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This work develops a computational approach for boundary and initial-value problems by using
operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds
for errors in the solutions and in their derivatives can be estimated providing accuracy measures.

1. Introduction

Differential equations are ubiquitous in engineering daily life but their solutions are
sometimes very difficult, mainly if they are nonlinear. Several of them do not have an
analytical solution describable by a finite combination of elementary functions, or even by
an unlimited series with a determinable recurrence relation.

In previous works, analytical and numerical results were obtained for nonlinear
differential equations [1–3], and an algorithm called SIV (Solving Initial Value) was
developed. Here, the problem of determining the error limits for SIV is emphasized,
providing quality parameters for the method.

In Section 2, some general theoretical considerations about a numerical method for
differential equations, by using expansions in Hilbert space, are presented. Error upper
bounds estimation is discussed in Section 3, including some examples. Section 4 concludes
the reasoning.

2. Methodology

Problems described by differential equations can be submitted to initial conditions and, in
those cases, they are called initial-value problems (IVP) and there are a number of softwares
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dedicated to their solutions, based on Runge-Kutta and Adams methods [4] constantly
improved [5, 6], mainly considering applications to physics problems [7–10].

Lipschitz theorem gives a sufficient condition for a differential equation to have a
unique solution and, under the theorem assumptions, mass matrix is guaranteed to be
nonsingular, providing that the classical methods can start running and obtaining, for
sequential intervals, continuous expansions for limited functions [11]. The precision is only
limited by the computational apparatus.

Besides IVP problems, there are the boundary value problems BVP that, mainly, have
been solved by using numerical methods derived from Galerkin and variational methods [12,
13]. Previous works [1–3] developed analytical and numerical methods, based on a spectral
approach, that can be applied either to IVP or to BVP.

Details of the method, called SIV, are described mainly in [3]. Here, some hints are
presented for the sake of clarity, in order to discuss precision issues.

The implemented evolutive algorithm is genetic and differential [14], conceived for an
evolution on a Hilbert space, with which gene is represented by the coefficients of a possible
expansion in terms of a basis of this space and corresponding to a sixty-individual vector
population (chromosomes). Each generation is submitted to ranking contests.

The error obtained substituting the vector in the equation is the criterium to determine
the individual ranking position. The lesser the error is, the better is the individual ranking
position. Selecting the reproducers for the next generation is performed by attributing greater
choice probability to the best ranked individuals [3].

Heritage is simulated by taking two vectors and combining them to generate a
descendent that is a new vector with the same dimension of the original vectors. The criteria
to choose if the gene in a locus is given by one or another original vector are the cross-over
with the loci randomly chosen [15].

The introduction of learning rules in the algorithm [1, 3] reduced about a hundred
times the processing time because the search space is continually contracted with error
margins decreasing.

Considering the solution f(u) to be continuous and expressed as a linear combination
of the elements from an orthogonal basis Bk(u) in the Hilbert functional space is the main
assumption of the method presented in [3].

Under these conditions, f(u) =
∑n

k=0 ckBk(u), with ck = 〈f | Bk〉, 〈Bj | Bk〉 = g(k)δi,j ,
and the symbol 〈· | ·〉 represents the internal product in the Hilbert space [3].

Defining 〈f | Bk〉 =
∫b
a f ·Bkw(u)du with w(u) being the nonnegative weight function,

considering the interval [−1, 1] and w(u) = 1, the Legendre polynomial basis is obtained with
g(k) = 2/(2k + 1). For the same interval and by using generic w(u), Jacobi polynomials are
obtained. Legendre and Chebyshev polynomials are particular cases of Jacobi polynomials.
For half-limited intervals, the Laguerre polynomials are used; for unlimited intervals, the
Hermite polynomials are adequate.

Solving differential equations with orthogonal series approximations have been
thoroughly studied in the last three decades, providing efficient algorithms [16–19]. In this
approach, it is possible to transform a differential equation into an algebraic one, giving the
coefficients of the series expansion. This transformation is performed by using operational
matrices, extensively discussed in [3].

Completeness and orthogonality in Hilbert spaces are related to certain domains,
depending on the basis chosen. Consequently, it is important to develop basis transforma-
tions to consider this fact. In [1, 3] a method for transposing domains changing a variable that
transforms the differential equation was developed. Besides, initial and boundary conditions
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need to be transposed in the same way and the program described in [1, 3] takes care of this
transposition, too.

3. Error Upper Bounds

One of the main problems in the numerical solutions of differential equations is how to
estimate the error margins. In the majority of the cases, it is possible to stipulate the maximum
tolerable error for each step but, as the integration for the whole interval comprehends
thousands of steps, the cumulative error is difficult to be obtained [20].

Here, a method to determine the upper bounds for the absolute error in an integration
process is described, even if the algorithm and the analytical solution are unknown. These
ideas can be used, in order to estimate the confidence for numerical approximations of the
solution [21].

Starting with the differential equation written in the following form:

dqyt

duq
= G

(
yt, y

(1)
t , y

(2)
t , . . . , y

(q−1)
t , u

)
, (3.1)

the polynomial solution found is replaced on G(yt, y
(1)
t , y

(2)
t , . . . , y

(q−1)
t , u), evaluating G for

the whole interval. This reasoning allows the calculation of the relative dispersion of the
coefficients of the series that approximates the solution. In order to illustrate the process,
Example 1 is developed.

3.1. Example 1

As an example of dispersion calculation, the boundary value problem given by

D4 +D3D1 − D0

2
+ 3 sin2x + (4D0 + 3) cosx + (D1 − sinx)2 +

D2

2
= 0 (3.2)

is considered, with Di representing the i-derivative of the function to be found.
The domain is x ∈ [0, π]; the boundary conditions are y(0) = y(π) = y′(0) = 0 and

y′(π) = −π , with analytical solution being y(x) = x sinx.
Transposing the domain to the interval [−1, 1], by using the methodology described in

[3, Sections 3.3 and 5], (3.2) becomes

sin
(

π
(u + 1)

2

)

−
(

2D1t

π

)2

+ cos
(

π
(u + 1)

2

)

(4D0t + 3) +
2D2t

π2

+
16D4t

π4
+ 3 sin

(

π
(u + 1)

2

)2

+
16D1tD3t

π4
= 0,

(3.3)

with boundary conditions being yt(−1) = yt(+1) = y′
t(−1) = 0, and y′

t(+1) = −π2/2.
Then, isolating the major order derivative, choosing an order 12 Legendre series given

in Table 1 from a first interaction of the SIV algorithm, described in [3, appendix B], as a
solution candidate, and applying the same SIV procedure [3] to integrate it four times, the
function shown in Figure 1 is obtained.
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Table 1: Order 12 Legendre series for Example 1.

Order Coefficient

0 1.0000E + 00
1 5.6829E − 01
2 −1.0793E + 00
3 −6.1141E − 01
4 8.1334E − 02
5 4.4221E − 02
6 −2.0899E − 03
7 −1.1126E − 03
8 2.6910E − 05
9 1.4139E − 05
10 −2.0746E − 07
11 −1.0491E − 07
12 1.0046E − 09

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

u

G
(u
)

−30

−20

−10

0

10

20

30

Figure 1: G(u) for Example 1.

After the integrations, the coefficients of the result are compared with the coefficients
of the candidate and the dispersion for each coefficient is determined. In spite of not having
a statistical meaning, the term dispersion is used, for the sake of simplicity.

It is worth noticing that, for the Legendre basis
∫1
−1[Pk(u)]

2du = 2/(2k + 1), and,
consequently, increasing the order, this term decreases meaning that higher-order coefficients
with the same absolute errors present greater relative errors.

Consequently, the dispersion to be exhibited follows the following relation:

σrel
k = σk

√
2k + 1

2
. (3.4)



Mathematical Problems in Engineering 5

Coefficient order

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
×10−8

σ
re

l

Figure 2: Relative dispersion of the coefficients (Example 1).

Figure 2 shows the relative dispersion for the coefficients of the approximated solution
presented in Example 1. This dispersion calculation is used to estimate the error upper
bounds, as shown in the following.

3.2. Calculating Error Upper Bounds

3.2.1. Solution Error Upper Bound

Considering f(u) given by a Legendre series approximation f∗(u), up to order n, one can
write f(u) =

∑∞
k=0 ckPk and f∗(u) =

∑n
k=0(ck + δk)Pk, with δk being the error affecting ck.

Consequently, the total error up to order n is given by

δf(u) = f∗(u) − f(u) =
n∑

k=0

(ck + δk − ck)Pk =
n∑

k=0

δkPk =⇒ δf(u) ≤
n∑

k=0

|δkPk| ≤
n∑

k=0

|δkPk,max|.

(3.5)

Considering the worst scenario, all δk will contribute to increase the error exactly
where Pk is maximum. As a matter of fact, some increase the error and some decrease it.
In any case, the error upper bound is given by (3.5) and the maximum value of Pk, for any k,
is 1.

Consequently, the maximum error in the polynomial approximation is

|δ|max =
n∑

k=0

|δk|. (3.6)
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3.2.2. Derivative Error Upper Bounds

For each derivative, the error bound calculation is analogous to the procedure for the solution
error. For the j-order derivatives, the error can be written as δfj(u) = f∗j(u)−fj(u), for j from
1 to the differential equation order.

This calculation can be made by using the differentiation matrix MLD [2]. Denoting
the exponent of the differentiation matrix by the number of times that was applied to the
coefficients vector,

δf
j

k(u) =
[
M

j

LD(ck)
T −M

j

LD(ck + δk)
T
]
Pk, (3.7)

for j from 1 to the differential equation order. Considering Pk,max = 1,

δf
j

k(u) = [1 · · · 1]Mj

LD(δk)
T . (3.8)

The error upper bounds in the derivatives are slightly greater than those in the
solutions, because the derivatives are expressed by lower order polynomials. In spite of this,
the error margins are very low. As a matter of illustration, if the solution of order 7 is used,
the error upper bounds for the first, second, and third derivatives are,

δf1
max = δ1 + 3δ2 + 6δ3 + 10δ4 + 15δ5 + 21δ6 + 28δ7,

δf2
max = 3δ2 + 15δ3 + 45δ4 + 105δ5 + 210δ6 + 378δ7,

δf3
max = 15δ3 + 105δ4 + 420δ5 + 1260δ6 + 3150δ7,

(3.9)

with δi representing the coefficient errors.

3.2.3. Transposing Error Upper Bounds

The expressions for the error upper bounds developed in the former sections are for the work
domain, but it is important to transpose them for the domain of the original equation. The
domain transposition method developed in [1, 3] can be applied to the errors.

For instance, in order to transpose the first-order derivative error, it can be written as
D1 = D1tλ, with du/dx = λ and, therefore

δ1 = δ1tλ. (3.10)

For the second-order derivative,

D2 = D2tλ
2 +D1t

dλ

du
λ =⇒ δ2 = δ2tλ

2 + δ1t
dλ

du
λ. (3.11)

For superior-order derivatives, the reasoning is analogous.
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Table 2: Error upper bounds for Example 1.

Function Error upper bound

D0 5.21E − 08
D1 1.84E − 07
D2 8.32E − 07
D3 4.44E − 06
D4 2.38E − 05

3.3. Finishing Example 1

For Example 1, the upper bounds of the errors for the Legendre series in the interval [−1, 1]
can now be calculated by using the transposing procedures described previously and are
shown in Table 2. Additionally, Figure 3 shows the local errors along the interval. Again, the
SIV procedure described in [3] is used, in order to search the solutions.

3.4. Example 2

In the following example, the tools described here and in [1–3] will be applied to a boundary
value problem, running in 4 GB RAM processor, and taking 20 s for the whole processing. The
differential equation to be solved is

D4 +
4D1

(
3D1x

(
x4 − 1

) − 9x2 + 2
)

(1 + x2)3 arctan(x)
= 0, (3.12)

with x ∈ [0, 1] and y(0) = y = 0; y(1) = π2/16 and y(1) = π/4, with Di representing the
i-derivative of the function to be found.

Under these conditions, the analytical solution is y = arctan2(x), and, after 100
generations of the SIV algorithm described in [3, appendix B], in the Jacobi polynomial
domain, the dispersion of the coefficients is shown in Figure 4. The residual values when
the approximated solution is replaced in (3.12) are shown in Figure 5.

The error upper bounds are given in Table 3, the obtained solution is

f∗(x) = arctan2(x) + 3.5x10−17 arctan(x) + 5.7x10−16arctan3(x) + 2.8x10−18, (3.13)

and considering that the analytical solution is given, the local error for the interval can be
found and is shown in Figure 6.

4. Conclusions

Since the seminal work of Chen and Hsiao [22], the research about operational matrices
and the computational capacity advances permitted a strong development in numerical
solutions for differential equations. The SIV algorithm developed in [1, 3] gives an interesting
combination of operational matrices and computational techniques, by using polynomial
approximations for the solutions.
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Figure 3: Local errors (Example 1).
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Figure 4: Relative dispersion of the coefficients (Example 2).
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Figure 5: Residual values (Example 2).

Table 3: Error upper bounds for Example 2.

Function Error upper bound

D0 9.56E − 018
D1 1.54E − 016
D2 9.92E − 016
D3 4.23E − 015
D4 1.98E − 013



10 Mathematical Problems in Engineering

Error in D0

x

×10−16

0 0.2 0.4 0.6 0.8 1
−2

0

2

(a)

×10−15

x

0 0.2 0.4 0.6 0.8 1
−1

0

1

Error in D1

(b)

×10−15

x

0 0.2 0.4 0.6 0.8 1
−2

0

2

Error in D2

(c)

−0.5
0

0.5

x

0 0.2 0.4 0.6 0.8 1

×10−14

Error in D3

(d)

−5

0

5

x

0 0.2 0.4 0.6 0.8 1

Error in D4

×10−14

(e)

Figure 6: Local errors (Example 2).
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Several advantages are inherent to the method:

(i) the basis of the Hilbert spaces is complete and the solutions are square integrable;
consequently, increasing the order of the series, the approximation is improved;

(ii) as the elements of the basis are orthogonal, changing the coefficients of a component
does not interfere with the precision of the other components;

(iii) the learning process of the algorithm reduces the search space, reducing the
computational costs and decreasing the error margins;

(iv) the error bounds can be determined in a very simple way.
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