Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 537930, 24 pages
doi:10.1155/2012/537930

Research Article

New Solutions for (1+1)-Dimensional and
(2+1)-Dimensional Ito Equations

A. H. Bhrawy,? M. Sh. Alhuthali,’ and M. A. Abdelkawy?

I Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, EQypt

Correspondence should be addressed to A. H. Bhrawy, alibhrawy@yahoo.co.uk
Received 20 March 2012; Revised 14 September 2012; Accepted 14 September 2012
Academic Editor: Massimo Scalia

Copyright © 2012 A. H. Bhrawy et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Using the extended F-expansion method based on computerized symbolic computation technique,
we find several new solutions of (1+1)-dimensional and (2+1)-dimensional Ito equations. These
solutions contain hyperbolic and triangular solutions. It is shown that the power of the extended
F-expansion method is its ease of use to determine shock or solitary type of solutions. In addition,
as an illustrative sample, the properties for the extended F-expansion solutions of the Ito equations
are shown with some figures.

1. Introduction

The nonlinear wave phenomena can be observed in various scientific fields, such as plasma
physics, optical fibers, fluid dynamics, and chemical physics. The nonlinear wave phenomena
can be obtained in solutions of nonlinear evolution equations (NEEs). The study of NLEEs
appear everywhere in applied mathematics and theoretical physics including engineering
sciences and biological sciences. These NLEEEs play a key role in describing key scientific
phenomena. For example, the nonlinear Schrodinger’s equation describes the dynamics of
propagation of solitons through optical fibers. The Korteweg-de Vries equation models the
shallow water wave dynamics near ocean shore and beaches. Additionally, the Schrodinger-
Hirota equation describes the dispersive soliton propagation through optical fibers. These
are just a few examples in the whole wide world of NLEEs and their applications, (see, for
instance, [1-4]). While the above mentioned NLEEs are scalar NLEESs, there is a large number
of NLEEs that are coupled. Some of them are two-coupled NLEEs such as the Gear-Grimshaw
equation [2], while there are several others that are three-coupled NLEEs. An example of a
three-coupled NLEE is the Wu-Zhang equation [4]. These coupled NLEEs are also studied in
various areas of theoretical physics as well.
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The exact solutions of these NEEs play an important role in the understanding of
nonlinear phenomena. In the past decades, many methods were developed for finding
exact solutions of NEEs such as the inverse scattering method [5, 6], improved projective
Riccati equations method [7, 8], Cole-Hopf transformation method [9], exp-function method
[10-16], bifurcation theory method [17], (G'/G)-expansion method [18, 19], homotopy
perturbation method [20], tanh function method [20-24], and Jacobi and Weierstrass elliptic
function method [25, 26]. Although Porubov et al. [27-29] have obtained some exact periodic
solutions to some nonlinear wave equations, they use the Weierstrass elliptic function and
involve complicated deducing. A Jacobi elliptic function (JEF) expansion method, which is
straightforward and effective, was proposed for constructing periodic wave solutions for
some nonlinear evolution equations. The essential idea of this method is similar to the tanh
method by replacing the tanh function with some JEFs such as sn, cn, and dn. For example,
the Jacobi periodic solution in terms of sn may be obtained by applying the sn-function
expansion. Many similarl repetitious calculations have to be done to search for the Jacobi
doubly periodic wave solutions in terms of cn and dn [30].

Recently, F-expansion method [31-34] was proposed to obtain periodic wave solutions
of NLEEs, which can be thought of as a concentration of JEF expansion since F here stands
for every function of JEFs. The objectives of this work are twofold. First, we seek to extend
others works to establish new exact solutions of distinct physical structures for the nonlinear
equations (1.1) and (1.2). The extended F-expansion (EFE) method will be used to achieve
the first goal. The second goal is to show that the power of the EFE method is its ease
of use to determine shock or solitary type of solutions. In this paper, we study two well-
known PDEs, namely, generalized (1+1)-dimensional and generalized (2+1)-dimensional Ito
equations. Many studies are concerning the (1+1)-dimensional Ito equation and the (2+1)-
dimensional Ito equation [35-42].

The history of the KdV equation started with experiments by John Scott Russell in
1834, followed by theoretical investigations by Lord Rayleigh and Joseph Boussinesq around
1870, and, finally, Korteweg and de Vries in 1895 [39]. The KdV equation was not studied
much after this until Zabusky and Kruskal (1965) [40] discovered numerically that its
solutions seemed to decompose at large times into a collection of “solitons”: well-separated
solitary waves. Ito [41, 42] obtained the well-known generalized (1+1)-dimensional and gen-
eralized (2+1)-dimensional Ito equations by generalization of the bilinear KdV equation as

X
Ust + Ugrxt + 3(Uylly + Ullyy) + 3uxxj udx' =0, (1.1)
[ee)
X
Upt + Ut + 32Uy + Ullyy) + By j updx’ + auy; + Puy = 0. (1.2)
oo}

Also Sawada-Kotera-Ito (SK-Ito) seventh-order equation is the special case of the generalized
seventh-order KdV equation as

s + 2521% Uy + 6315y + 378Ut oy + 1261715,
(1.3)
+ 63Uy Uzy + 42U Usy + 21Ulsy, + U7 = 0.

SK-Ito equation is characterized by the presence of three dispersive terms 1y, us,, and
uyy, respectively. SK-Ito seventh-order equation is completely integrable and admits of
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conservation laws [43]. Moreover, the Ito-type coupled KdV (ItcKdV) equation [44], written
in the following form:

Ut + AUy + POV + YlUyxx = 0; v+ p(uv), =0, (1.4)

if we take the special values a = —6, = -2, and y = -1. Equation (1.4) describes the
interaction process of two internal long waves which has infinitely many conserved
quantities [45, 46].

In this paper, we extend the EFE method with symbolic computation to (1.1) and
(1.2) for constructing their interesting Jacobi doubly periodic wave solutions. It is shown
that soliton solutions and triangular periodic solutions can be established as the limits of
Jacobi doubly periodic wave solutions. In addition, the algorithm that we use here is also a
computerized method, in which we are generating an algebraic system.

2. Extended F-Expansion Method

In this section, we introduce a simple description of the EFE method, for a given partial
differential equation as

G(u, Uy, Uy, Uz, Uy, ...) = 0. (2.1)

We like to know whether travelling waves (or stationary waves) are solutions of (2.1). The
first step is to unite the independent variables x, v, and t into one particular variable through
the new variable as

{=x+y—t, u(x,y,t) =U(Q), (2.2)
where v is wave speed, and reduce (2.1) to an ordinary differential equation (ODE) as
Guu,u',u”,...)=0. (2.3)

Our main goal is to derive exact or at least approximate solutions, if possible, for this ODE.
For this purpose, let us simply use U as the expansion in the form

u(x,y,t) =U() = iaiF" + ia_iF"', (2.4)
i=0 i=1

where

F' =V A+BF2+CF%, (2.5)
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Table 1: Relation between values of (A, B, C) and corresponding F.

A B c F©)
1 -1-m? m? sn(¢) or cd($) = en(g)/dn(Q)
1-m? 2m? -1 —m? cn(g)
m? -1 2 — m? -1 dn(g)
m? -1-m? 1 ns(¢)(1/sn(¢)) or de(¢) = dn(¢)/en(g)
—m? 2m? -1 1-m? nc(¢) =1/en(g)
-1 2 —m? m? -1 nd(¢) =1/dn()
1 2 —m? 1-m? sc(¢) = sn(g)/en(L)
1 2m? -1 —m2(=1 = m?) sd(2) = sn(¢)/dn(2)
1—m? 2 -m? 1 cs(¢) = en(g)/sn(L)
—m2(1 - m?) 2m? -1 1 ds(¢) = dn(g)/sn(2)
1/4 (1-2m?)/2 1/4 ns(g) +cs(g)
(1-m?)/4 (1+m?)/2 (1-m?)/2 nc(g) +sc(Q)
1/4 (m*-2)/2 m?/4 ns() +ds(g)
m?/4 (m*-2)/2 m?/4 sn () +ics(l)
the highest degree of (d”’U/d(P), is taken as
P
O(%) =N+p, p=123,..., (2.6)
aru
O(qu—€p>:(q+l)N+p, q=0,1,2,..., p=1,23,..., (2.7)

where A, B, and C are constants, and N in (2.3) is a positive integer that can be determined by
balancing the nonlinear term(s) and the highest order derivatives. Normally N is a positive
integer, so that an analytic solution in closed form may be obtained. Substituting (2.1)-(2.5)
into (2.3) and comparing the coefficients of each power of F(¢) in both sides, we will get an
overdetermined system of nonlinear algebraic equations with respect to v, ag, a, .. .. We will
solve the over-determined system of nonlinear algebraic equations by use of Mathematica.
The relations between values of A, B, C, and corresponding JEF solution F() of (2.4) are
given in Table 1. Substituting the values of A, B, C, and the corresponding JEF solution F(¢)
chosen from Table 1 into the general form of solution, then an ideal periodic wave solution
expressed by JEF can be obtained.

sn(¢), en(¢), and dn(¢) are the JE sine function, JE cosine function, and the JEF of the
third kind, respectively. And

a?(g) =1-sn’(g),  dn’*(§) =1-m’sn’(), (2.8)

with the modulus m (0 < m < 1).
When m — 1. the Jacobi functions degenerate to the hyperbolic functions, that is,

sn{ — tanh¢, cng — sechg, dn¢ — sechg, (2.9)
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when m — 0, the Jacobi functions degenerate to the triangular functions, that is,
sng — sing, cng — Cos g, dn — 1.
3. Generalized (1+1)-Dimensional Ito Equation

We first consider the generalized (1+1)-dimensional Ito equation (1.1) as follows:

X

U + Uyxxt T 3(uxut + uuxt) + 3uxx f utdx' = 0,
©

if we use the transformation u = v,, it carries (3.1) into

Oxtt + Uxxxxt + 3(UxxOxt + UxUsxt) + 30xxx0y = 0,

if we use ¢ = x — vt transforms (3.2) into the ODE, we have

WV + VO _3p(V'V" + V'V") = 30V"V' =0,

where by integrating once we obtain, upon setting the constant of integration to zero,

V" +3(V') —wV' =0,
if we use the transformation W = V’, then (3.4) can be written as follows:
W’ +3W? —vW = 0.

Balancing the term W” with the term W? we obtain N = 2 then

W) =ao+arg+a¢ ' +ax® +arp?, ¢ =1/A+By?+Cyt.

(2.10)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Substituting (3.6) into (3.5) and comparing the coefficients of each power of ¢ in both
sides, we will get an over-determined system of nonlinear algebraic equations with respect to
v,a;, i =0,1,-1,-2,2. Solving the over-determined system of nonlinear algebraic equations

by use of Mathematica, we obtain three groups of constants

(1)
2B
a1=a41=0, ap = —?, a = -2C,
2(B? +12AC)
4 =-24, y=-—_ 02

B

(3.7)
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(2)
2(B*-3AC
ai1=a,=a_1=0, ap = —§, a_, =-2A, V= —g, (3.8)
3 B
3)
2(B*-3AC
ai1=ajs=a1=0, ap = —§, ap = -2C, V= —g. (3.9)
3 B
The solutions of (3.1) are
2
2(1+md) 2((1+m2) +12m2>
U =—-—=-2msn°| x— t
3 1+m?2
(3.10)
2((1+m2)* +12m?)
-2ns?| x - t ],
1+m?2
2
2(1+md) 2((1+m2) +12m2>
U =- ——>-2m°cd”| x- t
3 1+ m?
(3.11)
2((1+m?) + 12m2)
-2d?| x- t ],
1+ m?2
202m?~1) 2(12m? (m? - 1) + (2m* = 1)°)
Uz = — — +2m?en?| x+ 1 t
(3.12)
N 2(12m? (m? - 1) + (2m* = 1)°)
—2(1—m>nc X+ o 1 t ],
2(2-m?) . 2((2-m?)*-12(-1+m?))
u4=—T+2dn X — oy t
(3.13)

2((2-m?)*-12(-1+ m2)>t

2 —m? !

- 2<m2 - 1>nd2 x -

2
20w L 2((1+m?)* - 3m?)
Us= - ——= -2ns"| x t |, (3.14)
3 1+ m?
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2
2(2 — m? 212(1—m2)+(2—m2)
u6=—%—2<1—m2>sc2 X+ < oy >t
(3.15)
2(12(1 - m?) + (2-m?)?)
—2¢s?| x+ oy t ],
2em-1) N 2(-12m2 (1= m?) + (<1 +2m?)")
u7=T+2m <1+m>sd x + o 1 t
(3.16)
. 2(-12m2 (1= m?) + (<1 +2m?)")
—-2ds”| x+ 1 t],
2(1-2m?
2
1 2(075 + (05 - m?)*) 2(075+ (0.5 - m?)?)
~3 ns| x+ 052 t | +cs| x+ 052
-2
1 2(075+ (0.5 - m?)?) t 2(075 + (0.5 - m?)) t
—E ns| x+ 05— m2 +Ccs| x+ 05— m2 ,
(3.17)
1+m?> 1-m?
Ug = — +

3 2

2(12(0.5 - 05m?) (0.25 - 0.25m) + (0.5 + 0.5m?)”)
0.5m2 + 0.5 !

X nc| x +

2(12(05 - 0.5m2) (0.25 - 0.25m) + (05 +0.5m%)°)
t

e 05m2 + 05
1om? 2(12(05 - 0.5m2) (0.25 - 0.25m%) + (05 +0.5m%)°)
+ nc| x+ t
2 0.5m% +0.5
2 -2
2(12(0.5 - 0.5m?) (0.25 - 0.25m%) + (0.5 + 0.5m?)")
+sc| x + t ,

0.5m2 + 0.5
(3.18)
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m> -2
Uo = = 3
o 2(075m + (-1 + 0.5m2)2>t
I e 05m? —1
2(075m + (-1 +0.5m?)*)
t
+ds| x+ 0521
1 . 2(0.75m? + (<1 +0.5m?)*)
73 W 05m2 -1
-2
2(075m + (<1 +0.5m?)*)
+ds| x+ 05 -1 f ,
(3.19)
= m* -2
1 = 3
o 2(0.75m* + (-1 + 0.5m2)2>t
I e 05m2 -1
2(075m + (-1 +0.5m2)%)
+ics| x+ t
0.5m? — 1 (3.20)
" 2(075m" + (-1 + 0.5m2)2>t
B e W 05m2 -1
-2
. 2(075m + (-1 +0.5m?)%)
+ics| x + 05 —1 £ ,
2
2(1 + m? 2 (1+m2) -3m?
u12=—¥—2dc2 x - ( T >t , (3.21)
2(2m? ~1) N 2(-3m?(m? - 1) + (2m* - 1)*)
u13:—T—2<1—m>nc X+ 1 t ], (3.22)
2
2(2 — m? 2((2-m?)"+3(-1+m?)
Uiy = —w—2<m2—1)nd2 x - ( >t , (3.23)
3 2 —m?

2((2-m2)*-3(1-m?))
s = - 2 _2cs?[ x+ t, (3.24)
3 2 —m?
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2(3m?(1 - m?) + (<1+2m?)?) t

2m? -1

2((05-m?)*-3/16)
t

0.5 — m?

2
2((0.5 - m?)” - (3/16)) t

0.5 - m?

2((05+0.5m?)* ~3(0.5 - 0.5m) (0.25 - 025m2)>

2((05+0.5m?)* = 3(0.5 - 0.5m) (0.25 - 025m2))

0.5m?> + 0.5

0.5m? + 0.5

2((05m? -1)*-3/16)
t

0.5m? -1

2((05m? -1)* ~3/16)
t

2((05m? ~1)* = m*/16)

0.5m? -

2((05m*~1)* - m*/16)

0.5m2 — !

t

0.5m? -

2((1+m2)* - 3m?)

t],
1+m?

(l+m2) —3m>

2(2m?
Ug= ——= ( 3 ~1) -2ds?| x+
2(1—2m2) 1
u17=T—§ ns| x+
+cs| x+
e o 1+m2+1—m2
18 = 3 5
x| nc| x+
+sc| x+
u __m2—2_1 ns| x+
19 = 3 5
+ds| x+
m>-2 m
Uyy = 3 +7 sn| x+
+ics| x+
2(1+m
Uy = —
2(1+m
Up = —
2(2m <
Uy = — — +2mcn

t],
1+m?

2((2m? = 1)* = 3m2(m? - 1))

2m? -1

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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2
2(2 — m? 2 (Z—mz) +3(—1+m2)
u24=—%+2dn2 x- ( — >t , (3.33)
2
2(2 - m? 2((2-m?)"-3(1-m?)
sy = _¥_2<1—m2>sc2 X+ < 0 >t ) (3.34)
2(2m? - 1) A 2(Bm(-m?) + (-1 2m2)%)
Ug = T+2n12<1 + m2>sd x + 1 , (3.35)
2
20y af 2((05-m?)*~3/16)
7o 6 2 05— m?
(3.36)
2((05-m?)*-3/16)
+cs| x + 052 t ,
1+m?> 1-m?
Urxg = — 3 + 5
2((0.5+0.5m?)* - 3(0.5 - 05m?) (025 - 0.25m%) ) t
x +
ey 0.5m2 +0.5 (337)
2((05+0.5m?)* - 3(0.5 - 05m?) (025 - 0.25m%) )
+sc| x+ t ,
0.5m2 + 0.5
w2 2((05m* ~1)* - m?/16)
S T i G 0.5m2 — 1 !
(3.38)
2((05m? -1)* - m?/16)
+ds| x+ 052 —1 t ,
22 2((05m? ~1)* - m*/16)
T T B 05m? -1 !
(3.39)

2((05m? ~1)* - (m*/16))
+ics| x+ 051 t




Mathematical Problems in Engineering 11

3.1. Soliton Solutions

Some solitary wave solutions can be obtained, if the modulus m approaches to 1 in (3.10)—
(3.39) as follows:

4
wy = =2 - 2tanh®(x — 16t) — 2coth?(x — 16t),

Uz = — % + 25ech2(x +2t),
2

U3z = — 3 + 2sech?(x — 2t),
4 2

Uy = — 3 2coth”(x —t),

2
Uzs = — 3 2csch?(x + 2t),

Uz = % +4sinh®(x + 2t) — 2csch?(x +2t),
Usy = _?1 - %(coth(x — 4t) + csch(x - 4t))? - %(coth(x — 4t) + csch(x — 41)) 72,
Usg = _?1 - %(tanh(x — 4t) +icsch(x — 4t)) + %(tanh(x — 4t) +icsch(x — 4t)) 2,

11 1 1 o (3.40)
Uzg = ?—§<coth<x—zt> +csch<x—1t)> ,
-1 1 1 . 1\\7?
Uy = ?+§<tanh<x—4—1t) +1csch<x—zt>> ,
4 2
Uy = — 3 2tanh”(x - t),

2
Uy = 3 + 4sinh2(x +2t),

-1 1 1 1\\*
= ——-= h{x- - h{ x- -
Uy3 3 2<C0t <x 4t> + csc <x 4t)> ,

(coth(x + 2t) + csch(x + 21))?,

W =
N =

Uy =
-1 1 3 . 3\\*
Uy = 373 <tanh<x - Zt) + 1csch<x - Zt>> .

3.2. Triangular Periodic Solutions

Some trigonometric function solutions can be obtained, if the modulus m approaches to zero
in (3.10)—(3.39) as follwos:

2
Uss = =3 = 2csc?(x - 2t),

2
Uy = — 3 2sec?(x — 2t),

2
Usg 3” 2sec?(x - 2t),
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t=0

Figure 1: The modulus of solitary wave solution u; (3.10) where m = 0.5.

Ugg = — g — 2tan?(x + 16t) — 2cot?(x + 16t),

1 1
Usg = 3 E(csc(x +4t) + cot(x +4))> - = (Csc(x +4t) + cot(x + 4t)) 72,

1 1 1

Us) = — 3 + E(sec(x +7t) + tan(x + 7£))% + E(sec(x +7t) + tan(x + 7)) 2,
2

Usy = 3 sin?(x — 2t),

4
Uss = =3 = 2cot?(x + 1),

u —1—1<csc<x+1t>+cot< 1>>
#7372 4 4
Uss = 1 1 sec x—lt + tan —1>
»=7373 2 2 ’
u56=§—%sin2(x+§t),
4 2
Usy = — 3 —2tan”(x + t),
u —1—1 CcsC x+1t + cot 1
®7 372 4 Y
1+1 1t Lt 1
Usg = 3%3 sec| x > an 2

The modulus of solitary wave solutions u;, up, uz1, and up3 is displayed in Figures 1,
2,3, and 4, respectively, with values of parameters listed in their captions.

(3.41)
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(a) (b)

Figure 4: The modulus of solitary wave solution u3 (3.32) where m = 0.5.

4. Generalized (2+1)-Dimensional Ito Equation

In this section we consider the generalized (2+1)-dimensional Ito equation (1.2) as follows:

X
Upt + Ut + 32Uy + Ullyy) + By I updx' + auy; + Puy =0, (4.1)
(o]

if we use the transformation u = vy, it carries (4.1) into

Oxtt + Uxxxxt + 3(20xxUxt + UxUsxt) + 3Vxxx 0 + AUyt + Posxt =0, (4.2)
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if we use { = x + y — vt carries (4.2) into the ODE, we have
(v-a-pV" -V -3 (V') =0, (4.3)
where by integrating twice we obtain, upon setting the constant of integration to zero,
(v—a-p)V' -V"-3(V')? =0, (4.4)
if we use the transformation W = V', it carries (4.4) into
(v-a-p)W-W"-3W?=0. (4.5)
Balancing the term W" with the term W2, we obtain N = 2, then

W) =ao+aig+a1¢ " +ay? +any?, ¢ =1/A+By?+Cyt. (4.6)

Proceeding as in the previous case, we obtain

1)

2B
a1=aq1 = 0, ap = —?, a = —2C,
(4.7)
2(B2 +12AC)
a_, =-2A, v=a+f- ——,
B
(2)
2B 2(B%?-3AC
ai1=ap=a-1 =0, ap = 5 a_p =-2A, v=a+f- %, (4.8)
3)
2B 2(B%-3AC
ai1=a,=a-1=0, aO:—?, a, = -2C, v:a+ﬂ—¥. (4.9)
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The solutions of (4.1) are

2 2
2(1 + m?) L 2((1+m2) +12m>
u1——T—2msn x+| a+p- o
X 2((1+m2)* +12m?)
-2ns°| x+y+| a+p- T3 ,
2 2
21emd) ., 2((1+m?)* + 12m2)
uz——T—2mcd x+y+| a+p- T
X 2((1+m?)" + 12m?)
-2dc’| x+y+ | a+p- To 2 ,
202m-1) 2(12m? (m? - 1) + (2m? - 1)°)
Us == ————— +2m’en® | x+y+ | a+p+ P
N 2(12m? (m? - 1) + (2m* = 1)°)
_2<1—m>nc x+y+| a+p+ 21 ,
2(2-m?) . 2((2-m?)" - 12(-1+m?))
u4:—T+2dn xX+y+| a+p- o
2((2-m?)* = 12(-1+m?))
_ 2 _ 2 —
2<m 1>nd x+y+| a+p Py t,
~ 2(1+m2) 5 ) 2<(1+m2)2—3m2>
Uus = - ———— - 2ns x+y+| a+p- o2 ,
2
22— m?) N 2(12(1 - m?) + (2-m?)?)
u6=—T—2<1—m>sc X+y+| a+p+ - t

2(12(1 - m?) + (2-m?)?)

2 —m? !

-2c8’| x+y+ | a+p+

15
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2(2m
!
2(-12m2 (1 = m?) + (-1 +2m2)")
2 2\ o2
+2m<1+m>sd x+y+| a+p+ 2 1
2(-12m2 (1 - m?) + (-1+2m?)")
-2ds?*[ x+y+ | a+p+ o~ 1 ,
2(1-2m?
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4.1. Soliton Solutions

Some solitary wave solutions can be obtained, if the modulus m approaches to 1 in (4.10) as

follows:
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4.2, Triangular Periodic Solutions

Some trigonometric function solutions can be obtained, if the modulus m approaches to zero
in (4.10) as follows:
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If we take m — 1, in the two Sections 3 and 4, we obtain the solutions degenerated
by the hyperbolic extended hyperbolic functions methods (tanh, coth, sinh, sech,..., etc.)
(see, for example [42]). Moreover, when m — 0, the solutions obtained by triangular and
extended triangular functions methods (tan, sine, cosine, sec,.. ., etc.) are found as disused in
Sections 3.1, 3.2, 4.1, and 4.2.

5. Conclusion

By introducing appropriate transformations and using extended F-expansion method, we
have been able to obtain, in a unified way with the aid of symbolic computation system-
mathematica, a series of solutions including single and the combined Jacobi elliptic function.
Also, extended F-expansion method showed that soliton solutions and triangular periodic
solutions can be established as the limits of Jacobi doubly periodic wave solutions. When
m — 1, the Jacobi functions degenerate to the hyperbolic functions and give the solutions by
the extended hyperbolic functions methods. When m — 0, the Jacobi functions degenerate to
the triangular functions and give the solutions by extended triangular functions methods. In
fact, the disadvantage of extended F-expansion method is the existence of complex solutions
which are listed here just as solutions.
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