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In the paper we presented new results in incremental network modelling of two-wire lines in
frequency range [0,3] [GHz], by the uniform RLCG ladders with frequency dependent RL param-
eters, which are analyzed by using PSPICE. Some important frequency limitations of the proposed
approach have been pinpointed, restricting the application of developed models to steady-state
analysis of RLCG networks transmitting the limited-frequency-band signals. The basic intention of
this approach is to circumvent solving of telegraph equations or application of other complex,
numerically demanding procedures in determining line steady-state responses at selected
equidistant points. The key to the modelling method applied is partition of the two-wire line in
segments with defined maximum length, whereby a couple of new polynomial approximations
of line transcendental functions is introduced. It is proved that the strict equivalency between the
short-line segments and their uniform ladder counterparts does not exist, but if some conditions
are met, satisfactory approximations could be produced. This is illustrated by several examples of
short andmoderately long two-wire lines with different terminations, proving the good agreement
between the exactly obtained steady-state results and those obtained by PSPICE simulation.

1. Introduction
A comprehensive theory of linear, time-invariant, lumped-parameter networks is presented
in many references, where the physical dimensions of network elements are assumed small,
compared to the wavelength associated with the highest frequency in the spectrum of the
signal being processed. In those networks, two-terminal passive elements, such as resistors,
capacitors, and inductors, are specified by single, spatially independent parameters. In
passive electrical networks there may be also four-terminal elements, such as transformers
and gyrators. The equilibrium equations of linear, time-invariant, lumped-parameter
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networks are ordinary, linear differential equations with constant coefficients. Unfortunately,
all physical components cannot be treated as lumped, since their spatial configuration plays
important role in understanding their physical behaviour at high frequencies. The systems
such as electrical transmission lines, passive integrated circuits, as well as many physical
processes: thermal conduction in rods, carrier motion in transistors, vibration of strings, and
so forth, are characterized by partial differential equations, and distributed parameters must
be introduced for correct mathematical description of their physical behaviour. Equilibrium
equations of those distributed-parameter systems (i.e., partial differential equations) have
solutions which are more difficult to find than the solutions of ordinary differential equations
with constant coefficients. Since differential equations of transmission lines are analogous
to those of many other systems and one-dimensional physical processes (e.g., of the heat
flow in solids), in this paper we will: (a)make brief overview of partial differential equations
describing voltage and current distributions in finite length lines, (b) develop the appropriate
physical model of two-wire line with frequency dependent per-unit-length parameters by
taking into account all the physically relevant parameters (geometry, dielectric, magnetic,
and conductivity properties of media, the operating frequency range, and skin-effect), and
(c) propose an approximate representation of real two-wire lines by uniform RLC ladders
with frequency-dependent parameters, turning thuswith the problem of analysis of real two-
wire lines into the analysis problem of high-order passive RLC networks by extensive use of
PSPICE.

2. The Incremental Network Model of Two-Wire Line

In engineering practice the most widely and frequently used types of transmission lines
are: (a) two-wire line (Figure 1(a)), coaxial line (Figure 1(b)) and twisted pair (Figure 1(c)).
In Figure 1 with εc, μc and σc or εd, μd, and σd are denoted: the electric permittivity, the
magnetic permeability, and the specific electric conductivity of conductor (“c”) or dielectric
(“d”), respectively. Nevertheless, no matter what type of transmission line is considered,
each line segment (section) with physical length δx, which is sufficiently small compared
to the wavelength associated with highest frequency in the spectrum of the signal being
transmitted, can be represented with approximate, incremental, lumped network model
depicted in Figure 2. Thereon are denoted with R′[Ω/m], L′[H/m], C′[F/m], andG′[S/m]:
the resistance, inductance, capacitance, and conductance, respectively, of transmission line,
in per-unit-length form. The lumped network model in Figure 2 becomes more and more
accurate as δx → 0, and it is proved to be an adequate representation of any transmission
line, since it is in good agreement with the experimental observations. Throughout the paper
the length of the line will be denoted by � and the considered frequency range will be
f ∈ [0, 3][GHz]. Dielectrics are assumed isotropic, linear, and homogeneous and, if imperfect,
linear in ohmic sense, with constant specific electric conductivity σd � σc.

By neglecting the proximity effect with assumption d � 2a, edge effect and taking
σd � σc, the per-unit-length capacitance C′ and the per-unit-length dielectric conductance G′

of two-wire line in Figure 1(a) are calculated according to the following relations [1]:

C′ =
π · εd

ln(d/a)
, G′ =

σd

εd
· C′ = π · σd

ln(d/a)
, (d � 2a ∧ σd � σc). (2.1)

It has been proved [2, 3] that due to the influence of the skin-effect each conductor
of the two-wire line should be characterized by the frequency-dependent per-unit-length
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Figure 1: (a) Two-wire line, (b) coaxial line, and (c) twisted pair.
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Figure 2: The approximate, incremental, and lumped network model of the uniform transmission line.

resistance R′i(f) and the frequency-dependent per-unit-length inner inductance L′i(f)-for
f ∈ [0,∞)[Hz],

R′i
(
f
)
=

k

2π · a · σc
· Re

[
−bei(k · a) + j · ber(k · a)
ber′(k · a) + j · bei′(k · a)

]

=
k

2π · a · σc
· ber(k · a) · bei

′(k · a) − bei(k · a) · ber′(k · a)
[
ber′(k · a)]2 + [bei′(k · a)]2

,
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L′i
(
f
)
=

k

2π · a · σc ·ω · Im
[
−bei(k · a) + j · ber(k · a)
ber′(k · a) + j · bei′(k · a)

]

=
k

2π · a · σc ·ω ·
ber(k · a) · ber′(k · a) + bei(k · a) · bei′(k · a)

[
ber′(k · a)]2 + [bei′(k · a)]2

,

(2.2)

where: j =
√−1, ω = 2π · f , k = √ω · μc · σc , and “Bessel real” ber(k · a) and “Bessel

imaginary” bei(k ·a) are the Bessel-Kelvin functions with the first-order derivatives ber′(k ·a)
and bei′(k · a), respectively, at the point z = k · a, which can be approximated at high
frequencies (i.e., for k · a� 1) with [4],

ber(k · a) = G · cos
(
k · a√

2
− π

8

)
, bei(k · a) = G · sin

(
k · a√

2
− π

8

)
,

G =
1√

2π · k · a
· e(k·a)/

√
2,

ber′(k · a) = G · cos
(
k · a√

2
+
π

8

)
, bei′(k · a) = G · sin

(
k · a√

2
+
π

8

)
.

(2.3)

From (2.3) it should be firstly noticed that at high frequencies (i.e., for k · a � 1) it
holds

−bei(k · a) + j · ber(k · a)
ber′(k · a) + j · bei′(k · a) =

− sin
(
(k · a)/

√
2 − π/8

)
+ j · cos

(
(k · a)/

√
2 − π/8

)

cos
(
(k · a)/

√
2 + π/8

)
+ j · sin

(
(k · a)/

√
2 + π/8

)

= j · e
j·((k·a)/√2−π/8)

ej·((k·a)/
√
2+π/8)

= ej·(π/4),

(2.4)

and then from (2.2) it may be obtained consecutively for k · a� 1,

R′i
(
f
)
=

k

2π · √2 · a · σc

=
1

2π · a ·
√

π · f · μc

σc
,

L′i
(
f
)
=

k

2π · √2 ·ω · a · σc

=
1

4π · a ·
√

μc

π · f · σc
.

(2.5)

The overall per-unit-length resistance R′(f) and the inductance L′(f) of two-wire line
are

R′
(
f
)
= 2 · R′i

(
f
)∣∣
∀f , R′

(
f
)
=

1
π · a ·

√
π · f · μc

σc
=

Rs(f)
π · a

∣∣∣∣
k·a�1

, Rs

(
f
)
=

√
π · f · μc

σc
,

L′
(
f
)
= L′e + 2 · L′i(f)

∣∣
∀f , L′

(
f
)
=

μd

π
· ln
(
d

a

)
+

1
2π · a ·

√
μc

π · f · σc

∣∣∣∣∣
k·a�1

(d � 2a),

(2.6)
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where Rs(f) is the surface resistance of line conductors and L′e = (μd/π) · ln(d/a) is the
external per-unit-length inductance of two-wire line. Throught the paper it will be assumed
that μc ≈ μd ≈ μ0.

Since the following expansions hold for any frequency f ∈ [0,∞) [Hz] (i.e., for any
k · a) [4],

ber(k · a) =
∞∑

n=0
(−1)n · (k · a/2)

4n

(2n!)2
= 1 − (k · a)4

22 · 42 +
(k · a)8

22 · 42 · 62 · 82

− (k · a)12
22 · 42 · 62 · 82 · 102 · 122 ± . . . ,

bei(k · a) =
∞∑

n=1

(−1)n+1 · (k · a/2)
4n−2

[(2n − 1)!]2
=

(k · a)2
22

− (k · a)6
22 · 42 · 62

+
(k · a)10

22 · 42 · 62 · 82 · 102 ∓ . . . ,

ber′(k · a) = − (k · a)3
22 · 4 +

(k · a)7
22 · 42 · 62 · 8 −

(k · a)11
22 · 42 · 62 · 82 · 102 · 12

+
(k · a)15

22 · 42 · 62 · 82 · 102 · 122 · 142 · 16 ∓ . . . ,

bei′(k · a) = k · a
2
− (k · a)5
22 · 42 · 6 +

(k · a)9
22 · 42 · 62 · 82 · 10

− (k · a)13
22 · 42 · 62 · 82 · 102 · 122 · 14 ± . . . ,

(2.7)

then by using (2.2) and (2.7) when f → 0 [Hz], the following consequences are easily
obtained: R′i(f) → 1/(σc · π · a2), L′i(f) → μc/(8 · π), R′(f) → 2/(σc · π · a2), L′(f) →
(μd/π) · ln(d/a) + μc/(4 · π). Automatic, fast, and accurate numerical calculation of Bessel-
Kelvin functions (2.7) imposes a real need to distinguish between the following two cases of
approximation, depending on magnitude of z = k · a ∈ [0,∞) [5],

Case A (z = z(f) = a · k = a ·√2 · π · f · μc · σc ∈ [0, 8]).

ber(z) = 1 − 64 ·
(
z

8

)4

+ 113.77777774 ·
(
z

8

)8

− 32.36345652 ·
(
z

8

)12

+ 2.64191397 ·
(
z

8

)16

− 0.08349609 ·
(
z

8

)20

+ 0.00122552 ·
(
z

8

)24

− 0.00000901 ·
(
z

8

)28

+ ε1
(
|ε1| < 10−9

)
,

bei(z) = 16 ·
(
z

8

)2

− 113.77777774 ·
(
z

8

)6

+ 72.81777742 ·
(
z

8

)10

− 10.56765779 ·
(
z

8

)14

+ 0.52185615 ·
(
z

8

)18

− 0.01103667 ·
(
z

8

)22

+ 0.00011346 ·
(
z

8

)26

+ ε2
(
|ε2| < 6 · 10−9

)
,



6 Mathematical Problems in Engineering

ber′(z) = z ·
[

−4 ·
(
z

8

)2

+ 14.22222222 ·
(
z

8

)6

− 6.06814810 ·
(
z

8

)10

+ 0.66047849 ·
(
z

8

)14

−0.02609253 ·
(
z

8

)18

+ 0.00045957 ·
(
z

8

)22

− 0.00000394 ·
(
z

8

)26
]

+ ε3
(
|ε3| < 2.1 · 10−8

)
,

bei′(z) = z ·
[
1
2
− 10.66666666 ·

(
z

8

)4

+ 11.37777772 ·
(
z

8

)8

− 2.31167514 ·
(
z

8

)12

+0.14677204 ·
(
z

8

)16

− 0.00379386 ·
(
z

8

)20

+ 0.00004609 ·
(
z

8

)24
]

+ ε4
(
|ε4| < 7 · 10−8

)
.

(2.8)

Case B (z = z(f) = a · k = a ·√2 · π · f · μc · σc ∈ (8,∞)).
Define firstly the following set of auxiliary functions:

α(z) = − 0.3926991 · j + (0.0110486 − 0.0110485 · j) ·
(
8
z

)
− 0.0009765 · j ·

(
8
z

)2

+
(−0.0000906 − 0.0000901 · j) ·

(
8
z

)3

− 0.0000252 ·
(
8
z

)4

+
(−0.0000034 + 0.0000051 · j) ·

(
8
z

)5

+
(
0.0000006 + 0.0000019 · j) ·

(
8
z

)6

,

α(−z) = − 0.3926991 · j + (−0.0110486 + 0.0110485 · j) ·
(
8
z

)
− 0.0009765 · j ·

(
8
z

)2

+
(
0.0000906 + 0.0000901 · j) ·

(
8
z

)3

− 0.0000252 ·
(
8
z

)4

+
(
0.0000034 − 0.0000051 · j) ·

(
8
z

)5

+
(
0.0000006 + 0.0000019 · j) ·

(
8
z

)6

,

β(z) =
(
0.7071068 + 0.7071068 · j) + (−0.0625001 − 0.0000001 · j) ·

(
8
z

)

+
(−0.0013813 + 0.0013811 · j) ·

(
8
z

)2

+
(
0.0000005 + 0.0002452 · j) ·

(
8
z

)3

+
(
0.0000346 + 0.0000338 · j) ·

(
8
z

)4

+
(
0.0000017 − 0.0000024 · j) ·

(
8
z

)5

+
(
0.0000016 − 0.0000032 · j) ·

(
8
z

)6

,



Mathematical Problems in Engineering 7

β(−z) = (0.7071068 + 0.7071068 · j) + (0.0625001 + 0.0000001 · j) ·
(
8
z

)

+
(−0.0013813 + 0.0013811 · j) ·

(
8
z

)2

+
(−0.0000005 − 0.0002452 · j) ·

(
8
z

)3

+
(
0.0000346 + 0.0000338 · j) ·

(
8
z

)4

+
(−0.0000017 + 0.0000024 · j) ·

(
8
z

)5

+
(
0.0000016 − 0.0000032 · j) ·

(
8
z

)6

.

(2.9)

and, also, define another set of auxiliary functions:

f(z) =
√

π

2 · z · exp
[
−1 + j√

2
· z + α(−z)

]
, g(z) =

1√
2 · π · z

· exp
[
1 + j√

2
· z + α(z)

]
,

(2.10)

then, the values of Bessel-Kelvin functions can be efficiently calculated [5] by using the
relations:

ber(z) = Re
[
j

π
· f(z) + g(z)

]
, bei(z) = Im

[
j

π
· f(z) + g(z)

]
,

ber′(z)=Re
[
− j

π
· f(z) · β(−z) + g(z) · β(z)

]
, bei′(z)= Im

[
− j

π
· f(z) · β(−z) + g(z) · β(z)

]
.

(2.11)

For the coaxial line with length � (Figure 1(b)), the per-unit-length capacitance C′ and
the per-unit-length conductance G′ of dielectric are calculated according to the following
relations [1]:

C′ =
2π · εd
ln(b/a)

, G′ =
σd

εd
· C′ = 2π · σd

ln(b/a)
, (σd � σc). (2.12)

It has been shown [1–3] that at high frequencies the coaxial line is characterized by the
per-unit-length resistance R′(f) and the per-unit-length inductance L′(f) given with,

R′
(
f
)
=

Rs

(
f
)

2π
·
(
1
a
+
1
b

)
=

1
2π
·
√

π · f · μc

σc
·
(
1
a
+
1
b

)
,

L′ ≈ L′e =
μd

2π
· ln
(
b

a

)
,
(
μc ≈ μd ≈ μ0

)
.

(2.13)

The twisted-pair (Figure 1(c)) has characteristics similar to those of the two-wire line,
except for the smaller inductivity and the smaller modulus Z0 of its characteristic impedance
Z0 [3, 6].

To resume our investigation, consider two-wire line with copper conductors and
polyethylene dielectric, where a = 0.1 [mm] and d = 4 [mm] (Figure 1(a)). Let the operating
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frequency range of this line be f ∈ [0, 3] [GHz]. The specific electric conductivity of copper
is σc ≈ 5.81 · 107 [S/m] and magnetic permeability is μc ≈ μ0. At the temperature T = 298
[K] the relative permittivity of polyethylene is εr ≈ 2.26 (for frequencies up to 25 [GHz]) and
its specific electric conductivity is σd ≈ 10−15 [S/m]. From (2.1) it is calculated C′ = 17.04
[pF/m] and G′ = 0.85 [fS/m]. At frequency f = 0 [Hz] the per-unit-length resistance of
this line is R′(0) = 2/(σc · π · a2) = 1.0957 [Ω/m] and its per-unit-length inductance is
L′(0) = (μd/π) ·ln(d/a)+μc/(4 ·π) ≈ 1.575 [μH/m]. At frequency f = 1 [GHz] it is calculated
from (2.2) and (2.9)–(2.11): R′(f) = 26.514 [Ω/m] � R′(0) and L′(f) ≈ 1.479 [μH/m], and
for the current wavelength it is obtained λ ≈ c0/[f · (εr)1/2] ≈ 20 [cm]. In Figures 3, 4, 5,
and 6 the variations of R′(f), L′(f), dR′(f)/df , and dL′(f)/df are depicted, respectively,
in the frequency range f ∈ [0, 10] [MHz], whereas the variations of these quantities in the
frequency range f ∈ [0.01, 3] [GHz] are depicted in Figures 7, 8, 9, and 10, respectively. Let
the frequency spectrum of the signal being transmitted is [f0−B/2, f0+B/2] (f0 is the central
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frequency of the signal spectrum and B the signal bandwith). If the integral of function in
Figure 5 taken between f0 −B/2 and f0 +B/2 is less than 0.01, then we see from Figure 3 that
it may be taken R′(f) ≈ R′(f0), for f ∈ [f0 − B/2, f0 + B/2]. And by using Figure 5 we obtain
in the most conservative approach that B ≤ 37 [kHz]. Similarly, if the integral of function in
Figure 9 taken between f0 − B/2 and f0 + B/2 is less than 0.1, then we see from Figure 5 that
it, also, holds R′(f) ≈ R′(f0), for f ∈ [f0 − B/2, f0 + B/2]. And by using Figure 9 we obtain in
the most conservative approach that B ≤ 770 [kHz].

For a lossless transmission line (⇔ R′ = 0 [Ω/m] and G′ = 0 [S/m]) with linear
and homogeneous dielectric the phase-velocity c of electromagnetic perturbation (i.e., the
propagation speed of current wave in the line) and characteristic impedance Z0 are given by
the following relations [1–3]:

c =
1√

L′ · C′
=

1√
εd · μd

=
c0√
εr · μr

, c0 =
1√

ε0 · μ0
≈ 3 · 108

[
m
s

]
,

Z0 =

√
L′

C′
=

1
c · C′ =

√
μr

εr
· 1
π
·
√

μ0

ε0
· ln
(
d

a

)
≈ 120 ·

√
μr

εr
· ln
(
d

a

)
[Ω],

(2.14)
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where εr = εd/ε0 is relative permittivity and μr = μd/μ0 relative permeability of dielectric
(ε0 ≈ 10−9/36π [F/m] is permittivity and μ0 = 4π ·10−7 [H/m] permeability of vacuum). The
characteristic impedance of a lossy transmission line is generally defined as Z0(j · 2π · f) =
[(R′+j ·2π ·f ·L′)/(G′+j ·2π ·f ·C′)]1/2. In the case considered, on Figures 11 and 12 the variations
of Z0(f) = |Z0(j · 2π · f)| and ζ(f) = Arg[Z0(j · 2π · f)] in the frequency range f ∈ [0.01, 3]
[GHz] are respectively depicted. In older telephony applications at lower frequencies,Z0 was
typically 600 [Ω] for air two-wire lines. For symmetric antenna feeding at frequencies up to
500 [MHz], sometimes the two-wire lines with standard characteristic impedances Z0 = 240
or 300 [Ω] are used. At shorter distances in telephony and local computer networks, nowdays
are used the twisted-pairs (two-wire lines with reduced inductance) with standard Z0 = 100
[Ω] and the propagation speed approximately c0/2. For the coaxial lines the standardZ0 is 50
or 75 [Ω] and their propagation speed is approximately 2c0/3. For the printed transmission
lines, Z0 is in the range 100÷ 150 [Ω], and their propagation speed is approximately c0/2 [6].
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Figure 10: dL′(f)/df for line with a = 0.1 [mm] and d = 4 [mm].

For two-wire line being considered, in Figures 13, 14, 15, and 16 variations of several
functions in the frequency range f ∈ [0, 3] [GHz] are depicted, which will be used in later
consideration,

φ1
(
f
)
=

2 · π · f · L′(f)

R′
(
f
) , φ2

(
f
)
=

2 · π · f · C′
G′

, φ3
(
f
)
=

1

2 · π · f ·
√
L′
(
f
) · C′

,

φ4
(
f
)
=

C′ · R′(f)

G′ · L′(f) , φ5
(
f
)
=

2 · π · f
R′
(
f
)
/L′
(
f
)
+G′/C′

=
φ1
(
f
)

1 + 1/φ4
(
f
) .

(2.15)

From the numerical data associated with the monotonic functions in Figures 13, 14,
and 16 it is obtained φ1(110.9KHz) ≈ 1, φ1(1289.9KHz) ≈ 10, φ1(10MHz) ≈ 32.653 � 1,
φ2(110.9KHz) ≈ 13.943 · 109 and φ4(0) ≈ 1.391 · 1010. Herefrom and from (2.15) it follows
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Figure 12: ζ(f) and dζ(f)/df for the considered two-wire line.

φ1(f) ≈ φ5(f). Since in this case the Heaviside’s condition [7] [⇔ φ4(f) = 1] is not satisfied,
distortionless transmission is not possible. Another two functions, Λ(f) = |Γ(j · 2π · f)| and
ϑ(f) = Arg[Γ(j ·2π ·f)] [“Γ” are the propagation function, see (A.10) in Appendix], also, play
important role in analysis and they are depicted in Figures 17 and 18, respectively, in range
f ∈ [0.01, 3] [GHz]. From data associated with these functions it is obtained: Λ(10MHz) ≈
0.319, Λ (3GHz) ≈ 94.598, ϑ (10MHz) ≈ 89.123 [deg] and ϑ (3GHz) ≈ 89.953 [deg].

Since Γ(j · 2π · f) =
√
[R′(f) + j · 2π · f · L′(f)] · (G′ + j · 2π · f · C′) = Λ(f) · exp[j ·

ϑ(f)] and since in the range f ∈ [0.01, 3] [GHz] it holds: φ1(f) ≈ φ5(f) � 1, φ2(f) � 1,
Λ(f) ∈ [0.319, 94.598] and ϑ(f) ∈ [89.123, 89.953] [deg], then: Λ(f) ≈ 2π · f · [L′(f) · C′]1/2 =
1/φ3(f), ϑ(f) = π/2 − χ(f) [0 < χ(f) < π/200] and Γ(j · 2π · f) = Λ(f) · exp(j · π/2) ·
exp[−j ·χ(f)] = j ·Λ(f) · {cos[χ(f)]− j · sin[χ(f)]} = {sin[χ(f)] + j · cos[χ(f)]}/φ3(f), where
the deviation angle χ(f) = π/2 − ϑ(f) can be approximated (The percentage error of this
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approximation is positive and <0.032% in the entire frequency range f ∈ [0.01, 3] [GHz].)
with,

χ
(
f
)
=

π

2
− ϑ(f) = π

2
− 1
2
· a tan

(

2π · f · L′
(
f
)
/R′

(
f
)
+ C′/G′

1 − 4 · π2 · f2
((
L′
(
f
) · C′)/(R′(f) ·G′))

)

≈ 1
2
· a tan

(
R′
(
f
)
/L′
(
f
)
+G′/C′

2π · f

)

≈ R′
(
f
)
/L′
(
f
)
+G′/C′

4π · f .

(2.16)

For the transmission line with length � let us define the functions: ε(ω) = χ(ω/2π) =
π/2 − ϑ(ω/2π) and θ(j · ω) = Γ(j · ω) · (� − x) = A(ω, x) · exp[j · ϑ(ω/2π)] = A(ω, x) ·
{sin[ε(ω)] + j · cos[ε(ω)]}{x ∈ [0, �]}, where A(ω, x) = |Γ(j ·ω)| · (� − x) = Λ(ω/2π) · (� − x).
For this line, in frequency range f ∈ [0.01, 3] [GHz]we haveA(ω, x) ≈ ω · [L′(ω/2π) ·C′]1/2 ·
(� − x) = (� − x)/φ3(ω/2π) and 0 < ε(ω) < π/200—whereby θ(j · ω) becomes almost pure
imaginary number. We could have obtained this result in a different way. To se that, let us
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Figure 16: A dimensionless parameter φ4(f) of two-wire line.

write Γ(j · 2π · f) = √[R′(f) + j · 2π · f · L′(f)] · (G′ + j · 2π · f · C′) = a(f) + j · b(f), where it
holds,

a
(
f
)
=

√√√√
√1
2
· L′(f)· C′

⎧
⎨

⎩

√√√
√
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)2
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(
f
)2

]

·
[(
(
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′2

C′2

)]

+
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(
f
)

L′
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f
) · G

′
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− (2π · f)2

⎫
⎬

⎭

attenuation “constant′′,

b
(
f
)
=

√√√√
√1
2
· L′(f)· C′

⎧
⎨

⎩

√√√
√
[
(
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·
[(
(
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(
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L′
(
f
) · G

′
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(
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phase “constant′′.
(2.17)
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The previous two functions are depicted in Figures 19 and 20 in the frequency range f ∈ [0, 3]
[GHz].

From relations (2.17)we obtain the approximations aa(f) and ab(f) of a(f) and b(f),
respectively, in the frequency range f ∈ [0.01, 3] [GHz], since there it holds φ1(f) � 1 and
φ2(f)� 1,

aa
(
f
) ≈ 1

2

⎡

⎣R′
(
f
) ·
√

C′

L′
(
f
) +G′ ·

√
L′
(
f
)

C′

⎤

⎦,

ab
(
f
) ≈

√
L′
(
f
) · C′(f)

{

2π · f +
1

16π · f ·
[
R′(f)
L′(f)

− G′

C′

]2}

,
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and, also,we have, Z0
(
j · 2π · f) =

√
R′
(
f
)
+ j · 2π · f · L′(f)

G′ + j · 2π · f · C′

≈
√

L′
(
f
)

C′
·
{

1 − j · 1
4π · f

[
R′
(
f
)

L′
(
f
) − G′

C′

]}

.

(2.18)

The functions aa(f) and ab(f) are depicted in Figures 21 and 22, respectively, in the
frequency range f ∈ [0.01, 3] [GHz], where we have as previously that it holds Γ(j · ω) ≈
aa(ω/2π) + j · ab(ω/2π) ≈ {sin[ε(ω)] + j · cos[ε(ω)]}/φ3(ω/2π), as it has been expected.

Wewill now emphasize the importance of function θ = θ(s, x) = Γ(s)·(�−x){x ∈ [0, �]}
in the following.

(a) Constituting of functions sinh(θ)/θ and tanh(θ/2)/(θ/2) that play fundamental
role in producing uniform three-terminal networks nominally equivalent to short-line segments
[7] and in realization of these networks in the specified frequency range (f0 − B/2, f0 +
B/2) by approximately equivalent three-terminal lumped RLC networks. The purpose of
this approach is to involve the application of PSPICE, so as to facilitate the steady-state
analysis of transmission lines with arbitrary terminations and band-limited signals, instead of
solving the pair of so-called telegraph equations, hyperbolic, linear, partial diffrential equations
obtained from relations (A.4) in the Appendix,

∂2u(t, x)
∂x2

= L′ · C′ · ∂
2u(t, x)
∂t2

+
(
L′ ·G′ + C′ · R′) · ∂u(t, x)

∂t
+ R′ ·G′ · u(t, x),

∂2i(t, x)
∂x2

= L′ · C′ · ∂
2i(t, x)
∂t2

+
(
L′ ·G′ + C′ · R′) · ∂i(t, x)

∂t
+ R′ ·G′ · i(t, x).

(2.19)

To alternatively determine the voltage and current variations in time at any place on the
finite length line, we may firstly perform the Fourier analysis of excitation signal and retain
a reasonable number of its spectral components, then determine their transfer one at a time
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to the specified place on the transmission line by using (A.17) from the Appendix and finally
synthesize the overall response by superposition of the obtained single-frequency responses.

(b) Calculation of M(s, x), N(s, x), U(s, x), and I(s, x) from (A.17) and Z(s, x) from
(A.18), in general, and for the finite length open-circuited line [ZL(s) → ∞], in particular, by
using expansions:

M(s, x) =
U(s, x)
U(s, 0)

=

∏∞
n=1

{
1 + [(2Γ · (� − x))/((2n − 1) · π)]2

}

∏∞
n=1

{
1 + [(2Γ · �)/((2n − 1) · π)]2

} ,

N(s, x) =
I(s, x)
I(s, 0)

=
� − x
�
·
∏∞

n=1

{
1 + [(Γ · (� − x))/(n · π)]2

}

∏∞
n=1

[
1 + ((Γ · �)/(n · π))2

] ,

Z(s, x) =
U(s, x)
I(s, x)

=

∏∞
n=1

{
1 + [(2Γ · (� − x))/((2n − 1) · π)]2

}

Γ · (� − x) ·∏∞
n=1

{
1 + [(Γ · (� − x))/(n · π)]2

} · Z0 [ZL(s) −→ ∞],

(2.20)

thus placing into evidence the pole-zero location ofM(s, x),N(s, x), and Z(s, x).
The relations (2.20) are produced by using Weierstass’s factor expansions [8] of

transcendental functions appearing in (A.17) and (A.18) into infinite product forms,

sinh(θ)
θ

=
∞∏

n=1

(

1 +
θ2

n2 · π2

)

, cosh(θ) =
∞∏

n=1

[

1 +
4 · θ2

(2n − 1)2 · π2

]

. (2.21)

For the open-circuited two-wire line with length � = 0.1 [m] in Figures 23 ÷ 26
are depicted for x ∈ [0, 0.1] [m] and f ∈ [0, 3] [GHz] the variations of |M(j · 2π · f, x)|,
Arg[M(j · 2π · f, x)] [deg], |N(j · 2π · f, x)| and Arg[N(j · 2π · f, x)] [deg], respectively,
on the grid(x) × grid(f ) = 50 × 60. In Figures 23 and 25 we observe the presence of voltage
and current resonances at different places on the line, as is it might be expected from (2.20),
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Figure 21: Approximation of the attenuation “constant”.

at six discrete frequencies altogether, in the two disjoint sets. Also, we may notice in Figures
24 and 26 that variations of Argfunctions are very complex with abrupt transitions. For the
line terminated in ZL(s) the diagrams analogous to those in Figures 23 ÷ 26 could also be
drawn easily, provided that the impedance Z0(s) is taken into account [see relation (A.17)].

When the line is sufficiently short, some approximations can be made leading to
satisfactory results without need to cope with the cumulative products (2.21). To see that,
suppose that line length is � ≤ �0 < π/{2 · |[Γ(j · 2π · f)|max} ≈ 16.6 [mm] {⇔ |θ|max < π/2}
and assume, say, �0 = 16 [mm]. Recall that = θ(j ·ω, x) = Γ(j ·ω) · (� −x) = |θ(j ·ω, x)| · exp{j ·
arg[Γ(j ·ω)]}{x ∈ [0, �]}, then take (2.21) and write

sinh(θ)
θ

=
∞∏

n=1

(

1 +
θ2

n2 · π2
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[ ∞∑
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(2.22)
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Figure 23: The magnitude of the voltage transmittance for two-wire line (� = 0.1 [m]) in frequency range
f ∈ [0, 3] [GHz].

The following finite sums of infinite series [9] have been exploited in (2.22),

A2p =
∞∑

n=1

1
n2p

(
p = 1, 5

)
, A2 =

π2

6
, A4 =

π4

90
, A6 =

π6

945
, A8 =

π8

9450
,

A10 =
5 · 28 · π10

33 · 10! ,
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Figure 25: The magnitude of the current transmittance for two-wire line (� = 0.1 [m]) in frequency range
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(2.23)

The infinite complex series (2.22) in almost pure imaginary θ are convergent for � ≤
�0, x ∈ [0, �] and f ∈ [0, 3] [GHz]. If � is sufficiently less than �0 and x ∈ [0, �], then by
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Figure 26: The argument of the current transmittance for two-wire line (� = 0.1 [m]) in frequency range
f ∈ [0, 3] [GHz].

retaining only the first five θ terms in (2.22) the following small-error approximations are
produced

sinh(θ) ≈ sinhA(θ) = θ · exp
(

θ2

6
− θ4

180
+

θ6

2835
− θ8

37800
+

θ10

467775

)

,

cosh(θ) ≈ coshA(θ) = exp

(
θ2

2
− θ4

12
+
θ6

45
− 17 · θ8

2520
+
31 · θ10

14175

)

.

(2.24)

For the open-circuited two-wire line with � = 0.01 [m], in Figures 27, 28, 29, and 30
they are depicted on grid(x) × grid(f ) = 40 × 60 in the range f ∈ [0, 3] [GHz] and range
x ∈ [0, 0.01] [m], respectively:

(i) the voltage-transmittance magnitude approximation percentage error:

ER1(f, x) = {|[coshAθ(j · 2π · f, x)/coshA(j · 2π · f, 0)]/[cosh θ(j · 2π · f, x)/ cosh(j ·
2π · f, 0)]| − 1} · 100;

(ii) the voltage-transmittance phase approximation absolute error:

ER2(f, x) = arg[coshAθ(j · 2π · f, x) · cosh(j · 2π · f, 0)/coshA(j · 2π · f, 0) · cosh θ(j ·
2π · f, x)];

(iii) the current-transmittance magnitude approximation percentage error:

ER3(f, x) = {|[sinhAθ(j · 2π · f, x)/sinhA(j · 2π · f, 0)]/[sinh θ(j · 2π · f, x)/ sinh(j ·
2π · f, 0)]| − 1} · 100;

(iv) the current-transmittance phase approximation absolute error:

ER4(f, x) = arg[sinhAθ(j · 2π · f, x) · sinh(j · 2π · f, 0)/sinhA(j · 2π · f, 0) · sinh θ(j ·
2π · f, x)].
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Figure 27: Voltage-transmittance magnitude approximation percentage error ER1(f, x).

It can be observed in Figures 27 ÷ 30 that in the given range of f and x, the errors ER1

and ER3 are negative (|ER1| < 0.06% and |ER3| < 10−5%), whereas the errors ER2 and ER4 are
positive (ER2 < 3.36 · 10−4 [deg] and ER4 < 5.75 · 10−8 [deg]). The upper limit of |ER3| is lower
than of |ER1| and the upper limit of ER4 is lower than of ER2.

If |θ| is sufficiently small (|θ| � 1), from (2.24) further approximations are obtained:

(i)

sinh(θ) ≈ sinhA(θ)

= θ · exp
(

θ2

6
− θ4

180
+

θ6

2835
− θ8

37800
+

θ10

467775

)

≈ θ ·
(

1 +
θ2

6
− θ4

180
+

θ6

2835
− θ8

37800
+

θ10

467775

)

= θ +
θ3

6
− θ5

180
+

θ7

2835
− θ9

37800
+

θ11

467775

≈ θ +
θ3

6
,

(2.25)

which partly resembles to Maclaurin’s expansion of sinh(θ), that is, sinh(θ) = θ +
θ3/3! + θ5/5! + . . .,

(ii)

cosh(θ) ≈ coshA(θ) = exp

(
θ2

2
− θ4

12
+
θ6

45
− 17 · θ8

2520
+
31 · θ10

14175

)

≈ 1 +
θ2

2
− θ4

12
+
θ6

45
− 17 · θ8

2520
+
31 · θ10

14175
≈ 1 +

θ2

2
,

(2.26)
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Figure 28: Voltage-transmittance phase approximation absolute error ER2(f, x).
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Figure 29: Current-transmittance magnitude approximation percentage error ER3(f, x).

which, partly resembles to Maclaurin’s expansion of cosh(θ), that is, cosh(θ) = 1 +
θ2/2! + θ4/4! + . . ..

(iii) combining (i) and (ii) it follows that

tanh
(
θ

2

)
≈ tanhA

(
θ

2

)
=

θ · (θ2 + 24
)

6 · (θ2 + 8)
. (2.27)

The functions sinh(θ)/θ and tanh(θ/2)/(θ/2) play fundamental role in effort to
transform short transmission line segments into equivalent lumped three-terminal RLC
networks [7]. The same role is played their respective approximating functions sinhA(θ)/θ
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Figure 30: Current-transmittance phase approximation absolute error ER4(f, x).
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Figure 31: Magnitude approximation absolute error ER5(f, x).

and tanhA(θ/2)/(θ/2), obtained when |θ| � 1. For two-wire line with length � = 1 [mm],
in Figures 31, 32, 33, and 34, the magnitude approximation absolute error ER5(f, x) =
|(θ + θ3/6)| − | sinh(θ)| and three percentage magnitude approximation errors: ER6(f, x) =
{|{θ · (θ2 + 24)/[6 · (θ2 + 8)]}/ tanh(θ/2)| − 1} · 100, ER7(f, x) = [|θ/ sinh(θ)| − 1] · 100 and
ER8(f, x) = {|(θ/2)/ tanh(θ/2)| − 1} · 100, are depicted on grid(x) × grid(f ) = 40 × 60 in
the frequency range f ∈ [0, 3] [GHz] and range of x ∈ [0, 1] [mm]. Obviously, all these
errors can be kept arbitrarily small in magnitude in the entire frequency range f ∈ [0, 3]
[GHz] if sufficiently small step of uniform line segmentation is applied. The key action
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in achieving the previous goals is providing the maximum of �0 to be much less than
1/|Γ(j · 2π · fmax)(⇔ |θmax| � 1). For example, from the numerical data associated with
Figure 17, it can be calculated that �0 should be at most 1 [cm] on the upper limit of VHF
and at most 1 [mm] on the upper limit of UHF band. Therein it has been tacitly assumed that
transmission line is uniformly partitioned in segments of length �0, which is at least ten times
less than 1/|Γ(j · 2π · fmax)|.

The equations (A.15) and (A.16) offer an opportunity to view on a transmission
line segment with length �0 as on a linear two-port network (Figure 35(a)) with boundary
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Figure 35: (a) Linear network model of a short transmission line segment and (b) its linear network
structure.

conditions U(s, 0) and I(s, 0) at the input and U(s, �0) and I(s, �0) at the output. The chain-
matrix F of this network reads

[
U(s, 0)
I(s, 0)

]
= F ·

[
U(s, �0)
I(s, �0)

]
, F =

⎡

⎣
cosh(Γ · �0) Z0 · sinh(Γ · �0)
sinh(Γ · �0)

Z0
cosh(Γ · �0)

⎤

⎦. (2.28)

DenoteZ(s) = (R′+L′ ·s)·�0, Y (s) = (G′+C′ ·s)·�0 and θ(s, 0) = Γ(s)·�0. In study of short
transmission lines it is found convenient to replace them, either with nominally equivalent T
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networks (Figure 35(b)) or with nominally equivalent Π networks (Figure 35(c)) [7], whose
immitances are given as follows

Z′ = Z ·
{
tanh[θ(s, 0)/2]

θ(s, 0)/2

}
, Y ′ = Y ·

{
sinh[θ(s, 0)]

θ(s, 0)

}
,

Z′′ = Z ·
{
sinh[θ(s, 0)]

θ(s, 0)

}
, Y ′′ = Y ·

{
tanh[θ(s, 0)/2]

θ(s, 0)/2

}
.

(2.29)

The aforementioned criterion for selection of �0 relies on attempt to find convenient θ(s, 0) =
Γ(s) · �0 that provides physical realizability of immitances Z′, Y ′, Z′′, and Y ′′ by lumped,
transformerless RLC networks. The necessary and sufficient condition for existence and
realizability of these immitances is that they must be rational, positive real functions in
complex frequency s [10]. Observe that the immitances Z(s) and Y (s) are realizable by
trivial two-element-kind RLC networks. Nevertheless, we will show now that, in general,
the imitances Z′, Y ′, Z′′, and Y ′′ are not realizable by lumped RLC networks, except in the
limiting case when �0 is as small, so that the complex approximations hold: sinh(θ)/θ ≈ 1
and tanh(θ/2)/(θ/2) ≈ 1 (observe that if θ → 0, then Z′ and Z′′ → Z and Y ′ and Y ′′ → Y ).
To see that, recall that for Γ(j ·ω) =

√
(R′ + j ·ω · L′) · (G′ + j ·ω · C′) = |Γ(j ·ω)|·exp{j ·arg[Γ(j ·

ω)]}(ω = 2π · f), in frequency range f ∈ [0.01, 3] [GHz] it holds

(a) ω ·L′/R′ ∧ω/(R′/L′ +G′/C′) ∈ [32.652, 609.312] � 1, ω ·C′/G′ ∈ [1.257 · 1012, 3.771 ·
1014]� 1,

(b) |Γ(j ·ω)| ≈ ω · (L′ · C′)1/2 ∈ [0.319, 94.598], arg[Γ(j ·ω)] ∈ [89.122, 89.952] [deg],

(c) arg[Γ(j ·ω)] = π/2 − ε(ω), where,

ε(ω) =
π

2
− arg[Γ(j ·ω)] = π

2
− 1
2
· a tan

(
(ω · L′)/R′ + (ω · C′)/G′
1 − (L′ · C′)/(R′ ·G′) ·ω2

)

≈ 1
2
· a tan

(
R′/L′ +G′/C′

ω

)
≈ R′/L′ +G′/C′

2 ·ω .

(2.30)

(d) Γ(j · ω) = |Γ(j · ω)| · {sin[ε(ω)] + j · cos[ε(ω)]}, ε(ω) ∈ (0, π/200) and θ(j · ω, x) =
Γ(j ·ω) · (�0 − x) = |θ(j ·ω, x)| · {sin[ε(ω)] + j · cos[ε(ω)]}. Observe that θ(j ·ω, x) is
produced as almost pure imaginary number.

(e) Since x ∈ [0, �0] and |θ(j ·ω, x)| ≈ ω ·(L′ · C′)1/2 ·(�0−x) = A(ω, x), then by selecting
�0 sufficiently small, A(ω, x) can always be produced arbitrarily small.

Bearing in mind the properties (a) ÷ (e), we obtain for sinh[θ(j · ω, x)]/θ(j · ω, x) the
following:

sinh{A(ω, x) · sin[ε(ω)]} · cos{A(ω, x) · cos[ε(ω)]}
A(ω, x) · {sin[ε(ω)] + j · cos[ε(ω)]

}

+
j · cosh{A(ω, x) · sin[ε(ω)]} · sin{A(ω, x) · cos[ε(ω)]}

A(ω, x) · {sin[ε(ω)] + j · cos[ε(ω)]
} ,

(2.31)
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that can be rewritten as sinh[θ(j ·ω, x)]/θ(j ·ω, x) = R(ω, x)+ j ·Q(ω, x). R(ω, x) andQ(ω, x)
are even and odd functions in ω, respectively, which are represented with the following
expanded forms:

R(ω, x) = sin2[ε(ω)] ·
( ∞∑

k=0

A2k(ω, x) · sin2k[ε(ω)]
(2k + 1)!

)

·
( ∞∑

m=0
(−1)mA2m(ω, x) · cos2m[ε(ω)]

(2m)!

)

+ cos2[ε(ω)]·
(∞∑

n=0

A2n(ω, x) · sin2n[ε(ω)]
(2n)!

)

·
⎛

⎝
∞∑

p=0
(−1)p A

2p(ω, x) · cos2p[ε(ω)]
(
2p + 1

)
!

⎞

⎠,

Q(ω, x) = sin[ε(ω)] · cos[ε(ω)]

·
{( ∞∑

k=0

A2k(ω, x) · sin2k[ε(ω)]
(2k)!

)

·
( ∞∑

m=0
(−1)mA2m(ω, x) · cos2m[ε(ω)]

(2m + 1)!

)

−
( ∞∑

n=0

A2n(ω, x) · sin2n[ε(ω)]
(2n + 1)!

)

·
⎛

⎝
∞∑

p=0
(−1)p A

2p(ω, x) · cos2p[ε(ω)]
(
2p
)
!

⎞

⎠

⎫
⎬

⎭
.

(2.32)

We must always bear in mind that ε(ω) is small [(c) and (2.30)] and that A(ω, x) = ω ·
(L′ · C′)1/2 · (�0 − x) can be made arbitrarily small by selecting �0 such that A(ω, �)|max =
[2π · f · (L′ · C′)1/2]|max · �0 � 1 or equivalently �0 � 1/|Γ(j · 2π · fmax)|. Then, retaining only
the first two terms in each of the convergent infinite sums in (2.32), the approximations of
R(ω, x) andQ(ω, x) are obtained which hold for all x ∈ [0, �0] and for all ω corresponding to
f from the specified frequency range:

R(ω, x) ≈ 1 − A2(ω, x)
6

· cos[2 · ε(ω)] − A4(ω, x)
48

· sin2[2 · ε(ω)] ≈ 1 − ω2 · L′ · C′ · (�0 − x)2
6

,

Q(ω, x) ≈ A2(ω, x)
6

· sin[2 · ε(ω)] ≈ ω2 · L′ · C′ · (�0 − x)2
6

· sin[2 · ε(ω)]

≈ ω2 · L′ · C′ · (�0 − x)2
3

· ε(ω) =
ω

6
· L′ · C′ · (�0 − x)2 ·

(
R′

L′
+
G′

C′

)

=
ω

6
· (�0 − x)2 ·

(
R′ · C′ +G′ · L′)� 1.

(2.33)

For x = 0, from (2.31) and (2.33) it finally follows:

sinh
[
θ
(
j ·ω, 0

)]

θ
(
j ·ω, 0

) = R(ω, 0) + j ·Q(ω, 0) ≈ 1 + j · ω
6
· (R′ · C′ +G′ · L′) · �20 −

ω2 · L′ · C′ · �20
6

,

(2.34)

sinh
[
θ
(
j ·ω, 0

)]

θ
(
j ·ω, 0

)
j·ω→ s(−ω2→ s2)−−−−−−−−−−−−−−→

By analytic continuation

sinh[θ(s, 0)]
θ(s, 0)

≈ 1+
s

6
· (R′ · C′ +G′ · L′) · �20+

s2 · L′ · C′ · �20
6

.

(2.35)
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Now, by using (2.29) and (2.35) we may generate the immitances Y’ and Z” (Figures
35(b) and 35(c)),

Y ′(s) = Y (s) · sinh[θ(s, 0)]
θ(s, 0)

=
(
G′ + C′ · s) · �0 ·

[

1 +
s

6
· (R′ · C′ +G′ · L′) · �20 +

s2 · L′ · C′ · �20
6

]

,

(2.36)

Z′′(s) = Z(s) · sinh[θ(s, 0)]
θ(s, 0)

=
(
R′ + L′ · s) · �0 ·

[

1 +
s

6
· (R′ · C′ +G′ · L′) · �20 +

s2 · L′ · C′ · �20
6

]

,

(2.37)

which are not realizable by lumped RLC networks, since they are not the positive real functions
in complex frequency s [10], except when �0 → 0. Putting it in other words we may say that
if in the whole operating frequency range practically hold the three conditions: ω ·L′/R′ � 1,
ω · C′/G′ � 1, and �0 · ω ·

√
L′ · C′ � 1, the immitances Y ′(s) and Z′′(s) (Figures 35(b) and

35(c)) are produced in the following simple form and are realizable by two-element-kind RLC
networks [see (2.36) and (2.37)]:

Y ′(s) =
(
G′ + C′ · s) · �0, Z′′(s) =

(
R′ + L′ · s) · �0. (2.38)

Relations (2.38) may be considered as a consequence of approximation sinh[θ(s, 0)] ≈
[θ(s, 0)] applied to (2.36) and (2.37) when θ(s, 0) → 0. Similarly, under the conditions:
ω · L′/R′ � 1, ω · C′/G′ � 1 and �0 · ω ·

√
L′ · C′ � 1, the complex approximation

tanh[θ(s, 0)/2] ≈ [θ(s, 0)/2] applied to (2.29) when θ(s, 0) → 0 gives the other two
immitances from (2.29), which are necessary to accomplish forming of linear networks in
Figures 35(b) and 35(c), which are nominally equivalent to the network in Figure 35(a).

Z′(s) =
(
R′ + L′ · s) · �0, Y ′′(s) =

(
G′ + C′ · s) · �0. (2.39)

3. Approximation of Two-Wire Line by Uniform RLCG Ladder and
the Simulation Results

Let us consider a short two-wire line with length � = 30 [mm] (or a longone partitioned
in sections of length �). Assume that the bandwith of the signal being transmitted is B <
770 [kHz] and that its central frequency is f0 = 1 [GHz]. Then, make the graph of function
l(f) = φ3(f) = 1/2π · f · [L′(f) · C′)1/2] ≈ 1/|Γ(j · 2π · f)| (Figure 36) and from its associated
numerical data find that l(109) ≈ 31.7 [mm]. Let the maximum length �0 of line segments be
selected to satisfy the condition �0 ≤ l(109)/10 ≈ 3.17 [mm]. Finally, assume �0 = 3 [mm] and
calculate the number of cellsN = �/�0 = 10 in uniform RLCG ladder purporting to represent
the transmission line with length � in frequency range f ∈ [f0 − B/2, f0 + B/2].

Assume δx = �0 and calculate the parameters of uniform lumped RLCG network
representing the line segments of length �0 (see Figure 2). If the overall short-line parameters
are R = R′ · �-resistance, L = L′ · �-inductance, C = C′ · �-capacitance, and G = GΓ(j·2π ·f) · �-
conductance, then the lumped RLCG network parameters: R′ ·δx/2 = R/20, L′ ·δx/2 = L/20,
C′ · δx = C/10, and G′ · δx = G/10, calculated at frequency f0 = 1 [GHz] according to
(2.1), (2.2), ((2.8)–(2.11)), are given in Table 1. The RLCG network representing the short
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Table 1: Two-wire copper-polyethylene transmission line (central frequency f0 = 1 [GHz]).

Electrical parameters of RLCG ladder sections R/20 [mΩ] L/20 [nH] C/10 [fF] G/10 [aS]

39.772 2.219 51.123 2.554

0.26
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0.2

0.17

0.14

0.11

0.078

0.047

0.016
0.5 1 1.5 2

×109
0

Frequency (Hz)

l
(m

)

Figure 36: The function l(f) = φ3(f) of the considered two-wire line (determination of �0).

line with length � is depicted in Figure 37, whereon the conductance elements G/10 (present
in Figure 2) are omitted only for the simplicity of drawing but are included in the PSPICE
simulation network. Also, observe that at frequency f0 = 1 [GHz] the quantity 2π · f0 ·C′/G′
takes on extremely high value. Let ui be the voltage of the pointNi (i = 1, 41), with respect to
the common node 0 (Figure 37).

Now we will present the results obtained by PSPICE simulation of the open-circuited
network in Figure 37 and compare them to the results obtained by exact analysis of
considered open-circuited line. The amplitude of excitation voltage e in simulation was 1 [V],
its frequency was f0 = 1 [GHz] and the initial phase 0 [deg]. The steady-state, odd numbered
point voltages, and their phase angles obtained through PSPICE analysis of open-circuited
network in Figure 37, are summarized in Table 2. Also, in this table the exactly obtained
voltages at points on the line with distance xm = (m − 1) · �0/2(m = 1, 21) from the line
sending end are presented. To these points correspond the points nodes N2m−1 (m = 1, 21) in
the simulation RLCG ladder on Figure 37.

When analysis of long lines is considered in the time domain it is useful to resort
to forming of multilevel hierarchical blocks in PSPICE. To see that, suppose that we are to
consider transmission of a signal with frequency f0 = 1 [GHz], amplitude Em = 10 [V], and
zero initial phase in two-wire line with length � = 4.5 [m] and parameters as in Table 1.
Let us designate the ladder on Figure 37, which represents a two-wire line with length 3
[cm], as level 1 hierarchical block HB1 on Figure 38(a). By cascading, say, 30 level 1 blocks:
HB1/1, HB1/2, . . ., and HB1/30, we produce a level 2 hierarchical block HB2 on Figure 38(b),
which represents a two-wire line with length 90 [cm]. By cascading 5 level 2 blocks: HB2/1,
HB2/2, . . ., and HB2/5, we make a level 3 hierarchical block HB3 on Figure 38(c), which
represents a two-wire line with length 450 [cm], and so on. Hierarchical blocks of arbitrary
length may be considered as independent entities or sophisticated parts in PSPICE.
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Figure 37: Electrical network model of two-wire line with length � = 3 [cm] in the frequency range f ∈
[f0 − B/2, f0 + B/2].

From the data associatedwith functions depicted in Figures 12 and 13we can easily: (i)
obtainZ0(j ·2π ·f0) = 294.67280−j ·0.42017 [Ω] and (ii) notice that variations of |Z0(j ·2π ·f)|]
and Arg[Z0(j · 2π · f)] are very small in the frequency range (f0 − B/2, f0 + B/2).

Now, suppose that the block HB2/5 in Figure 38(c) is terminated with impedance,
ZL(j · 2π · f0) = RL + 1/(j · 2π · f0 · CL) = Z0(j · 2π · f0) and find RL = 294.6728 [Ω] and
CL = 378.7781 [pF]. From (A.17) it follows that M(j · 2π · f0, x) = N(j · 2π · f0, x) = exp[−x ·
Γ(j · 2π · f0)] = exp[−x · a(f0)] · {cos[x · b(f0)] − j · sin[x · b(f0)]}, and then at any place x on
the line we obtain the exact values of signal amplitude Em · exp[−x · a(f0)] [V], phase delay
ϕ(x) = x · b(f0) [rad] and time delay τ(x) = x · b(f0)/(2π · f0) [s]. In Figure 20 we see that
function b(f) is practically linear in f , so that τ(x) should be linear in x, too. To verify the
ladder model of two-wire line with length � = 4.5 [m] (Figure 38(c)), we will compare the
exact values of Em · exp[−x · a(f0)], ϕ(x) and τ(x) at the points on line x = xk = k · �0/2 (k =
1, 3000) (�0 = 3 [mm]), with values obtained by PSPICE simulation. Bearing in mind the
topological uniformity of the considered ladder, it is felt that for estimation of the proposed
model it will suffice to check the ladder response only at the selected set of points whose
voltages are ui(i = 1, 5) with respect to the common node 0 (i.e., ground) (Figure 38(c)). The
distances of these five points from the line sending end are x600·i = 300 · i · �0 = 90 · i [cm]
(i = 1, 5), respectively. For these voltages in Table 3 are given the steady-state results of both
the simulation and the exact analysis, where the following notation has been used (Figures
19, 20, and 38(c)):

Em=10 [V], f0=1 [GHz], a
(
f0
)
=0.044990161

[
1
m

]
, b

(
f0
)
=31.551675282

[
1
m

]
,

e = Em · sin
(
2π · f0 · t

)
, ui = Uim · sin

(
2π · f0 · t − ϕi

)
= Uim · sin

[
2π · f0 · (t − τi)

]
,
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RLCG ladder from Figure 37

N1 N41

0

HB1

(a)

HB1/1 HB1/2 HB1/3

HB1/4 HB1/5 HB1/6

HB1/28 HB1/29 HB1/30

HB2

(b)

e

u1 u2 u3

u4u5

CL = 378.77 (pF)

HB2/1 HB2/2 HB2/3 HB2/4

HB2/5

HB3
RL = 294.67 Ω

(c)

Figure 38: The structure of the three types of hierarchical blocks HB1, HB2, and HB3 used in PSPICE
simulation.

Uim = Em · exp
[−x600·i · a

(
f0
)]

= 10 · (0.960317668)i [V ],

ϕi = ϕ(x600·i) = 300 · i · �0 · b
(
f0
)
= 28.39650775 · i [rad],

τi = τ(x600·i) =
ϕi

2π · f0 = 4.519444575 · i [ns],
(
i = 1, 5

)
.

(3.1)

From Table 3 it is evident the good agreement between the simulation results and
those obtained by exact analysis. The selection of less segmentation step �0 will improve
this agreement at the expense of rising the complexity of RLCG network, as a consequence of
proliferation in number of network elements.

In Figure 39 the results of transient PSPICE analysis of RLCG ladder with zero initial
conditions (Figure 38(c)) representing the approximate network model of two-wire line with
� = 4.5 [m] are depicted.

Now we can summarize our obtained results

(i) A transmission line is physically dispersive system with respect to frequency,
having the infinite number of poles and zeros and complex transient dynamics,
which cannot be represented perfectly with common-ground ladder with possibly
great, but finite number of RLCG elements.
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Figure 39: Transient analysis of RLCG ladder in Figure 38(c) and “measuring” of delay times τ1 ÷ τ5 [see,
also, (3)].

(ii) Delayed and slightly attenuated signals u1 ÷ u5 with frequency f0 and smooth
transient intervals (Figure 39) are produced by uniform RLCG ladder terminated
with characteristic impedance (The uniform ladder in Figure 38(c) consists of 1500
identical cells with impedances Z1(j · 2π · f0) = R/20 + j · 2π · f0 · L/20 and
Z2(j · 2π · f0) = [Y2(2π · f0)]−1, where Y2(2π · f0) = G/10 + j · 2π · f0 · C/10 (see
Figure 37 and Table 1). At frequency f0 the characteristic impedance [8] of ladder is
Zc(j ·2π ·f) = {Z1(j · 2π · f0) · [Z1(j · 2π · f0) + 2 · Z2(j · 2π · f0)]}1/2 ≈ Z0(j ·2π ·f0)
(it is close to the characteristic impedance of transmission line). Then, it can be
shown that: (i) for n = 1, 1500, the complex voltage at the end of the nth cell is ≈
exp{−n · acosh[1 + Z1(j · 2π · f0)/Z2(j · 2π · f0)]} · E(j · 2π · f0) [E(j · 2π · f0) is the
complex representative of e(t)], and (ii) the time-delay at that place with respect to
excitation is, Im{n · acosh[1 + Z1(j · 2π · f0)/Z2(j · 2π · f0)]/(2π · f0)} ≈ 15.07 · n
[ps].) of the line at frequency f0 (Figure 38(c)) and not by real two-wire line. As
will be seen, the transient response of real two-wire line, even with the same initial
conditions and termination, is more complex.

(iii) A deeper insight into transient phenomena in real lines can be acquired, either
by applying the numeric inverse Laplace transform of (A.17) with restricted
number of poles/zeros or by numerical solving of linear, second-order, hyperbolic
partial differential equations (2.19), telegraph equations, with specified initial and
boundary conditions depending on line termination and excitation voltages in
consecutive time intervals determined according to the line length. The method
of lines seems to be the most appropriate for solving of hyperbolic and parabolic
partial differential equations [11].

(iv) The PSPICE simulation method is applied herein only to facilitate the approximate
steady-state analysis of two-wire lines with arbitrary loads and limited frequency-
band signals, by using RLCG ladders as approximate network models of these
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lines, instead of resorting to numerical solving of partial differential equations or
application of complex analytic methods.

To illustrate the complexity of transient phenomena in transmission lines let we
consider two-wire line with length � = 4.5 [m] and excitation e(t) as in Figure 38(c) [see,
also, (3)], terminated with its characteristic impedance at frequency f0. At the moment of
appearing of excitation at t = 0, the line did not have any initial energy. Let us determine the
solution u(t, x) of the telegraph equation (2.19) in the interval t ∈ [0, T], where T = �/[2π ·
f0/b(f0)] ≈ 22.5972 [ns] is the perturbation propagation time from the line sending end to its
receiving end, and 2π · f0/b(f0) ≈ c0/(εr)

1/2 ≈ 1.9913 · 108 [m/s] is the propagation velocity.
If we introduce substitution t = τ/A(f0){A(f0) = 1/[L′(f0) · C′]1/2 = 1.9913 · 108[m/s]} into
the telegraph equation in u(t, x) obtained from (2.19):

∂2u(t, x)
∂x2

= L′
(
f0
) · C′ · ∂

2u(t, x)
∂t2

+
[
L′
(
f0
) ·G′ + C′ · R′(f0

)] · ∂u(t, x)
∂t

+ R′
(
f0
) ·G′ · u(t, x),

(3.2)

we obtain the second-order, hyperbolic, partial differential equation (PDE) equivalent to
(3.2):

∂2u(τ, x)
∂x2

=
∂2u(τ, x)

∂τ2
+ C

(
f0
) · ∂u(τ, x)

∂τ
+ B

(
f0
) · u(τ, x),

u(t, x) = u

[
τ

A
(
f0
) , x

]

= u(τ, x), x ∈ [0, �],

A
(
f0
)
=

1
√
L′
(
f0
) · C′

[
m
s

]
, B

(
f0
)
= R′

(
f0
) ·G′

[
1
m2

]
,

C
(
f0
)
= R′

(
f0
) ·
√

C′

L′
(
f0
) +G′ ·

√
L′
(
f0
)

C′

[
1
m

]
,

(3.3)

where τ ∈ [0, A(f0)·T] [m], that is, τ ∈ [0, 4.5] [m]. If u(τ, x) = {exp[−(1/2)·C(f0)·τ]}·u(τ, x),
then from (3.3) the following PDE of Klein-Gordon’s type [12] is obtained {τ, x ∈ [0, 4.5]
[m]}:

∂2u(τ, x)
∂x2

=
∂2u(τ, x)

∂τ2
+D

(
f0
) · u(τ, x),

D
(
f0
)
=

1
4
·
⎛

⎝R′(f0) ·
√

C′

L′
(
f0
) −G′ ·

√
L′(f0)
C′

⎞

⎠

2

= 2.0241 · 10−3
[

1
m2

]
,

(3.4)

which would be a pure wave equation if “diffusion” term D(f0) · u(τ, x) was not present,
or in other words, if the line parameters satisfy the Heaviside’s condition of distortionless at
frequency f0.
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Let we define, also, the following auxiliary function in τ and x:

v(τ, x) =
∂u(τ, x)

∂τ
=

[
1
2
· C(f0

) · u(t, x) + 1
A
(
f0
) · ∂u(t, x)

∂t

]

· exp[E(f0
) · t]

∣
∣∣
∣
∣
t=τ/A(f0)

,

E
(
f0
)
=

1
2
·
[
R′
(
f0
)

L′
(
f0
) +

G′

C′

]

= 8.959 [MHz].

(3.5)

If the excitation is e(t) = Em · sin(2π · f0 · t + ϕ), then from (3.4) and (3.5) the system of
two PDEs is produced to be solved in the interval τ, x ∈ [0, 4.5] [m], by using of MATHCAD
“Pdesolve” block:

∂u(τ, x)
∂τ

=v(τ, x) ∧ ∂v(τ, x)
∂τ

=
∂2u(τ, x)

∂x2
+D

(
f0
) · u(τ, x)←−The system of PDEs,

u(0, x) =
∥∥∥∥

0 if x > 0
e(0) otherwise

∧ v(0, x)

=

∥∥∥∥∥∥∥

0 if x > 0[
1
2
· C(f0

) · e(0) + 2π · f0 · Em · cos
(
ϕ
)

A
(
f0
)

]

otherwise
←− the initial conditions,

u(τ, 0) = exp
[
1
2
· C(f0

) · τ
]
· e
[

τ

A
(
f0
)

]

∧ u(τ, �) = 0←− the boundary conditions,

u(t, x) = exp
[−E(f0

) · t]

· u[A(f0
) · t, x]←− Solution of (3.2) in interval t∈[0, 22.59] [ns], x∈[0, 4.5] [m].

(3.6)

In Figure 40 the solutions u(t, xk) of (3.2) in the interval t ∈ [0, T] for xk = k · �/5 [m]
(k = 1, 5) are depicted. Certainly the solutions of (3.2) for any x ∈ [0, �] can be produced
easily, also by using the relations (3.4)–(3.6).

In Figure 41 the pulse responses [i.e., the voltages uk (k = 1, 5)] of the ladder in
Figure 38(c) terminated with the characteristic impedance of two-wire line are depicted. The
ladder is excited by pulsed emf e(t) with amplitude 10 [V], frequency f = 10 [MHz], duty-
cycle 0.2 and rise and fall times equal 1 [ps]. The voltages uk (k = 1, 5) have overshoots,
undershoots, and delay times close to those of the network in Figure 38(c) with continuous
excitation of frequency f0 = 1 [GHz], in spite of the fact that frequency spectrum of the
periodic, pulsed signal e(t) has components 10 · k [MHz] (k ∈ N) and that energetically
significant part of spectrum is concentrated in the frequency range f ∈ [0, 150] [MHz].

4. Conclusions

In the paper new results are presented in incremental network modelling of Two-wire lines
in the frequency range [0, 3] [GHz], by uniform RLCG ladders with frequency-dependent
RL parameters, which are analyzed by using of the PSPICE. Some important frequency
limitations of the proposed approach have been pinpointed, restricting the application
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Figure 40: Transient voltages at five equidistant places on the two-wire line with length � = 4.5 [m] (Em =
10 [V] and ϕ = 0).
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Figure 41: Pulsed responses in selected points on the uniform ladder in Figure 38(c).

of the developed models to the steady-state analysis of RLCG networks processing the
limited-frequency-band signals. The basic intention of the approach considered herein is
to circumvent solving of telegraph equations and application of the complex, numerically
demanding procedures in determining two-wire line responses at selected set of equidistant
points. The key to the modelling method applied is partition of the two-wire line in
sufficiently short segments having defined maximum length, whereby couple of new
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polynomial approximations of line transcedental functions is introduced. It is proved that
the strict equivalency between the short-line segments and their uniform ladder counterparts
does not exist, but if some conditions aremet, satisfactory approximations could be produced.
This is illustrated by several examples of short and moderately long two-wire lines with
different terminations, proving the good agreement between the exactly obtained steady-
state results and those obtained by PSPICE simulation of RLCG ladders as the approximate
incremental models of two-wire lines.

Appendix

By using of Kirchoff’s voltage and current laws the following equlibrium equations can be
written for the uniform transmission line depicted in Figure 2, no matter what its length � or
type is:

u

(
t, x +

δx

2

)
− u(t, x) = −δx

2
·
[
L′ · ∂i(t, x)

∂t
+ R′ · i(t, x)

]
, (A.1)

i(t, x + δx) − i(t, x) = −δx ·
[
C′ · ∂u(t, x + δx/2)

∂t
+G′ · u

(
t, x +

δx

2

)]
, (A.2)

u(t, x + δx) − u
(
t, x +

δx

2

)
= −δx

2
·
[
L′ · ∂i(t, x + δx)

∂t
+ R′ · i(t, x + δx)

]
. (A.3)

If δx → 0, from (A.1)–(A.3) it immediately follows:

∂u(t, x)
∂x

= −L′ · ∂i(t, x)
∂t

− R′ · i(t, x), ∂i(t, x)
∂x

= −C′ · ∂u(t, x)
∂t

−G′ · u(t, x). (A.4)

If s is the complex frequency, let we suppose that the following conditions hold.

(a) Both u(t, x) and i(t, x) possess Laplace transform with respect to time,

U(s, x) = �[u(t, x)] =
∫∞

0−
u(t, x) · e−s·t · dt,

I(s, x) = [i(t, x)] =
∫∞

0−
i(t, x) · e−s·t · dt.

(A.5)

(b) Both u(t, x) and i(t, x) have continuous derivatives with respect to x.

(c) The following two integrals are uniformly convergent with respect to x:

∫∞

0−

∂u(t, x)
∂x

· e−s·t · dt,
∫∞

0−

∂i(t, x)
∂x

· e−s·t · dt. (A.6)

(d) The initial conditions u(0, x) and i(0, x) are assumed for convenience to be zero for
all x.
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Taking into account all conditions (a) ÷ (d) and (A.1)–(A.6), it follows:

�

[
∂u(t, x)

∂x

]
=
∫∞

0−

∂u(t, x)
∂x

· e−s·t · dt = ∂

∂x

∫∞

0−
u(t, x) · e−s·t · dt = ∂U(s, x)

∂x
, (A.7)

�

[
∂i(t, x)
∂x

]
=
∫∞

0−

∂i(t, x)
∂x

· e−s·t · dt = ∂

∂x

∫∞

0−
i(t, x) · e−s·t · dt = ∂I(s, x)

∂x
, (A.8)

∂U(s, x)
∂x

= −(R′ + L′ · s) · I(s, x), ∂I(s, x)
∂x

= −(G′ + C′ · s) ·U(s, x), (A.9)

wherefrom the equations describing voltage and current distribution in uniform line are
readily produced, regardless to its length � and/or terminal conditions (i.e., the generator
and load impedances):

∂2U(s, x)
∂x2

+ Γ2(s) ·U(s, x) = 0,
∂2I(s, x)

∂x2
+ Γ2(s) · I(s, x) = 0, (A.10)

where Γ(σ) =
√
(R′ + L′ · s)/(G′ + C′ · s) is propagation function of the line. The impor-

tant parameter of any line is, also, its generalized characteristic impedance Z0(s) =√
(R′ + L′ · s)/(G′ + C′ · s). The line is distortionless if R′/L′ = G′/C′ [7], and it is lossless

when R′ = 0 [Ω/m] and G′ = 0 [S/m]. The general solution to the set of linear, homogeneous
differential equations (A.10) reads

U(s, x) = A1 · cosh(Γ · x) +A2 · sinh(Γ · x), I(s, x) = B1 · cosh(Γ · x) + B2 · sinh(Γ · x),
(A.11)

where the terms A1, A2, B1, and B2 are not the functions of x and are determined from the
boundary conditions. From (A.11) for x = 0 we obtain, A1 = U(s, 0) and B1 = I(s, 0) and
from (A.9) and (A.11); after differentiation in x; it follows, A2 = −Z0(s) · I(s, 0) and B2 =
−U(s, 0)/Z0(s). Then (A.11) takes on the following form:

U(s, x) = U(s, 0) · cosh(Γ · x) − Z0(s) · I(s, 0) · sinh(Γ · x), (A.12)

I(s, x) = I(s, 0) · cosh(Γ · x) −
[
U(s, 0)
Z0(s)

]
· sinh(Γ · x). (A.13)

Since for x = � it holds:

U(s, �) = U(s, 0) · cosh(Γ · �) − Z0(s) · I(s, 0) · sinh(Γ · �),

I(s, �) = I(s, 0) · cosh(Γ · �) −
[
U(s, 0)
Z0(s)

]
· sinh(Γ · �),

(A.14)
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then from (A.14) we obtain,

U(s, 0) = U(s, �) · cosh(Γ · �) + Z0(s) · I(s, �) · sinh(Γ · �), (A.15)

I(s, 0) = I(s, �) · cosh(Γ · �) +
[
U(s, �)
Z0(s)

]
· sinh(Γ · �). (A.16)

If ZL(s) is the load impedance (termination) of the uniform, finite length line, then
from (A.12)–(A.14) we finally produce voltage- and current-transmittances M(s, x) and
N(s, x), respectively,

M(s, x) =
U(s, x)
U(s, 0)

=
ZL(s) · cosh[Γ · (� − x)] + Z0(s) · sinh[Γ · (� − x)]

ZL(s) · cosh(Γ · �) + Z0(s) · sinh(Γ · �) ,

N(s, x) =
I(s, x)
I(s, 0)

=
ZL(s) · sinh[Γ · (� − x)] + Z0(s) · cosh[Γ · (� − x)]

ZL(s) · sinh(Γ · �) + Z0(s) · cosh(Γ · �) .

(A.17)

Since U(s, �) = ZL(s) · I(s, �), then from (A.12)–(A.14) it follows,

Z(s, 0) =
U(s, 0)
I(s, 0)

=
ZL(s) · cosh(Γ · �) + Z0(s) · sinh(Γ · �)
ZL(s) · sinh(Γ · �) + Z0(s) · cosh(Γ · �) · Z0(s), and generally,

Z(s, x) =
U(s, x)
I(s, x)

=
ZL(s) · cosh[Γ · (� − x)] + Z0(s) · sinh[Γ · (� − x)]
ZL(s) · sinh[Γ · (� − x)] + Z0(s) · cosh[Γ · (� − x)] · Z0(s), x ∈ [0, �],

(A.18)

where Z(s, 0) is the input impedance of line and Z(s, x) is the impedance at place x seen
towards the line end. From (A.17) and (A.18) we see that analysis of transmission line is
equivalent to analysis of its segments terminated with impedances given with (A.18). The
characteristic impedance and the propagation function of a distortionless line are Z0(s) =
(L′/C′)1/2 and Γ(s) = (R′ ·G′)1/2 + s · (L′ · C′)1/2, respectively. And further if the line load
impedance is ZL(s) = Z0(s), then for all x ∈ [0, �] it holds: Z(s, x) = Z0(s) = (L′ · C′)1/2 and
M(s, x) = N(s, x) = exp[−Γ(s) · x)] = exp(−R′ · G′ · x) · exp[−x · (L′ · C′)1/2 · s]. When the
line parameters are constant, we will have u(t, x) = L−1[U(s, x)] = L−1[M(s, x) · U(s, 0)] =
L−1{exp(−R′ ·G′ ·x)·exp[−x ·(L′ · C′)1/2 ·s]·U(s, 0)} = exp(−R′ ·G′ ·x)·u[t−x ·(L′ · C′)1/2, 0] and,
also, i(t, x) = L−1[I(s,x)] = L−1[N(s, x) · I(s, 0)] = L−1{exp(−R′ ·G′ · x) · exp[−x · (L′ · C′)1/2 ·
s] · I(s, 0)} = exp(−R′ · G′ · x) · i[t − x · (L′ · C′)1/2], that is, voltage u(t, x) and current i(t, x)
at place x on distortionless line with constant parameters and load ZL(s) = (L′/C′)1/2 are as
those on the line sending end, except for the time delay τ = x · (L′ · C′)1/2 and the attenuation
exp(R′ · G′ · x). By using of lossless, constant parameter line with resistive load (L′/C′)1/2,
it cannot be produced realistically even a relatively small signal delay. For example, pulse
delay τ = 5 [ms] can be obtained from a lossless, constant parameter line with parameters
L′ = 1.5 [μH/m],C′ = 18 [pF/m], and the load resistance (L′/C′)1/2 = 500/

√
3 [Ω] at distance

x = τ · (L′ · C′)−1/2 ≈ 962.25 [km] from the line sending end. But, if lossy, distortionless line is
terminated with its characteristic impedance Z0(s) = (L′/C′)1/2, the attenuation factor exp[x ·
(R′ ·G′)1/2] must, also, be taken into account.



42 Mathematical Problems in Engineering

Acknowledgment

This work is supported in part by the SerbianMinistry of Science and Technological Develop-
ment through Projects TR 32048 and III 41006.

References

[1] W. H. Hayt Jr., Engineering Electromagnetics, McGraw-Hill, New York, NY, USA, 1989.
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