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The single-mass, crank-and-rod exciters vibrational conveyers have a trough supported on elastic
stands which are rigidly fastened to the trough and a supporting frame. The trough is oscillated by
a common crank drive. This vibration causes the load to move forward and upward. The moving
loads jump periodically and move forward with relatively small vibration. The movement is
strictly related to vibrational parameters. This is applicable in laboratory conditions in the industry
which accommodate a few grams of loads, up to those that accommodate tons of loading capacity.
In this study I explore the transitional behavior across resonance, during the starting of a single
degree of freedom vibratory system excited by crank-and-rod. A loaded vibratory conveyor is
more safe to start than an empty one. Vibrational conveyers with cubic nonlinear spring and ideal
vibration exciter have been analyzed analytically for primary and secondary resonance by the
Method of Multiple Scales, and numerically. The approximate analytical results obtained in this
study have been compared with the numerical results and have been found to be well matched.

1. Introduction

In this work, the vibrating system consists of a cubic nonlinear spring and sinusoidal
excitation (ideal source) is studied. It is an ideal system, if there is no coupling between
motion of the rotor and vibrating system. In this case, the excitation is completely
independent of the system response. Vibrating systems with ideal and nonideal excitations
were investigated by number of authors. Kononenko [1] presented the first detailed study
on the nonideal problem of passage through resonance. Some numerical studies on dynamic
characteristics of a vertical pendulum whose base is actuated horizontally through a slider
crank mechanism, where the crank is driven through a DC motor, were performed in [2, 3],
and investigations on the properties of the transient response of this nonlinear and nonideal
problem showed that near the fundamental resonance region, near a secondary resonance
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Figure 1: (a) Single-mass, crank-and-rod-driven vibrational conveyer, (b) the coercive force applied on the
trough.

region, respectively. An overview of the main properties of nonideal vibrating systems was
presented by Balthazar et al. [4, 5]. These authors analyzed that the physical model of the
ideal vibrating system consists of linear spring and sinusoidal excitation (ideal source) [6],
the physical model of the vibrating system consists of linear spring and nonideal source
[7], and the physical model of the vibrating system consists of a cubic nonlinear spring and
nonideal source [8].

In this study, vibrational conveyers are constituted by a trough and elastic stands of
equal length connected to trough inclinedly. Forced vibration motion driven by the crank-
and-rodmechanism is given to this system (Figure 1). Crank-and-rodmechanismwith elastic
connecting rod can also be used and an elastic component added to the operation mechanism
slowly increases the amplitude of the system from a low value to the maximum operation
amplitude; it functions as elastic component at the initial motion of the conveyer and as rigid
component at the continuous operation state. During the vibration motion, the forward and
upward motions of the load on the trough are provided. After each contact to the trough, the
velocity of forwardmovement of the load increases. The velocity of forwardmovement of the
load increases until it reaches the maximum velocity of trough. After reaching the maximum
velocity, it continues its motion at this velocity [9, 10].

The vibrational conveyers have been analyzed numerically and analytically by the
Method of Multiple Scales, for the primary and subharmonic and superharmonic resonance.
The stability is analyzed by using an approximate analytical solution. The frequency-response
curves show the behavior of the oscillator for the variation of the control parameters.
Numerical simulations are performed and the simulation results are visualized by means
of the phase portrait, Poincaré map, and Phase portrait.

2. The Governing Equations of the Motion

The equations of motion for the vibrating model of system may be obtained by using
Lagrange’s Equation, the conveyor empty:

d

dt

(
∂T

∂q̇i

)
+
∂D

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi, (2.1)
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Figure 2: (a) Vibrating model of system, (b) material motion.

whereM is mass of the trough of the conveyor, T is the kinetic energy

T =
(
1
2
Mż2

)
, (2.2)

V , the potential energy, is

V =
1
2
k1z

2 +
1
4
k2z

4, (2.3)

D, the Rayleigh Dissipation Function, is

D =
1
2
cż2, (2.4)

and qi is the generalized coordinate. Applying Lagrange’s Equation for the coordinate qi = z
gives the differential equations of motion.

Here the measurement values are taken from the position where the components in
the same directions of the vertical force applied by the leaf spring on itself and the weight
force balances each other. If the mass of the leafs works as spring as well as the mass of the
AA3 connecting rod, the changes in the angle ψ and moment M0 applied on the crank arm
by the motor are neglected, and the coercive force in the vibration motion can be written as
below (Figure 2(b)) [11, 12], then the coercive force becomes

F(t) = F cos γ, γ =
(π
2

)
− (

θ + ψ
)
, cos γ = sin

(
θ + ψ

)
, Θ = θ − ψ, Θ = ωt,

F(t) =
(
MO

r

)
sinωt, F = mtrω

2
n = mtr

k1
mt

= rk1,

(2.5)

where mt is the total vibrating mass, r is the length of the crank, then one can write the
generalized force Q1

Mz̈ + cż + k1z + k2z3 = F(t),

z̈ +
c

M
ż +

k1
M

z +
k2
M

z3 =
1
M

F(t).
(2.6)
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Rewriting (2.6) in terms of variables, it will obtained, where c is damping coefficient, k1 is the
linear spring coefficient, and k2 is the cubic spring coefficient, thatωn is the natural frequency:
ω2
n = k1/M, ε = 1/M,

z̈ +ω2
nz =

1
M

(
F(t) − cż − k2z3

)
, (2.7)

where b = c/2M, α = k2/M,

z̈ +ω2
nz =

F

M
sin

(
θ + ψ

) − 2bż − αz3. (2.8)

The conveyor was filled with material, during one of the motions of the trough, and the load
may be in a ride, slide, or flight phase, depending on the actual accelerations, velocities, and
displacements of the load and trough. These various phases of motion are analyzed.

(i) Flight Phase (when y′′
t < −g). A flight phase occurs if the normal force becomes zero.

At the start of a flight the load and trough have the same y-coordinate and y′-velocity. The
load loses contact with the trough and is said to travel in a “flight phase.” The governing
equations of motion then are as follows: for the trough: (2.8) (conveyor empty); for the
material is moving under the action of gravity which,

x′′
m = 0, y′′

m = −g. (2.9)

The end of flight phase can be derived from the condition of equal y coordinates and
terminates in an “impact” with the trough

ym = yt. (2.10)

This oblique impact is considered to be instantaneous and “perfectly plastic” in the y direction.
Considering the principle of conservation of the total momentum and the Newton’s Law of
Impact,

x′
t = y

′
tcotβ. (2.11)

“friction impact”, in the x direction, “t” and “m” represent the parameters of the trough and
the material particle, respectively. “a” and “b” represent the parameters “after” and “before”
the impact, respectively (Figure 2(b)):

Ix = −μIy
y′
a = −ey′

b, va cosαa = evb cosαb.
(2.12)
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The change of the velocity of the load during an impact with the trough is related to the total
linear impulse at time of flight phase, by the linear momentum equation

m�Va −m�Vb = I

Ix = m(va sinαa − vb sinαb), Iy = m(va cosαa + vb cosαb)

m

⎛
⎜⎝va sinαa︸ ︷︷ ︸

ẋa

− vb sinαb︸ ︷︷ ︸
ẋb

⎞
⎟⎠ = −μm

⎛
⎜⎝va cosαa︸ ︷︷ ︸

ẏa

+ vb sinαb︸ ︷︷ ︸
−ẏb

⎞
⎟⎠

(ẋma − ẋmb) = ±μ(ẏma − ẏmb

)
.

(2.13)

The coefficient of friction times the change in velocity of the load along the y direction due to
impact

(ẋma − ẋmb) = signμ
(
ẏma − ẏmb

)
, (2.14)

where the negative or positive signs for the frictional force f sign are +1.0 or −1.0 as (ẋmb −
ẋtb) < 0 or > 0. If the flight ends with a tangential velocity of the load that is not equal to
that of the trough, a positive or negative slide phase occurs, depending on the sign of this
difference, until the velocities become equal.

(ii) Ride Phase. In this case the trough and the load are as one body. If the load’s velocity
and trough’s velocity are equal:

ẏm = ẏt, ym = yt, (2.15)

the conditions are such that
|ẍt| ≤ μ

(
ÿt + g

)
,

ẋm = ẋt.
(2.16)

For the trough, wherem is mass of the conveyed material on the trough of the conveyor, T is
the kinetic energy

T =
(
1
2
Mż2

)
+
(
1
2
mż2

)
, (2.17)

V , the potential energy, is

V =
1
2
k1z

2 +
1
4
k2z

4 +mg sin βz, (2.18)

D, the Rayleigh Dissipation Function, is

D =
1
2
cż2 (2.19)

(M +m)z̈ + cż + k1z + k2z3 = F(t) −mg sin β

z̈ +
c

M +m
ż +

k1
M +m

z +
k2

M +m
z3 =

1
M +m

F(t) − mg

M +m
sin β

(2.20)
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rewriting (2.20) in terms of variables,m is mass of the conveyed material on the trough of the
conveyor, g is acceleration due to gravity, ω2

n = k1/(m +M), 2b = c, ε = mg/(M +m), α = k2,
G = mg/M +m,

z̈ +ω2
nz = ε

[
F sin

(
θ + ψ

) − 2bż − αz3
]
−G sin β (2.21)

And, for the material,

xm = xt, ẋm = ẋt. (2.22)

(iii) Slide Phase. Sliding may start when the accelerations of the load and the trough are
equal. Vertical component of trough’s acceleration is greater than acceleration of gravity

[
ÿt > −g], [{|ẍ| > μ(g + ÿt

)}
or {ẋm /= ẋt}

]
. (2.23)

If mẍ is greater than the maximum value of the friction force, the load starts to slide on the
trough.

For the trough, the kinetic energy is

T =
1
2
MŻ2 +

1
2
m
(
Ż sin β

)2
, (2.24)

the potential energy is

V =
1
2
k1Z

2 +
1
4
k2Z

4 +
(
mg sin β

)
Z, (2.25)

and the Rayleigh Dissipation Function is

D =
1
2
cŻ2, (2.26)

If Newton’s second law of motion is written along the Y -axis (vertical) direction for the load
on trough,

f = μN. (2.27)

Here f is the friction force affecting on the load and ay is vertical component of trough’s
acceleration:

∑
FY = maY = mŸt, −mg +N = mZ̈ sin β, N = m

(−g + Z̈ sin β
)
.

f = ∓μm(−g + Z̈ sin β
)
,

QZ = ∓μm(
Z̈ sin β − g) cos β.

(2.28)
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If it is taken z the displacement of the trough from the equilibrium position 0 (positive
upward). Mg sin β = (k1δst + k2δ3st), where δst represents the elongation of the spring at the
equilibrium position:

[
M +m

(
sin2β ± μ sin β cos β

)]
Z̈ + cŻ + k1Z + k2Z3 = F(t) −mg(sin β ± μ cos β) (2.29)

Z̈ +ω2
nZ =

1[
M +m

(
sin2β ± μ sin β cos β)]

[
F(t) −mg(sin β ± μ cos β) − cŻ − k2Z3

]
(2.30)

Rewriting (2.29), where μ is the coefficient of friction between the materials and the trough,
ω2
n = k1/(M +m(sin2β ± μ sin β cos β)), ε = 1/(M +m(sin2β ± μ sin β cos β)), 2b = c, α = k2, G

=mg/(M +m(sin2β ± μ sin β cos β)), and

Z̈ +ω2
nZ = ε

[
F sin

(
θ + ψ

) − 2bŻ − αZ3
]
−G(sin β ± μ cos β). (2.31)

3. Approximate Analytical Solution

The method of multiple scales is used to obtain approximate analytical solution of (2.8),
(2.21), and (2.31) [13–16]. We seek a second-order expansion in the form

z(t, ε) ≈ z0(T0, T1) + εz1(T0, T1) + . . . , (3.1)

where the fast scale T0 = t and the slow scale T1 = εt. The time derivatives transform according
to

d

dt
= D0 + εD1 + . . . ,

d2

dt2
= D2

0 + 2εD0D1 + . . . , (3.2)

where Dn = ∂/∂Tn. Then,

z′ ≈ D0z0 + ε(D1z0 +D0z1), z′′ ≈ D2
0z0 + ε

(
2D0D1z0 +D2

0z1
)
. (3.3)

Substituting (3.1)–(3.3) into (2.8) and equating coefficients of like powers ε, where Ω is
excitation frequency, we obtain

D2
0z0 +ω

2
nz0 = 0,

D2
0z1 +ω

2
nz1 = −2D0D1z0 − 2bD0z0 − αz30 + F sin(Ψ + T0Ω).

(3.4)

Substituting (3.1)–(3.3) into (2.21) and equating coefficients of like powers ε, we obtain

D2
0z0 +ω

2
nz0 = G sin

(
β
)
,

D2
0z1 +ω

2
nz1 = −2D0D1z0 − 2bD0z0 − αz30 + F sin(Ψ + T0Ω).

(3.5)
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Figure 3: Primary resonance, subharmonic resonance and superharmonic resonance, frequency-response
curvewith stability, ∼ stable, · · · unstable: (a1) conveyer empty, (σ = 7.1179−8.72643, a = 0.35701−0.57001),
(b1) slide mode, (σ = 9.41227 − 16.9651, a = 0.39201 − 0.79101); (c1) ride mode, (σ = 9.19323 − 15.9651,
a = 0.35401–0.69801); (a2) conveyer empty, (σ = 0.853726 − 2.51325, a = 0.1186 − 0.2001), (b2) slide mode,
(σ = 1.04791 − 1.68339, a = 0.11631 − 0.15001), and (c2) ride mode, (σ = 0.885482 − 1.96345, a = 0.09681 −
0.15001). and (a3) conveyer empty, (σ = 0.534199 − 0.667969, a = 0.0305 − 0.0625), (b3) slide mode, (σ =
0.554249 − 0.703279, a = 0.0305 − 0.0636), and (c3) ride mode, (σ = 0.880504 − 1.21958, a = 0.0302 − 0.0765).

Substituting (3.1)–(3.3) into (2.31) and equating coefficients of like powers ε, we obtain:

D2
0z0 + z0 = Gμ cos

(
β
) −G sin

(
β
)
,

D2
0z1 +ω

2
nz1 = −2D0D1z0 − 2bD0z0 − αz30 + F sin(Ψ + T0Ω).

(3.6)

This system analyzed the stability (a, γ) in the equilibrium point, using (3.9), (3.12),
(3.14), (3.18), (3.20), (3.22), (3.25), (3.27), and (3.29), where J is Jacobian matrix of (3.10),
and stability of the approximate solutions depends on the value of the eigenvalues of the
Jacobian matrix J . The solutions are unstable if the real part of the eigenvalues is positives
[13, 14]. (Figure 3) shows the frequency-response curves for primary, subharmonic, and
superharmonic resonance of the vibratory conveyor. These curves show that the nonlinearity
bends the frequency-response curves. The bending of the frequency-response curves leads
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to multivalued amplitudes and hence to jump phenomenon. In contrast linear systems, the
mass-nonlinear spring system exhibits no resonance (Figure 3).

3.1. Primary Resonances: Ω ≈ ω0 (Table 1)

Eliminating secular terms in equations, for analyzing the case of primary resonance, we chose
the detuning parameter σ, where a and β are real,

Ω = ω0 + εσ (3.7)

taking

A[T1, T2] =
a[T1]
2

eiβ[T1] (3.8)

and, separating real and imaginary parts, the system of equations is solved.
(i) Flight phase:

a′ = −ab − F cos
(
γ
)

2ωn

γ ′ =
−3a3α + 8aσωn + 4F sin

(
γ
)

8aωn
, γ = T1σ + ψ − β(T1),

(3.9)

f1 = a′, f2 = γ ′, f =
{
∂af1, ∂γf1

}
,

{
∂af2, ∂γf2

}
(3.10)

J =

⎡
⎣ −b −ab
b

a
− 3aα
4ωn

−σ +
3a2α
8ωn

⎤
⎦. (3.11)

(ii) Ride phase:

a′ = −ab − F cos
(
γ
)

2ωn

γ ′ =
−6aG2α − 3a3αω4

n + 8aσω5
n + 6aG2α cos

(
2β

)
+ 4Fω4

n sin
(
γ
)

8aω5
n

, γ = T1σ + ψ − β(T1)
(3.12)

J =

⎡
⎢⎣

−b −ab
b

a
− 3aα
4ωn

6G2α +ω4
n

(
3a2α − 8ωn

) − 6G2α cos
(
2β

)
8ω5

n

⎤
⎥⎦. (3.13)



10 Mathematical Problems in Engineering

Table 1: Primary resonance: vibratory conveyer parameters in SI units.

Conveyer ε μ c ω r F k1 k2 G M m

Empty 0.01 — 6 14.1421 0.002 48.4 2 × 104 1000 — 100 —
Ride 0.00666667 — 6 11.547 0.002 48.4 2 × 104 1000 3.27 100 50
Slide 0.00707515 0.4 6 13.8782 0.002 48.4 2 × 104 1000 3.47036 100 50

(iii) Slide phase:

a′ = −ab − F cos
(
γ
)

2ωn

γ ′ =
1

8aω5
n

(
a
(
−6G2α

(
1+μ2

)
+ω4

n

(
−3a2α+8σωn

)
+6G2α

(
−
(
−1+μ2

)
cos

(
2β

)
+2μ sin

(
2β

)))

+4Fω4
n sin

(
γ
))
, γ = T1σ + ψ − β(T1)

J =

⎡
⎣ −b −ab
b

a
− 3aα
4ωn

A

⎤
⎦,

(3.14)

whereA denotes (1/8ω5
n)(6G

2α(1+μ2)+ω4
n(3a

2α−8σωn)+6G2α((−1+μ2) cos(2β)−2μ sin(2β))).

3.2. Subharmonic Resonances: Ω ≈ 3ω0 (Table 2)

Eliminate secular terms in equations, for analyzing the case of subharmonic resonance, where

cos(θ0 + εθ1) = cos(θ0) +O(ε), sin(θ0 + εθ1) = sin(θ0) +O(ε),

Λ =
−κ Ω2(
Ω2 −ω2

0

) (3.15)

near resonance

D0θ0 = Ω,

Ω = 3ω0 + εσ.
(3.16)

The solution of (3.17) can be written as

θ0 = ΩT0 = 3ω0T0 + σT1 (3.17)

and, separating real and imaginary parts, the system of equations is solved.
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Table 2: Subharmonic resonance: vibratory conveyer parameters in SI units.

Conveyer ε μ c ω r F k1 k2 G M m

Empty 0.01 — 0.1 10 0.02 1800 1 × 104 500 — 100 —
Ride 0.00666667 — 0.1 8.16497 0.02 1800 1 × 104 500 3.27 100 50
Slide 0.00707515 0.4 0.1 9.81337 0.02 1800 1 × 104 500 3.47036 100 50

(i) Flight phase:

a′ = −a
(
8bωn + 3aαΛ cos

(
γ
))

8ωn

γ ′ =
−9α(a2 + 2Λ2) + 8σωn + 9aαΛ sin

(
γ
)

8ωn
, γ = T1σ + ψ − 3β(T1), Λ =

KΩ2(
Ω2 −ω2

n

)
(3.18)

J =

⎡
⎢⎢⎣
−b + 2σ

3
− 3α8

(
a2 + 2Λ2)
4ωn

−ab

−3b
a

− 9aα
4ωn

−σ +
9α

(
a2 + 2Λ2)
8ωn

⎤
⎥⎥⎦. (3.19)

(ii) Ride phase:

a′ = −a
(
8bωn + 3aαΛ cos

(
γ
))

8ωn

γ ′ =
−18G2α − 9α

(
a2 + 2Λ2)ω4

n + 8σω5
n + 18G2α cos

(
2β

)
+ 9aαΛω4

n sin
(
γ
)

8ω5
n

,

γ = T1σ + ψ − 3β(T1), Λ =
KΩ2(

Ω2 −ω2
n

)

(3.20)

J =

⎡
⎣ B −ab
−3b
a

− 9aα
4ωn

C

⎤
⎦, (3.21)

where B denotes −(1/12ω5
n)(18G

2α+ω4
n(9a

2α+ 18αΛ2 + 12bωn − 8σωn)− 18G2α cos(2β)) and
C denotes (1/8ω5

n)(18G
2α +ω4

n(9α(a
2 + 2Λ2) − 8σωn) − 18G2α cos(2β)).
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(iii) Slide phase:

a′ = −0.05a − 0.429898a2 cos
(
γ
)

γ ′ = 1.37347 × 10−6
(
−155304. + 9274.12

(
−4500

(
0.0010125 + a2

)
+ 78.507σ

)

+939005.a sin
(
γ
))
, γ = T1σ + ψ − 3β(T1),

(3.22)

J =

⎡
⎣ D −0.05a
−0.15

a
− 114.64a E

⎤
⎦, (3.23)

whereD denotes −9.15646×10−7(155304.+4.217335×107(0.0010125+a2)+364042.(0.15−2σ))
and E denotes 1.37347 × 10−6(155304. + 9274.12(4500(0.0010125 + a2) − 78.507σ)).

3.3. Superharmonic Resonances: Ω ≈ 1/3ω0 (Table 3)

Eliminating secular terms in equations, for analyzing the case of superharmonic resonance,
where

3Ω = ω0 + εσ

3ΩT0 = (ω0 + εσ)T0 = ω0T0 + σεT0 = ω0T0 + σT1
(3.24)

and, separating real and imaginary parts, the system of equations is solved.
(i) Flight phase:

a′ = −ab + αΛ3 cos
(
γ
)

8ωn

γ ′ = −3a
3α + 6aαΛ2 − 8aσωn + αΛ3 sin

(
γ
)

8aωn
, γ = T1σ + 3ψ − β(T1)

(3.25)

J =

⎡
⎣ −b −ab
b

a
− 3aα
4ωn

−σ +
3α

(
a2 + 2Λ2)
8ωn

⎤
⎦. (3.26)
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Table 3: Superharmonic resonance: vibratory conveyer parameters in SI units.

Conveyer ε μ c ω r F k1 k2 G M m

Empty 0.01 — 0.1 10 0.4 444.444 1 × 104 2000 100 —
Ride 0.00666667 — 0.1 8.16497 0.4 444.444 1 × 104 2000 3.27 100 50
Slide 0.00707515 0.4 0.1 9.81337 0.4 444.444 1 × 104 2000 3.47036 100 50

(ii) Ride phase:

a′ = −ab + αΛ3 cos
(
γ
)

8ωn

γ ′ =
a
(−6G2α − 3α

(
a2 + 2Λ2)ω4

n + 8σω5
n

)
+ 6aG2α cos

(
2β

) − αΛ3ω4
n sin

(
γ
)

8aω5
n

,

γ = T1σ + 3ψ − β(T1)

(3.27)

J =

⎡
⎢⎣

−b −ab
b

a
− 3aα
4ωn

6G2α +ω4
n

(
3a2α + 6αΛ2 − 8σωn

) − 6G2α cos
(
2β

)
8ω5

n

⎤
⎥⎦. (3.28)

(iii) Slide phase:

a′ = −ab − αΛ3 cos
(
γ
)

8ωn

γ ′ =
1

8aω5
n

(
a
(
−6G2α

(
1 + μ2

)
+ω4

n

(
−3α

(
a2 + 2Λ2

)
+ 8σωn

)

+6G2α
(
−
(
−1 + μ2

)
cos

(
2β

)
+ 2μ sin

(
2β

)))
+ αΛ3ω4

n sin
(
γ
))

γ = T1σ + ψ − β(T1)

(3.29)

J =

⎡
⎣ −b −ab
b

a
− 3aα
4ωn

F

⎤
⎦, (3.30)

where F denotes (1/8ω5
n)(6G

2α(1 + μ2) +ω4
n(3a

2α + 6αΛ2 − 8σωn) + 6G2α((−1 + μ2) cos(2β) −
2μ sin(2β))).

4. Numerical Results

The numerical calculations of the vibrating system are performed with the help of the
software Mathematica [17, 18]. Figures 4, 5, and 6 show the displacement-time response,
the power spectrum, phase portrait, and Poincaré map for the primary, subharmonic, and
superharmonic resonance. By Poincaré map I concludes that the motion of the oscillator is
periodic with period-1.
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Figure 4: Primary resonance: (a) displacement-time response, (b3) Poincaré map (before stabilization),
fixed points (stable focus), (b1), (b2) Poincaré map (after stabilization), (c1) power spectrum, (c2) phase
portrait (after stabilization), (c3) phase portrait (before stabilization).

In Figures 4, 5, and 6, the curves obtained numerically and analytically by solving (2.8),
(2.21), and (2.31) are plotted. The main characteristic values used in this study are given in
Tables 1, 2, and 3.

5. Conclusions

In this study, the transition over resonance of a nonlinear vibratory system, excited by
crank-and-rod, is important in terms of the maximum vibrational amplitude produced
on the drive for the crossover. The maximum amplitude of vibration is then of interest
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Figure 5: Subharmonic resonance: (a) displacement-time response, (b3) Poincaré map (before stabiliza-
tion), fixed points (stable focus), (b1), (b2) Poincaré map (after stabilization), (c1) power spectrum, (c2)
phase portrait (after stabilization), (c3) phase portrait (before stabilization).

in determining the structural safety of the vibrating members. The shaded region in the
amplitude-frequency plot is unstable; the extend of unstableness depends on a number of
factors such as the amount of damping present, nonlinearity of spring, and the rate of chance
of the exciting frequency (Figure 3). Results of the numerical simulations, obtained from
the analytical equations, showed that the important dynamic characteristics of the system,
such as damping, nonlinearity and the amplitude excitations effects, still presented a periodic
behavior for these situations. The bending of the response is due to the nonlinearity, and is
responsible for a jump phenomenon. In the motion of the system near resonance the jump
phenomenon occurs. A periodic solution in the case of the angular velocity taken above the
resonance (after stabilization) is illustrated in Figure 4.
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Figure 6: Superharmonic resonance: (a) displacement-time response, (b3) Poincaré map (before
stabilization), fixed points (stable focus), (b1), (b2) Poincaré map (after stabilization), (c1) power
spectrum, (c2) phase portrait (after stabilization), (c3) phase portrait (before stabilization).

Comparing the results obtained by applying the approximate analytic method with
those obtained numerically it is concluded that the difference is negligible, proving the
correctness of the analytic procedure used.

In the future, it is possible to investigate this system with the nonideal source, and
nonideal vibrating systems are those for which the power supply is limited. Nonideal
problems are more realistic, and the model should take into account also the influence of the
dynamics of the oscillating mechanical elements on electrical properties of the DC motor [5].
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