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This paper analyzes the stochastic stability of a damped Mathieu oscillator subjected to a para-
metric excitation of the form of a stationary Gaussian process, which may be both white and
coloured. By applying deterministic and stochastic averaging, two Itô’s differential equations are
retrieved. Reference is made to stochastic stability in moments. The differential equations ruling
the response statistical moment evolution are written by means of Itô’s differential rule. A nec-
essary and sufficient condition of stability in the moments of order r is that the matrix Ar of the
coefficients of the ODE system ruling them has negative real eigenvalues and complex eigenvalues
with negative real parts. Because of the linearity of the system the stability of the first twomoments
is the strongest condition of stability. In the case of the first moments (averages), critical values of
the parameters are expressed analytically, while for the second moments the search for the critical
values is made numerically. Some graphs are presented for representative cases.

1. Introduction

The so-called Mathieu equation has attracted the attention of the scholars in the past, and
many papers and books are available on this subject such as [1, 2]. The interest in this equa-
tion stems from two facts: first, its dynamics is very rich; second, it describes the vibrations
of important mechanical systems such as a prismatic bar stretched or compressed by a sinus-
oidal axial force, a pendulum whose support is subjected to a sinusoidal motion, and an el-
liptic membrane [3, 4]. In general, attention is focused on the stability of the motion.

When the excitation acting on the Mathieu oscillator is a stochastic process, its re-
sponse is a stochastic process too. Thus, the analyst is concerned with the problem of the
statistical characterization of the response, and in the case of a system prone to instability the
problem of the stochastic stability must be solved. Nevertheless, studies on the Mathieu
systems with stochastic excitation are not numerous. Probably, the first authors who
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addressed the problem were Stratonovich and Romanovski [5]. Analyses of the Mathieu-
type equations with external random excitation were presented by Dimentberg [6] and by
Cai and Lin [7].

A Mathieu system with random parametrical excitation was considered by Rong et al.
[8] and by Xie [9] (see the references cited herein too). The first authors use the method of
multiple scale to determine the equations of the amplitude and the phase of the response.
The check for almost-sure stability is made by computing the largest Lyapunov exponent. On
the contrary, in ([9, Chapter 7]) the method of stochastic averaging is used, and the stability
in moments is analyzed. It recalled that there are different definitions of stochastic stability,
for which the reader is referred to [10, 11]. According to the selected stability definition,
different stability bounds are found. Thus, it is not surprising that the results of [8, 9] are
different. However, the conclusions that are reached are opposite: in [8] it is claimed that the
stochastic parametric excitation is always detrimental with respect to the stability, while in
[9] it is affirmed that there are cases in which the stochastic excitation stabilizes the system.

In this paper, the Mathieu damped oscillator parametrically excited by a Gaussian
noise is considered again. A suitable coordinate transformation is made, and deterministic
and stochastic averaging are applied in such a way that the second-order motion equation
is replaced by two first-order equations, are interpreted in Itô’s sense. As the Fokker-Planck-
Kolmogorov equation for the response probability density function (PDF) is not analytically
solvable, the stochastic stability in moments is considered as in [9, 12]: the differential
equations governing the response moment evolution are written bymeans of the rules of Itô’s
stochastic differential calculus [13–16]. A necessary and sufficient condition of stability in the
moments of order r is that thematrixAr of the coefficients of the ODE system governing them
has negative real eigenvalues and complex eigenvalues with negative real parts. Because of
the linearity of the system the stability of the first two moments is the strongest condition
of stability so that only the first two moments are considered ([11, Chapter 7]). Analytical
stability bounds are established for the first moments, while the stability of the second
moments is searched numerically.

2. Statement of the Problem

Consider the Mathieu-type stochastic differential equation

Ẍ(t) + 2εζ0ω0Ẋ(t) +ω2
0
[
1 + εβ sinΩt +

√
εF(t)

]
X(t) = 0, (2.1)

where ζ0 is the ratio of critical damping, ω0 is the undamped pulsation of the oscillator, ε
is a small parameter, β and Ω are the amplitude and the pulsation of the sinusoidal term,
respectively, and F(t) is a stochastic stationary Gaussian process with zero mean. Because of
the parametric excitation F(t) the response X(t) is a stochastic process too.

The pulsations Ω and ω0 can be linked by writing

ω2
0 =

Ω2

4
+ εδ, (2.2)
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where δ is a detuning parameter. By inserting (2.2) in (2.1), this becomes

Ẍ(t) +
Ω2

4
X(t) = −ε

[
2ζ0ω0Ẋ(t) +

(
δ +ω2

0β sinΩt
)
X(t)
]
− √

εω2
0 X(t)F(t). (2.3)

The problem of the statistical characterization of (2.3) will be tackled by using the
stochastic averaging method [6, 11, 17–20]. However, in the case of a harmonic term like
that in (2.3), the classic coordinate transformation X(t) = A(t) cosφ(t), where A(t) and φ(t)
are stochastic processes, does not work well as the joint probability density function (PDF)
of the response is not separable ([11, chapter 7]). A suitable coordinate transformation was
proposed in [6, 17, 18], which reads as

X(t) = X1(t) cos
(
Ωt
2

)
+X2(t) sin

(
Ωt
2

)
. (2.4)

According to the principles of deterministic averaging for weakly nonlinear systems [21] it is
assumed that

Ẋ(t) = −1
2
ΩX1(t) sin

(
Ωt
2

)
+
1
2
ΩX2(t) cos

(
Ωt
2

)

Ẍ(t) = −1
2
ΩẊ1 sin

(
Ωt
2

)
− 1
4
Ω2X1 cos

(
Ωt
2

)
+
1
2
ΩẊ2 cos

(
Ωt
2

)
− 1
4
Ω2X2 sin

(
Ωt
2

)
.

(2.5)

The expressions in (2.5) are not exact but only approximate. The exact expression of the
first derivative is −(1/2)ΩX1 sin(Ωt/2) + Ẋ1 cos(Ωt/2) + (1/2)ΩX2 cos(Ωt/2) + Ẋ2 sin(Ωt/2).
According to the method of deterministic averaging [21] the second and fourth terms are
neglected so that the derivative retains the same form as it would have if X1 and X2 were
constant.

By inserting (2.4), (2.5) into (2.3), after some algebra we obtain a pair of first-order
stochastic differential equations:

Ẋ1(t) = −ε
{
2ζ0ω0

[
X1 sin2

(
Ωt
2

)
− 1
2
X2 sinΩt

]
− δ

Ω
X1 sinΩt − 2δ

Ω
X2 sin2

(
Ωt
2

)

−ω0β

2
X1 sin2Ωt −ω0βX2 sin2

(
Ωt
2

)
sinΩt

}

+
√
εω0

[
1
2
X1 sinΩt +X2 sin2

(
Ωt
2

)]
F(t),

(2.6)

Ẋ2(t) = ε
{
2ζ0ω0

[
1
2
X1 sinΩt −X2 cos2

(
Ωt
2

)]
− δ

Ω
X2 sinΩt − 2δ

Ω
X1 cos2

(
Ωt
2

)

−ω0β

2
X2 sin2Ωt −ω0βX1 cos2

(
Ωt
2

)
sinΩt

}

− √
εω0

[
X1 cos2

(
Ωt
2

)
+
X2

2
sinΩt

]
F(t).

(2.7)
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The method of stochastic averaging is applied to (2.6), (2.7). In the field of stochastic
dynamics this method of analysis was proposed first by Stratonovich [17, 18] (see also
[11, 19, 20]) as an extension to stochastic systems of the deterministic method by Bogoliubov
and Mitropolsky [21] (see Mettler [22], too). Then, it was rigorously demonstrated by
Khasminskii [23]. It involves two phases that can be performed in either order: in the former,
the deterministic terms that do not contain the forcing functions are averaged. In the second
phase, the terms containing the forcing functions are reduced to Gaussian stationary white
noises.

The deterministic averaging of the terms in brace brackets in (2.6), (2.7) requires the
evaluation of integrals like Θ−1 · ∫Θ0 (•)dt [6, 17, 18], where Θ = 2π/Ω. It is obtained that

Ẋ1(t) = −ε
(
ζ0ω0X1 − δ

Ω
X2 −

ω0β

4
X1

)
+
√
ε ω0

[
1
2
X1 sinΩt +X2 sin2

(
Ωt
2

)]
F(t),

Ẋ2(t) = −ε
(
ζ0ω0X2 +

δ

Ω
X1 +

ω0β

4
X2

)
− √

ε ω0

[
X1 cos2

(
Ωt
2

)
+
1
2
X2 sinΩt

]
F(t).

(2.8)

Now, the forcing termsmust be worked out. In the classic stochastic averagingmethod
it is required that the process F(t) is broadbanded: in order to remove this restriction, a
different way will be followed. Stratonovich [17, Volume 1, Chapter 7] suggested that, given
a stochastic process F(t), which may be even narrowbanded, the product sinΩt F(t) is
replaceable by a stationary Gaussian white noise W1(t) having the autocorrelation function
K0δ(τ). The constant K0 is given by the following integral: K0 = 1/2

∫+∞
−∞ RFF(τ) cosΩτ dτ =

πSFF(Ω), where RFF(τ) and SFF(Ω) are the auto-correlation function and the power spectral
density (PSD) of F(t), respectively. However, the forcing terms in (2.8) contain the contri-
butions F(t)sin2(Ωt/2), F(t)cos2(Ωt/2) too. These contributions are replaced by a stationary
Gaussian white noiseW2(t), whose intensity is computed by adapting to the present case the
derivation of Stratonovich [17, Volume 1, Section 7.2]. We have

E[W2(t)W2(t + τ)] = δ(τ)
∫+∞

−∞
RFF(τ)sin2

(
Ωt
2

)
sin2
[
Ω
2
(t + τ)

]
dτ. (2.9)

By expanding the product of the trigonometric functions in the integral (2.9), we obtain:
sin2(Ωt/2)sin2[Ω/2 (t+ τ)] = 1/4{1− cos[Ω(t+ τ)]− cosΩt+ 0.5 cosΩτ + 0.5 cos[Ω(2t+ τ)]}.
In the last expression, the second and the third addenda, when averaged, give rise to zero,
while the fifth term is a faster oscillatory one that according to Stratonovich can be neglected.
Thus, the integral (2.9) is equal to

∫+∞

−∞
RFF(τ)

(
1
4
+
1
8
cosΩτ

)
dτ =

π

2
SFF(0) +

π

4
SFF(Ω). (2.10)

The expansion of
∫+∞
−∞ RFF(τ)cos2(Ωt/2)cos2[Ω/2(t + τ)]dτ leads to the same result. In much

the same way, it results that E[W1(t)W2(t + τ)] = 0, that is, they are uncorrelated.
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Performing these operations, (2.8) simplify into

Ẋ1(t) = −εω0

(
ζ0 −

β

4

)
X1 +

εδ

Ω
X2 +X1ω0

√
ε
π

4
SFF(Ω)W1(t)

+X2ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]
W2(t),

Ẋ2(t) = −εω0

(
ζ0 +

β

4

)
X2 − εδ

Ω
X1 +X2ω0

√
ε
π

4
SFF(Ω)W1(t)

+X1ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]
W2(t).

(2.11)

For the sake of simplicity, the white noises in the previous equations have unit intensities.
More-over, the forcing terms in the second equation have the sign plus as the white noise
processes ±

√
KW(t) have the same probabilistic characteristics ([24, chapter 6, section 6.3.2]).

In order to transform (2.11) into two Itô-type stochastic differential equations, the so-
called Wong-Zakai-Stratonovich corrective terms must be added to the drift terms [25, 26].
They are computed according to the following formula:

mci =
1
2

n∑

1

k
m∑

1
jgkj

∂gij

∂zk
, (2.12)

where in the present case n = m = 2 and gkj , gij are elements of the diffusion matrix

G =

⎡

⎢⎢
⎣

X1ω0

√
ε
π

4
SFF(Ω) X2ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]

X2ω0

√
ε
π

4
SFF(Ω) X1ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]

⎤

⎥⎥
⎦. (2.13)

Hence, the two Itô stochastic differential equations that govern the problem are

dX1 =
[
−εω0

(
ζ0 −

β

4

)
+ ε

π

4
ω2

0 S

]
X1dt + ε

δ

Ω
X2dt +X1ω0

√
ε
π

4
SFF(Ω)dB1(t)

+X2ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]
dB2(t),

dX2 =
[
−εω0

(
ζ0 +

β

4

)
+ ε

π

4
ω2

0 S

]
X2dt − ε δΩX1dt

+X2ω0

√
ε
π

4
SFF(Ω) dB1(t) + X1ω0

√
ε
[π
2
SFF(0) +

π

4
SFF(Ω)

]
dB2(t),

(2.14)

where S = SFF(0)+SFF(Ω) and B1(t) and B2(t) are two standardWiener processes (Brownian
motion), for which the formal relationship dBi/dt =Wi(t) (i = 1, 2) holds.
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From a theoretical point of view the probabilistic characterization of the random vector
X = {X1, X2}t should be obtained by solving the so-called Fokker-Planck-Kolmogorov (FPK)
equation in the joint PDF pX of the state variables [11, 17, 18, 24]

∂pX
∂t

= − ∂

∂xi

(
mipX

)
+
1
2

∂2

∂xi∂xj

(
bijpX
)
, (2.15)

where the summation rule with respect to a repeated index has been adopted, and m1 =
[−εω0(ζ0 − β/4) + ε(π/4)ω2

0 S]X1 + (εδ/Ω)X2, m2 = [−εω0(ζ0 + β/4) + ε(π/4)ω2
0S]X2 −

(εδ/Ω)X1, bij = �GGt�ij , with thematrixG being defined in (2.13), while the apex “t” denotes
transpose. Unfortunately, as in many other cases the FPK equation (2.15) does not have an
analytical solution because the excitation is a parametric one. Thus, another method has to be
chosen in order to characterize the probabilistic characteristics of the response. The moment
equation approach is used herein.

3. Moment Equation Approach

In (2.14) the excitation is multiplicative only, and there is not an external excitation. Thus, zero
solution X1 = X2 = 0 for all t satisfies them, even if the multiplicative excitation is a stochastic
process. We are concerned with the stability of zero solution. There exist different definitions
of stochastic stability, for which the reader is referred to Chap. 6 of [11]. Here, the stability of
zero solution is analyzed in the moments. In fact, the stability of the first two moments is the
strongest for linear autonomous systems under multiplicative Gaussian excitation [11, 27].
Thus, the stability of the first two moments only will be considered here. As the response of
(2.14) is not Gaussian, in order to characterize it statistically, from a theoretical point of view
the knowledge of the infinite hierarchy of the moments would be necessary. Nevertheless, the
system of (2.14) is linearly parametric: it has been shown that the equations for the statistical
moments of such a type of systems are a close set [28], and they can be solved in succession.
Thus, the convergence of the moments of first and second order is a necessary condition for
being stable the moments of higher orders.

In the field of dynamic stability analyses, a system is stable when it comes back to the
initial configuration after being subjected to a small perturbation. Zero statistical moments
E�Xr1

1 X
r2
2 �(r1 + r2 = r) correspond to a zero solution. When the zero solution is perturbed, the

response moments are no longer zero: if the stochastic Mathieu oscillator is stable, once the
perturbation is removed, they decay to zero, otherwise they grow without limits. The first
step is to write the ordinary differential equations (ODEs) ruling the time evolution of the
response moments. Since (2.14) is an Itô system, use is made of Itô’s differential rule [13–15],
which reads as

dψ =
∂ψ

∂t
+
∂ψ

∂xi
dxi +

1
2

∂2ψ

∂xi∂xj
dxidxj . (3.1)

In (3.1) Ψ is a nonanticipating function of the state variables xi and the summation rule is
adopted. It is recalled that (3.1) retains the terms of order dt only, as dB is of order

√
dt. In

order to write the moment equations, the appropriate nonanticipating function to be chosen
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is ψ = Xi
1X

j

2, where i, j are positive integers or zero with the constraint i + j = r, with r being
the order of the moments to be computed.

By choosing ψ = Xi
1X

j

2 with i + j = 1, the ODEs for the first order moments are

Ė[X1] = −ε
[
ω0

(
ζ0 −

β

4

)
−ω2

0
π

4
S

]
E[X1] +

εδ

Ω
E[X2],

Ė[X2] = −ε
[
ω0

(
ζ0 +

β

4

)
−ω2

0
π

4
S

]
E[X2] − εδ

Ω
E[X1],

(3.2)

where the dots mean derivatives with respect to time and S = SFF(0) +SFF(Ω). Analogously,
the ODEs ruling the second moments are found to be

Ė
[
X2

1

]
=
[
−2εω0

(
ζ0 −

β

4

)
+ εω2

0
π

2
SFF(0) + εω2

0
3
2
πSFF(Ω)

]
E
[
X2

1

]

+ 2
εδ

Ω
E[X1X2] + εω2

0

[π
2
SFF(0) +

π

4
SFF(Ω)

]
E
[
X2

2

]

= a11E
[
X2

1

]
+ a12E[X1X2] + a22E

[
X2

2

]
,

Ė[X1X2] = −εδ
Ω
E
[
X2

1

]
+
{
−2εω0ζ0 + εω2

0
π

2
[SFF(0) + SFF(Ω)]

}
E[X1X2] +

ε δ

Ω
E
[
X2

2

]

= a21E
[
X2

1

]
+ a22E[X1X2] + a23E

[
X2

2

]
,

Ė
[
X2

2

]
= εω2

0

[π
2
SFF(0) +

π

4
SFF(Ω)

]
E
[
X2

1

]
− 2

εδ

Ω
E[X1X2]

+
{
−2εω0

(
ζ0 +

β

4

)
+ εω2

0

[
π

2
SFF(0) +

3
4
πSFF(Ω)

]}
E
[
X2

2

]

= a11E
[
X2

1

]
+ a12E[X1X2] + a22E

[
X2

2

]
.

(3.3)

By inspecting (3.3), it is noted that the forcing terms are absent, which due to the fact
that in (2.14) the excitation is purely parametric. Thus, (3.3) can be written in compact matrix
form as

ṁr(t) = Armr , (3.4)

where mr(t) is a vector collecting all the moments of order r of the system states and Ar is a
matrix of the coefficients aij as shown in (3.3). The solution to (3.4) is

mr(t) = m0 exp(Art), (3.5)

wherem0 is a vector whose entries are the initial conditions for themoments. These constitute
the perturbation to zero solution.

It is well known (e.g., see [4]) that, as t grows, the response moments decay to
zero whenever the matrix Ar has negative real eigenvalues and complex eigenvalues with
negative real parts. Otherwise, the moments increase without limits. Thus, the condition of
stability in moments is that the eigenvalues of the matrix Ar have negative real parts. In
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this way, the stochastic problem is led to the classic deterministic problem of studying the
eigenvalues of a matrix. Since the matrix Ar depends on the system parameters (2.1), there
exist critical values of these quantities for which the real part of almost an eigenvalue is zero.
Increasing them further, a real part becomes positive, and the moments grow to infinity.

In order to study the eigenvalues of Ar , its characteristic equation is formed:

det(λIr −Ar) = 0, (3.6)

where Ir is a unit matrix having the same order as Ar . Equation (3.6)must specialized for the
order r of the moments. As previously advanced, due to the linearity of the system and to the
Gaussianity of the input, the moment stability analysis is limited to the first two moments.

Coming back to the first-order moments, from (3.2) the characteristic equation looks
like

det

⎡

⎢⎢
⎣

λ + ε
[
ω0

(
ζ0 −

β

4

)
−ω2

0
π

4
S

]
−εδ
Ω

εδ

Ω
λ + ε
[
ω0

(
ζ0 +

β

4

)
−ω2

0
π

4
S

]

⎤

⎥⎥
⎦ = 0, (3.7)

where from (2.2) δ = ε−1(ω2
0 −Ω2/4). The roots of (3.7) are

λ1,2 = ε

⎛

⎝−ζ0ω0 +
1
4
πω2

0S ± 1
4

√

ω2
0β

2 − 16
δ2

Ω2

⎞

⎠. (3.8)

In examining the eigenvalues given by (3.8), it is necessary to distinguish between the case of
real eigenvalues and that of complex conjugate ones. The eigenvalues are real numbers when

β > 4
δ

ω0Ω
, (3.9)

where for the sake of simplicity β is assumed to be positive. Otherwise, they are complex
conjugate numbers. Clearly, in the latter case the stability condition for the first moments is

ζ0 >
π

4
ω0S. (3.10)

Equation (3.10) requires that the oscillator is damped and the amount of damping depends
on both the oscillator frequency and the intensity of the exciting noise. This requirement may
be rather restrictive when ω0 is not small.

Now, let us consider the case in which (3.9) is satisfied. From (3.8) it is seen that there is
passage to instability when the eigenvalue with the sign plus before the square root becomes
zero, that is,

−ζ0ω0 +
1
4
πω2

0S +
1
4
ω0

√

ω2
0β

2 − 16
δ2

Ω2
= 0. (3.11)
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Solving (3.11) with respect to S, we obtain the critical value of this quantity:

Scr =
4ζ0
πω0

− 1
πω0

√√√
√β2 − 16

δ2

ω2
0Ω

2
, (3.12)

where β must be larger than the value in the right-hand side of (3.9). By comparing (3.12)
with (3.10) it is found that the critical value given by the former is always smaller than that
given by the latter. Keeping into account that S = SFF(0) +SFF(Ω), the critical intensity of the
excitation depends on the form of power spectral intensity of this: in Section 4 the cases of
white and coloured noises will be considered.

As regards the second moment stability, since the moment equations are three, (3.3),
the characteristic equation associated with the matrix A2 is of the third order. The roots of
such a type of equation have analytical expressions. However, they are rather cumbersome as
many parameters enter them. Thus, it has been preferred to proceed numerically. By using a
computer algebra software a parameter is varied till one out of the three eigenvalues becomes
zero: the corresponding value of the parameter is the critical one. Routh-Hurwitz criteria
[4, 29] are not used. This is why in another study devoted to the stability of elastic columns
withmemory-dependent damping [12] it has been found that these criteria may overevaluate
the critical values by a 30%.

4. Stability Analyses

The present section is devoted to the applications of the theory previously explained. Three
cases are considered for the parametric excitation F(t): (1) stationary Gaussian white noise;
(2) coloured Gaussian process obtained by passing a stationary Gaussian white noise through
a first-order linear filter; (3) coloured Gaussian process obtained by passing a stationary
Gaussian white noise through a second-order linear filter. This choice makes the comparisons
easier as the three stochastic processes have a common parameter that is the intensity σ2 of
the white noise.

The power spectral density (PSD) of a stationary stochastic process X(t) is defined as

SXX =
1
2π

∫+∞

−∞
RXX(τ) · exp(−iwτ)dτ, (4.1)

where RXX(τ) is the autocorrelation function of the process and i =
√−1. Since the

autocorrelation function of a stationary Gaussian white noise W(t) can be expressed as
RWW(τ) = 2πσ2δ(τ) (δ(τ) is Dirac’s delta), its PSD is σ2, constant on the whole real axis.
Thus, for a white noise the first criterion of stability for the first-order moments (3.10) gives

σ2
cr =

2ζ0
πω0

. (4.2)

The critical value of σ2 increases linearly with the system ratio of critical damping ζ0 and is
inversely proportional to system pulsation ω0, but it does not depend on Ω.
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Figure 1: First moment stability: plot σ2
cr of as a function of Ω from (4.5), first-order filter, α = 10, ω0 = 2π ,

ζ0 = 0.05.

Now, the white noise is passed through a first-order linear filter (the Langevin
equation) to have the excitation F(t), that is,

Ḟ(t) + αF(t) =
√
2πσW(t), (4.3)

whereW(t) has unit strength. The PSD of F(t) is

SFF(ω) =
2σ2α

α2 +ω2
. (4.4)

The critical value σ2
cr is found by solving (3.10)with respect to S and taking the expression of

this quantity into account, that is,

Scr =
2σ2

cr

α
+

2σ2
crα

α2 + Ω2
=

4ζ0
πω0

. (4.5)

The result of (4.5) is plotted in Figure 1 as a function of Ω for α = 10, ω0 = 2π , and ζ0 = 0.05.
It is found that σ2

cr is an increasing function of Ω.
The third type of excitation is obtained by passing the white noise through a second-

order linear filter, that is,

F̈(t) + 2ζfωf Ḟ(t) +ω2
fF(t) =

√
2πσW(t). (4.6)

In this case the PSD of F(t) is

SFF(ω) =
2σ2

(
ω2
f −ω2

)2
+ 4ζ2fω

2
fω

2
. (4.7)
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Figure 2: First moment stability: plot of σ2
cr as a function of Ω from (4.8), second-order filter: ω0 = 2π ,

ζ0 = 0.05, and ζf = 0.10; top plot ωf = ω0, bottom plot ωf = 2ω0.
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Figure 3: First moment stability: plot of Scr as function of Ω according to (3.12) for ω0 = 2π , ζ0 = 0.05,
and β = κδ/(ω0Ω)with κ = 4.01 (red line), 4.10 (black), 4.5 (blue), and 5.0 (violet).

σ2
cr for the first condition of stability is computed from

Scr =
2σ2

cr

ω4
f

+
2σ2

cr
(
ω2
f
−Ω2
)2

+ 4ζ2
f
ω2
f
Ω2

=
4ζ0
πω0

. (4.8)

The results of (4.8) are plotted in Figure 2 for ω0 = 2π , ζ0 = 0.05, and ζf = 0.05; the top plot
refers to ωf = ω0 and the bottom plot to ωf = 2ω0. Both plots show resonance with a marked
minimum when Ω equates ωf .

As regards the second condition of stability, Scr from (3.12) is plotted in Figure 3 for
ω0 = 2π , ζ0 = 0.05. Since this condition is valid only when β is larger than the right-hand side
of (3.9), the plots are drawn for β = κδ/(ω0Ω) with κ = 4.01, 4.10, 4.5, and 5.0. Equation
(3.12) gives a result with physical meaning only when Scr is positive. From the plots—the
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Figure 4: (a) Comparison among the PSDs of the white noise (green line) and those given by (4.4) (black
line) and by (4.7) (red and blue lines) for σ2 = 0.01, α = 10, ζf = 0.10, and ωf = 2π or 4π. (b)Comparison
between the PSDs deriving from (4.4) and (4.7): from (4.4) red line, from (4.7) blue and green lines. (c)
Comparison between the PSDs deriving from (4.7): blue line ωf = 2π , black line ωf = 4π .

bottom is a detail—it is seen that the interval of validity is small, and it narrows as κ increases.
All the curves have a peak for Ω = 2ω0 = 4π .

Before presenting the results of the stability analyses for the second-order moments,
it is necessary to compare the three PSD functions used in the analyses: they are depicted in
Figure 4.The parameter σ2 is common to the three PDFs, and it constitutes the strength of the
white noise. The plots clearly show as the white noise is by far the most severe excitation that
may excite a dynamic system, if the colored excitations are obtained by passing it through a
linear filter. As a consequence of this only observation, it cannot produce stabilizing effects on
a dynamic system. The Wiener process yielded by the first-order filter of (4.3) (the Langevin
equation) is the second in order of severity. As regards the processes generated by the second-
order filter of (4.6), they have less strength as the abscissae of the peaks move farther from
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Figure 5: Second moment stability, white noise excitation: plot of σ2
cr as a function of Ω for ε = 1, ω0 = 2π ,

ζ0 = 0.05; β = 0.1 green line, and β = 0.15 black line.
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Figure 6: Second moment stability, white noise excitation: plot of βcr as a function of Ω for ε = 1, ω0 = 2π ,
ζ0 = 0.05; σ2 = 0.0005 green line, and σ2 = 0.001 black line.

the origin. These remarks allow to explain the results of the analyses keeping in mind that
the excitation affects the moments equations through SFF(0) and SFF(Ω). The following anal-
yses are of two types: (1) search of the critical value of σ2 keeping β, the amplitude of the
sinusoidal term in (2.1), constant; (2) search of the critical value of β keeping σ2 constant. For
the sake of simplicity in all analyses the parameter ε is worth one. It is recalled that there is
passage to instability when an eigenvalue becomes zero, which happens when σ2 equates σ2

cr
or β equates βcr.

For white noise excitation the plots of σ2
cr and βcr as a function of Ω are in Figures 5

and 6, respectively, where ω0 = 2π and ζ0 = 0.05. Both σ2
cr and βcr are constant with respect to

Ω, being the stable regions below the straight lines. This result is not surprising: in fact, the
excitation enters the moment equations through SFF(0) and SFF(Ω), which are equal and do
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Figure 7: White noise excitation: E[X2
1] = z1 with respect to time, ω0 = 2π , ζ0 = 0.05, β = 0.1, ε = 1; (a)

σ2 = 0.00123 < σ2
cr; (b) σ

2 = 0.00130 > σ2
cr.
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Figure 8: Second moment stability, excitation given by the first-order filter (4.3): plot of σ2
cr as a function of

Ω for β = 0.1, α = 10, ε = 1, ω0 = 2π , ζ0 = 0.05.

not vary with Ω in the case of white noise, whose PSD is constant on the whole frequency
axis. σ2

cr increases as β decreases (Figure 5), and βcr has a similar trend (Figure 6).
Figure 7 shows E[X2

1] as a function of time for β = 0.1, σ2 = 0.0012 (top plot),
and σ2 = 0.00130 (bottom plot). The moment equations (3.3) are numerically integrated by
means of a fourth-order Runge-Kutta method. The initial perturbation is given by means of
the initial conditions E[X2

1(0)] = E[X2
2(0)] = 0.1. In the former case σ2 is lesser than σ2

cr, and
E�X2

1� starts from the prescribed value 0.1, then it decays to zero and does not show any
oscillation. In the latter case σ2 is larger than σ2

cr, and E�X2
1� grows without limit. The absence

of oscillations is due to the fact that in applying the stochastic averaging the oscillatory terms
are cancelled.

As regards the excitation given by the first-order filter of (4.3), the plots of σ2
cr and

βcr as a function of Ω are shown in Figures 8 and 9, respectively, where ω0 = 2π , ζ0 = 0.05,
and α = 10. Both quantities increase as Ω increases. In fact, the PSD (4.4) is a monotonically
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Figure 9: Second moment stability, excitation given by the first-order filter (4.3): plot of βcr as a function of
Ω for σ2 = 0.005, α = 10, ε = 1, ω0 = 2π , ζ0 = 0.05.
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Figure 10: Excitation from the second order filter (4.6): plots of σ2
cr as a function of Ω: ε = 1, ω0 = 2π ,

ζ0 = 0.05, β = 0.10, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π .

decreasing func-tion of Ω, which causes the excitation to diminish with Ω. The curve in the
plot of Figure 8 is obtained by keeping β equal to 0.1. The increase of σ2

cr is marked and
reaches a 70% as Ω passes from 0.5π to 6.5π . The curve of βcr refers to σ2 = 0.0005: in the
same interval the increase is less marked and amounts to about 28%. The analyses are made
in a discrete series of values ofΩ obtaining a set of points in the plane (σ2,Ω) or (β,Ω). Then,
the curves are traced by means of the routine Spline of MAPLE.

The plots for the excitation given by the second-order filter (4.6) are shown in Figures
10 and 11 and are obtained for this data set: ε = 1, ω0 = 2π , ζ0 = 0.05, β = 0.10 in Figure 10
for σ2

cr, σ
2 = 0.01 in Figure 11 for βcr, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π . In both

plots the curve deriving from ωf = 4π is the higher since the excitation strength is smaller, as
already explained. In both plots there is a marked valley for Ω = ωf : since SFF(Ω) assumes
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Figure 11: Excitation from the second-order filter (4.6): plots of βcr as a function of Ω: ε = 1, ω0 = 2π ,
ζ0 = 0.05, σ2 = 0.01, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π .

its largest value (see Figure 4), there is a kind of stochastic resonance [30], even if the system
remains stable.

5. Summary and Conclusions

In this paper the issue of stability of the stochastic Mathieu oscillator is addressed. In order to
solve the problem, a suitable coordinate transformation and stochastic averaging are applied
to the original dynamic system. In this way, two first-order stochastic differential equations
are obtained. Then, they are transformed into two Itô-type stochastic equations. For such a
type of stochastic differential equations Itô’s differential rule is applicable and allows one to
derive the ODEs ruling the time evolution of the response statistical moments.

In the dynamic system considered here the excitation is merely linearly parametric.
Hence, the moments ODEs are linear and homogeneous, and the ODEs for the moments of
order r are uncoupled from the ODEs for moments of different order. Because of this feature
the ODEs for the moments of order r admit zero solution, which means that the system is at
rest, and the parametric excitation does not disturb this state. The system is stable in moments
when these return to zero after the application of an external perturbation; otherwise, it is
unstable and the moments diverge. The necessary and sufficient condition for the stability
of the moments of order r is that all the eigenvalues of the matrix Ar of the coefficients of
the ODEs written for those moments have negative real part. The passage to the instability
requires that an eigenvalue becomes zero. In this way, the stochastic problem is reduced to
the deterministic problem of the study of the eigenvalues of a matrix.

The procedure developed in this paper is applied to three types of Gaussian stationary
stochastic excitations: (1) white noise; (2) white noise filtered through a first-order filter; (3)
white noise filtered through a second-order filter. In order to make it possible to compare the
results, in cases (2) and (3) the source white noise is the same as that of case (1), and it is by
far the more severe excitation (Figure 4).

As regards the stability of the first-order moments, it is substantially led by the system
damping. Several parameters affect the stability of the second-order moments: since the char-
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acteristic equation of the matrix A2 is of the third order, so that its roots have complicated
expressions, it has been chosen to proceed numerically. The analyses were aimed at finding
the critical values of the white noise strength σ2 and of the amplitude β of the sinusoidal
term in the motion equation (2.1). Differently from the deterministic Mathieu oscillator the
pulsation Ω of this term has little or no effects on the bounds of stability, which is due to the
presence of damping. Vice versa, in the case of excitation deriving from a second-order filter
there is a stochastic resonance when Ω equates the peak frequency ωf of the PSD of the
excitation. In any case, the critical values σ2

cr and βcr are by far smaller for the white noise
excitation since as observed it is the strongest excitation. Thus, the statement of [9, 31] that
a white noise excitation may cause a stabilizing effect is not found true. The results of these
papers agree with those of [8]: a direct comparison of the results is not possible as the system
studied in that reference is a little different and a quite different method of analysis is used
there.
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