. Consistent with the nature of the
stable/unstable manifolds that are associated with the Lyapunov orbits as separatrices for the
flow, these lobes represent regions in which a periapsis occurs just prior to direct escape from
the vicinity of Saturn; any trajectory with a periapsis within one of these lobes escapes prior
to reaching its next periapsis. Conversely, a trajectory with periapsis lying outside a lobe
does not escape before its next periapse passage. These lobes can, therefore, be considered
gateways to escape: all escaping trajectories pass through one of these regions at the final
periapse passage prior to escape. (Note that, for some trajectories, the first periapsis actually
occurs in the vicinity of the libration point orbit near L1 or L2, however, these periapses are
neglected in this investigation.) The boundaries of the lobes, that is, the periapses along the
manifolds, appear as contours in Figure 5(a). To isolate the structures in the figure, a naming
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Figure 5: Manifold and periapse structures in the Sun-Saturn system.

convention similar to one that appears in Koon et al. and Gómez et al. [11, 17] is employed.
Let ΓSLi,m

denote the periapse contour formed by the mth intersection of the stable manifold
tube associated with the Li Lyapunov orbit in the P2 region, and ΓULj ,n

denote the periapse
contour formed by the nth intersection of the unstable manifold tube associated with the Lj

Lyapunov orbit in the P2 region. Then, to examine a periapse Poincaré map, consider the
map in Figure 5(b). For the Lyapunov orbits at the given value of Jacobi constant, the first
three periapses along each manifold WS+

L1
and WS−

L2
appear, as marked by blue dots in the

figure, and distinct regions appear. Recall that the delineation between regions of allowed
periapses and apoapses occur where r̈ = 0, and this boundary is plotted as a dotted black
line in the figures. Then, for a large number of arbitrary initial periapse locations, escaping
trajectories are examined in both forward and reverse time. Those trajectories that cross
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Figure 6: Comparison of periapse regions in different systems.

the boundary x = xL1 − 0.01 are defined as forward-time L1 escape trajectories, while those
that cross x = xL2 + 0.01 are defined as forward-time L2 escapes. Colors represent the fate
of these initial periapse states. The colored areas in Figure 5(b) identify the locations of the
first three periapses along these L1 and L2 forward-time escape trajectories and are denoted
Πt+

L1,1→ 3, andΠt+
L2,1→ 3, respectively, where superscript t+ indicates a forward-time escape. The

map associated with the first three periapses along the unstable manifolds (WU+
L1

and WU−
L2

)
is simply the reflection of the stable manifold contours from Figure 5(b) across the x̂-axis,
as demonstrated in Figure 5(c), and represent entry or capture into the specified region.
The colored areas in Figure 5(c) represent locations of the first three periapses along the L1

and L2 reverse-time escape trajectories and are denoted Πt−
L1,1→ 3 and Πt−

L2,1→ 3, respectively,
where superscript t− indicates reverse-time escape. Propagating WS+

L1
and WU−

L2
for a longer

interval and plotting all the manifold periapses together, the periapse structures appearing
in Figure 5(d) emerge. The patterns apparent in the colored periapse regions are a function
of the mass ratio as well as the value of the Jacobi integral. However, due entirely to the
structure of the invariant manifolds associated with Lyapunov orbits, the patterns reappear
in different systems as is apparent in Figure 6. The Sun-Saturn mass ratio is μ = 2.858 × 10−5

as compared to the Earth-Moon system for which μ = 1.215 × 10−2. The values of C differ, of
course, but similar patterns are apparent in the two different systems as expected.

Ultimately, these maps represent pathways through the system. To highlight the paths
that are available in this type of map, consider Figure 7, where both the Sun-Saturn and
Earth-Moon systems are represented. In Figures 7(a) and 7(b), the regions corresponding
to the first six periapses along L1 forward-time escape trajectories are identified by color.
Contours ΓSLi,m

appear in blue for m within ∼33 orbits of the primaries. The values of C in
each system are selected for visual comparison and simply represent a similar opening of
the gateway at L2. Sample paths are over plotted on the maps and periapses are marked by
dots in Figures 7(c) and 7(d). Assume that the initial periapsis occurs in the yellow region
Πt+

L1,6
. The propagated path then moves to the next periapses in the green region (Πt+

L1,5
),

and so on. The final periapsis occurs in the orange Πt+

L1,1
region with a subsequent escape

through L1. In Figures 7(a) and 7(b), it is also apparent that some white regions exist. These
are regions outside the lobes, that is, outside of the manifolds. Because the initial states in
these white regions lie outside the manifolds, periapses in these regions can correspond to
long-term behavior in the system. Not all white regions in Figure 7 correspond to long-term
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Figure 7: Comparison of periapse maps for different Jacobi values and different systems.

capture in the vicinity of Saturn. At this value of Jacobi in the Sun-Saturn system, a relatively
large white region appears near P2 and a zoom of the same region near P2 at C = 3.0173
appears in Figure 8. In Figure 8, the periapses along the manifold associated with the L1

Lyapunov orbit appear in blue (WS+
L1

) and those associated with the L2 orbit appear in red
(WS−

L2
). The lobes reflecting escapes appear in white in Figure 8. The black dots correspond to

periapses representing periodic orbits and other trajectories that evolve in this system for as
long as 1000 years and it is apparent that there is significant structure in this long-term map.
Numerous orbits and quasiperiodic trajectories that yield certain characteristics are selected
directly from the map in Davis [35].

4. Applications of Periapse Maps

Exploiting Poincaré maps to construct trajectories has certainly been accomplished by others.
Producing trajectories with certain characteristics can be facilitated with these types of
periapse maps as well. Maps at different energy levels can also be employed together to blend
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Figure 8: Long-term trajectories in a periapse Poincaré map; Sun-Saturn system; C = 3.0173.

arcs. Examples illustrating the process appear below. In some examples, known solutions
emerge quickly.

4.1. Example: Transit through Both L1 and L2 Gateways

The unstable manifold tubes corresponding to the L1 and L2 Lyapunov orbits delineate
regions in the periapse maps that correspond to trajectories that enter the vicinity of P2

through the L1 or L2 gateways. As previously noted, the periapses of the unstable manifold
trajectories are the mirror image (reflected across the x̂-axis) of the stable manifold apses.
A trajectory that lies both within a stable L1 tube and an unstable L2 tube can represent a
“double transit” trajectory, that is, a trajectory that transits through both gateways. Such a
trajectory enters the P2 vicinity through L2 and subsequently escapes, after an unspecified
number of revolutions about P2, through L1 [11, 13, 17, 36]. For a particle to move from
the exterior to the interior region requires such a path. Similarly, a transit trajectory may
enter through the L1 gateway and depart through L2. A sample transit trajectory (L2 → L1)
appears in Figure 9 in the Sun-Saturn system. The first two lobes representing periapses
within the L2 unstable manifold appear in red; the first two lobes associated with the L1 stable
manifold appear in the figure in blue. A periapse state is selected that lies within both of the
tubes; it appears as a black dot. Thus, the two lobes Πt−

L2,2
and Πt+

L1,2
overlap and the selected

point appears in the intersection. The result is a transit trajectory that enters the vicinity of
Saturn through L2 and completes three periapse passages before escaping through the L1

gateway, passing through three periapse lobes in sequence that highlight its passage. One
advantage of the periapse Poincaré map for trajectory design applications is that the maps
exist in configuration space, allowing the selection of initial conditions based on the physical
location of periapsis. This type of application is explored in Davis and Haapala [35, 36].

Haapala andHowell [33] further explore the use of periapse Poincaré maps as a transit
trajectory design tool. By selecting initial conditions that correspond to periapses within the
region inside both contours ΓSLi,m

and ΓULj ,n
, that is, within the intersections of regions Πt+

Li,m
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Figure 10: Arrival contour ΓUL2 ,1
in red and contours ΓSL1 ,1→ 10 in blue; C = 3.0174 (Saturn at 10x).

andΠt−
Lj ,n

, and propagating in both forward- and reverse-time, a transit orbit passing through
the Li gateway in forward time, and the Lj gateway in reverse time is produced. Defining
one revolution about P2 as consisting of one periapsis and one apoapsis, the transit trajectory
experiences a number of revolutions about P2 equal to p = m + n − 3/2. Thus, to design
transit trajectories with some desired behavior in the vicinity of P2, the contours and/or
intersections are selected such that m + n = p + 3/2, where for an Interior-to-Interior (I-to-
I) transit i = j = 1, for an exterior-to-exterior (E-to-E) transit i = j = 2, for an Interior-
to-Exterior (I-to-E) transit i = 2, j = 1, and lastly for an Exterior-to-Interior (E-to-I) transit
i = 1, j = 2. Reconsider an E-to-I transfer using the map in Figure 10. After entering the
L2 gateway, all E-to-I transit trajectories reach their first periapses within the first contour
ΓUL2,1

. Likewise, the last periapsis before exiting through the L1 gateway occurs within the first
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Figure 11: Transit trajectories of varying numbers of revolutions about Saturn appear with periapses
marked in red.

contour ΓSL1,1
. Selecting n = 1, m = 10, it is possible to obtain trajectories with a maximum of

p = 9.5 revolutions about P2, although increasing n,m, or both could certainly render p ≥ 9.5.
The scenario from Figure 7(a) is repeated in Figure 10 but the manifold periapses are plotted
for fewer crossings. The figure includes contours ΓSL1,1→ 10 as blue dots, and ΓUL2,1

as a contour
in red (indicated by a red arrow). The six regions Πt+

L1,1→ 6 prior to escape out L1 are colored
appropriately. Within the red L2 entry lobe, a certain structure is apparent when considering
the intersections with the L1 escaping contours as noted by Haapala and Howell [33] as well
as Haapala [36]. Identifying the overlaps of the lobe regions yields transits that correspond
to p = 2.5, 3.5, 4.5 and are colored in magenta, navy, and green in Figure 11(a). Note that
the manifold contours at this particular value of Jacobi constant further split the arrival lobe
into different subregions that reflect different types of E-to-I transit paths in terms of p, that
is, the number of revolutions about P2. Representative E-to-I transit trajectories are generated
from the initial conditions marked as red points in Figure 11(a) and are plotted in Figures
11(b)–11(d). The time interval in the figures corresponds to the time required to pass from
x = xL2 to x = xL1 and appears in the captions.
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4.2. Example: Earth-Moon Transfers

Periapse Poincaré maps are also applied to the problem of designing a low-energy ballistic
lunar transfer from low Earth orbit. Examined by various researchers [10, 12, 24, 37, 38], a
ballistic lunar transfer utilizes the gravity of the Sun to naturally raise the periapsis of an
Earth-centered trajectory, lowering theΔv required to reach the orbital radius of the Moon as
compared to a Hohmann transfer. Initial condition or periapse maps simplify the problem of
determining both theΔv and the orientation in the Sun-Earth frame that yield the appropriate
periapse raise.

Consider a spacecraft in a 167 km circular parking orbit centered at Earth. At this
energy level, the ZVCs are completely closed and the Sun has little effect on the orbit. A
maneuver applied at an appropriate location in the parking orbit decreases Jacobi Constant
and shifts the spacecraft to periapsis of a large Earth-centered orbit. This larger orbit is
affected significantly by the Sun, and the subsequent periapsis is raised to the radius of the
lunar orbit. If RE is the radius of the Earth, to reach the Moon’s orbital radius, the periapsis
must be raised from RE + 167 km to 384,400 km, corresponding to Δrp = 377, 855 km =
0.2525 rH , in terms of the Sun-Earth Hill radius. To determine the requiredΔv, periapse maps
are created for a series of post-Δv Jacobi values. For each value of Δv, a Δrp map is created.
These maps allow a quick visualization of the orientation that produces the largest increase in
periapse radius for each Δv. The ZVCs and the trajectories corresponding to approximately
the largest periapse increase for a set of eight values of Δv appear in Figure 12(a). For
Δv < 3.199 km/s, the ZVCs constrain the apoapsis to a radius too small to allow solar gravity
to raise periapsis sufficiently. For Δv ≥ 3.2 km/s, however, the ZVCs are sufficiently open
(that is, the low value of Jacobi constant allows open gateways) to result in a periapse raise
sufficiently large to reach the lunar orbit. This value agrees well with a theoretical minimum
Δv determined by Sweetser [39] as 3.099 km/s for transfer from a 167-km parking orbit at
Earth, as well as with optimized Earth-Moon transfer Δv values calculated by Parker and
Born [38], who computes Δv ≈ 3.2 km/s for a transfer from a 185 km parking orbit in a Sun-
Earth-Moon gravity model.

A maneuver of 3.2 km/s shifts the value of Jacobi Constant from C = 3.068621, the
value of C corresponding to the low-Earth orbit, to C = 3.000785 in the Sun-Earth system,
the value of C associated with the transfer orbit. The postmaneuver initial condition map
corresponding toΔv = 3.2 km/s, or C = 3.000785, appears in a full view in Figure 12(b) and a
zoomed view in Figure 12(c); both are in the Sun-Earth rotating frame. The colors in Figures
12(b) and 12(c) simplify the options over the next revolution, that is, at this Jacobi constant,
C = 3.00078518, depending on the location of the post-Δv periapsis along the parking orbit,
the spacecraft can impact Earth (black) or escape the vicinity of the Earth entirely (red or
blue). However, in this application, the focus is on the trajectories that remain in the vicinity
of the Earth for at least one revolution, but with a significant rise in radius at the second
periapsis. To locate the orientation for the appropriate periapse raise, a Δrp map is produced.
The map is recolored in Figure 12(d) to reflect the value of Δrp over one revolution. Note
that black indicates a decrease in Δrp and blue→ red indicates an increasing magnitude of
Δrp. The 167 km parking orbit is again marked in green on the map in Figure 12(d). Four
bands of initial periapse angles exist that correspond to Δrp = 0.2525 rH ; these bands are
marked by purple rays. By selecting an initial periapsis at the intersection of a purple ray
with the green parking orbit, the orientation is determined that will result in the desired
raise in periapsis. Four such trajectories appear in Figure 12(e) corresponding to the four
initial conditions marked on the map in Figure 12(d). Clearly, each trajectory originates from
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the 167-km parking orbit; after a Δv = 3.2 km/s, the trajectory reaches apoapsis well beyond
the radius of the Moon’s orbit. But the subsequent periapsis along each orbit is precisely at
the radius of the Moon’s orbit. Given that the data for the maps is available, computed ahead
or in real time, the appropriate point is selected directly from the map; in a simple three-body
model, the map is a fast easy method for preliminary design.

4.3. Example: Arrival through the L1 Gateway

Sun-Saturn System

Consider arrivals in the vicinity of Saturn either by natural objects or spacecraft. The arrival
lobe from either gateway can serve to deliver different types of arrival trajectories. Consider
first an arrival through the L1 gateway in the Sun-Saturn system as represented in Figure 13.
The goal is an arrival periapsis that will produce a path that remains in the P2 vicinity.
In Figure 13(a), the arrival contour ΓUL1,1

appears in red. Also plotted in the figure are the
contours representing ΓSL2,1→n. In this example, the points within Πt−

L1,1
are colored based on

time to escape from P2 through either gateway, although not all trajectories escape within
the time of propagation. Thus, periapses within the arrival region, Πt−

L1,1
, are colored such

that red→ blue indicates increasing time to escape. Selection of a periapsis point that is in a
region of the deepest blue color yields a trajectory that will remain in the P2 vicinity for an
extended time. Such a point is indicated in white with a white arrow in Figure 13(a). The
corresponding path appears in Figure 13(b). Once propagated, it remains near Saturn for at
least 1000 years. Arrival through L2 could be accomplished with the same process.

Earth-Moon System

The same type of arrival lobe can yield a path for a different application in the Earth-Moon
system in Figure 14. Many investigators have examined transfers from Earth to a periodic L1

Lyapunov or halo orbit including Perozzi and Di Salvo [37] and Parker and Born [23]. The L1

arrival contour for a given value of Jacobi Constant (C = 3.17212) appears in Figure 14(a). A
periapsis is selected within this lobe (as indicated by the red dot and arrow) that also lies on
a stable invariant manifold associated with the Lyapunov orbit. The selected lunar periapse
point represents the gold trajectory arc in Figures 14(b) and 14(c). Earth departure occurs as
a result of a maneuver,Δv1 = 3.105 km/s, from a 200 km circular Earth parking orbit in black.
The black arc then intersects the manifold (gold) corresponding to an L1 Lyapunov orbit
(Δv2 = 0.630 km/s). After a close pass by the Moon at 100 km altitude, the path eventually
asymptotically approaches the L1 orbit as seen in Figures 14(b) and 14(c). The final result
is a total Δv = 3.735 km/s in the CR3BP. The periapsis is selected specifically to be along a
manifold and is located on the blue contour ΓSL1,1

, however, this path could also produce a
capture into a 100-km lunar orbit by including a 0.631 km/s maneuver at periapsis.

In Figure 15, the same objective is achieved with more excursions about the Moon
prior to arrival in the L1 orbit. Again, consider the arrival contour ΓUL1,1

as plotted as the
red lobe in Figure 14(a). Within this contour, select a periapsis from the green region, which
represents the periapses corresponding to escaping trajectories from Πt+

L1,5
. Propagating an

initial condition from this region yields a path with four revolutions about the Moon prior
to departure again through L1. If the periapsis initial condition that is selected in the green
region also lies on the contour ΓSL1,5

, as noted in the figure, the green trajectory arc in Figure 15
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Figure 13: Arrival through the Sun-Saturn L1 gateway; periapsis selected to yield a trajectory that remains
in the P2 vicinity for an extended time.

is generated. In comparison to the path in Figures 14(b) and 14(c), the green path in Figure 15
completes four revolutions about the Moon, passing the Moon at a higher altitude with a
result that the total Δv = 3.794 km/s with a corresponding increase in the time of flight.
Other periapses yield opportunities to insert into alterative lunar trajectories as well.

5. Summary and Concluding Remarks

Trajectory design in the multi-body regime remains a nontrivial problem. The goal in
any design process is to exploit the gravity of multiple bodies and deliver a trajectory
with characteristics that meet the requirements for a particular mission. Without analytical
solutions, increasing insight into the dynamical structure in the three-body problem
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Figure 14: Earth-Moon system C = 3.17212; manifold trajectory connects to the black arc that departs from
200-km altitude Earth orbit; lunar periapsis at 100-km altitude; asymptotic approach to L1 Lyapunov orbit.

introduces more options for mission design as well as some new and exotic trajectories
that may enable future opportunities. However, the design space is very large and the
tradeoffs are not well defined. Many investigators are working to develop techniques to
create viable solutions for applications. The invariant manifold structure associated with the
collinear libration points, in particular, has supplied a geometrical framework and a number
of approaches are now available to represent this information. This current analysis explores
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Figure 15: Earth-Moon system; C = 3.17212; manifold trajectory connects to the black arc that departs from
200-km altitude Earth orbit; asymptotic approach to L1 Lyapunov orbit after four revolutions about the
Moon.

an additional type of map to add another perspective for selecting arcs in support of the
design process. Within the context of the CR3BP, the periapse maps are an efficient design
tool. Using a combination of strategies to manage the information and deliver the results
is almost always necessary, however, automating these techniques is a priority; a visual
interface is a longer-term goal.
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[22] F. Garcı́a and G. Gómez, “A note on weak stability boundaries,” Celestial Mechanics and Dynamical
Astronomy, vol. 97, no. 2, pp. 87–100, 2007.

[23] J. S. Parker and G. H. Born, “Direct lunar halo orbit transfers,” in Proceedings of the 17th AAS/AIAA
Space Flight Mechanics Conference, Sedona, Ariz, USA, 2007, Paper AAS 07-229.

[24] J. S. Parker and G. H. Born, “Modeling a low-energy ballistic lunar transfer using dynamical systems
theory,” Journal of Spacecraft and Rockets, vol. 45, no. 6, pp. 1269–1281, 2008.

[25] G. A. Tsirogiannis, E. A. Perdios, and V. V. Markellos, “Improved grid search method: an efficient tool
for global computation of periodic orbits,” Celestial Mechanics and Dynamical Astronomy, vol. 103, no.
1, pp. 49–78, 2009.

[26] E. Belbruno, M. Gidea, and F. Topputo, “Weak stability boundary and invariant manifolds,” SIAM
Journal on Applied Dynamical Systems, vol. 9, no. 3, pp. 1061–1089, 2010.

[27] R. L. Anderson and M. W. Lo, “A dynamical systems analysis of resonant flybys: ballistic case,” The
Journal of the Astronautical Sciences, vol. 58, no. 2, 2011.

[28] B. F. Villac and D. J. Scheeres, “Escaping trajectories in the Hill three-body problem and applications,”
Journal of Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 224–232, 2003.

[29] M. E. Paskowitz and D. J. Scheeres, “Robust capture and transfer trajectories for planetary satellite
orbiters,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 2, pp. 342–353, 2006.

[30] M. E. Paskowitz and D. J. Scheeres, “Design of science orbits about planetary satellites: Application
to Europa,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1147–1158, 2006.



22 Mathematical Problems in Engineering

[31] D. C. Davis and K. Howell, “Long term evolution of trajectories near the smaller primary in the
restricted problem,” in Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting, San Diego,
Calif, USA, February 2010.

[32] D. C. Davis and K. Howell, “Trajectory evolution in the multi-body problem with applications in
the saturnian system,” in Proceedings of the 61st International Astronautical Congress, Prague, Czech
Republic, September 2010.

[33] A. F. Haapala and K. C. Howell, “Trajectory design using Poincaré maps and invariant manifolds,”
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