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The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using
this rule the system is converted to a nonlinear block system and then by solving this nonlinear
system we find approximate solution of nonlinear Volterra integral equations system. One of
the advantages of the proposed method is its simplicity in application. Further, we investigate
the convergence of the proposed method and it is shown that its convergence is of order O(h?).

Numerical examples are given to show abilities of the proposed method for solving linear as well
as nonlinear systems. Our results show that the proposed method is simple and effective.

1. Introduction

We consider the system of second kind Volterra integral equations (VIE) given by
fx) =g(x)+ f K(x,s,f(s))ds, 0<s<x<X, (1.1)
0

where

F@) = [Ax), L@, @], 8(0) = [81(2), 82(%), -, (0],
klll(X,S,fl,...,fn) klln(x,s,fl,...,fn) (12)
K(x,s,f(s)) = : : .
kni(x,8, fi,..., fu) == knn(x,, f1,..., fn)
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Numerical solution of Volterra integral equations system has been considered by many
authors. See for example [1-5].

In recent years, application of HPM (Homotopy Perturbation Method) and ADM
(Adomian Decomposition Method) in nonlinear problems has been undertaken by several
scientists and engineers [6-8]. HPM [8] was proposed by He in 1999 for the first time and
recently Yusufoglu has proposed this method [9] for solving a system of Fredholm-Volterra
type integral equations. Block by block method was suggested by Young [10] for the first
time in connection with product integration techniques. On the other side, the engineers are
facing certain challenges to deal with complexity and efficient mathematical modeling. Thus,
there are several research have being carried out related to these problems. For example, more
details on the modeling of complexity we refer to [11], direct operational method to solve a
system of linear in-homogenous couple fractional differential equations, see [12] and for a
class of fractional oscillatory system, see [13].

In this paper, we consider block by block method by using Simpson’s 3/8 rule for
solving linear and nonlinear systems of Volterra integral equations. And we make a block by
block method comparison between our method and HPM.

This paper is organized as follow: in Section 2, we present some background material
on the use of this method. In Section 3, we prove the convergence result. Finally, numerical
results are given in Section 4.

2. Starting Method

Consider a system of nonlinear Volterra integral equations in (1.1) and further, we suppose
that the system equation (1.1) has a unique solution. However, the necessary and sufficient
conditions for existence and uniqueness of the solution of (1.1) can be found in [14]. The
idea behind the block by block methods is quite general but is most easily understood by
considering a specific. Let us assume that m = 2 in (1.1) and use the Simpson’s 3/8 rule as a
numerical integration formulae. Let F;; = f;(x;) then

Fi3= f1(x3) = g1(x3) + fx3 ki1(x3,s, fi(s))ds + IX3 ki(x3,8, f2(s))ds,
0 0

(2.1)
X3 X3
Frz = fo(x3) = @(x3) +I ko (x3, s, fi(s))ds +J‘ koo (x3, 8, f2(s))ds,
0 0
approximating the integrals by Simpson’s 3/8 rule, we have
3h
Fis=81(x) + =
3h

x {k1,1(x3, x0, F1,0) + 3k1,1(x3, x1, F1,1) + 3k1,1(x3, x2, F12) + ki,1(x3,x3, F13)} + 3

x {k12(x3,x0, F20) + 3k1,2(x3,x1, F2,1) + 3k1,2(x3, X2, F22) + k12(x3, %3, F23) },
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3h
Fr3 = g(x3) + g

3h
x {ka1(x3,x0, F10) + 3ko1(x3, x1, F1,1) + 3ko,1(x3, X2, F12) + k2,1 (x3, X3, F13) } + 3
x {kop(x3,x0, F20) + 3kop(x3,x1, F2,1) + 3kop(x3, %2, Fap) + kop(x3, x3,F23)},
(2.2)
where
Fip = g1(x0), Fro = g2(x0). (2.3)
Further we also get
X2 X2
Fip = f1(x2) = g1(x2) +f ki1(x2,s, fi(s))ds + f kip(x2,s, f2(s))ds,
0 0
(2.4)

F2,2 =~ fz(xz) = gz(.X'z) + J'Oz k2,1 (.’)Cz, S,f1 (s))ds + IOZ kz/z(Xz, S,fz(S))dS.

In order to evaluate the integrals on the right hand sides, we introduce the points x,,3 = 2h/3,
X4/3 = 4h/3 and the corresponding values F,/3, F4/3 and use the Simpson’s 3/8 rule with step
size 2h/3, then we gain

h
Fip=gi(x2) + 1

x {k1,1(x2, x0, F10) + 3k1,1(x2, x2/3, F1,2/3) + 3k1,1(x2, X473, F1,4/3) + k1,1(x2, %2, F12) }

h
+ Z{kl,Z(XZ/ X0, Fo,0) + 3k1,2(x2, X273, Fa.2/3) + 3k12(x2, X473, Fa,a/3) + k12(x2, x2, F2) },

h
Frp = go(x2) + 1

x {ko,1(x2, x0, F1,0) + 3ko1(x2, X2/3, F1,2/3) + 3ka1(x2, X473, F1,4/3) + ka1 (X2, x2, F12)}

h
+ Z{kZ,Z(XZI-xOr F20) +3kaa(x2,x2/3, F22/3) + 3ko (X2, X473, F24/3) + kop(x2, %2, F22) },
(2.5)

where Fi12/3, F1,4/3, F22/3, F2,4/3 have unknown values, which can be estimated by Lagrange
interpolation points xg, x1, x2, x3. Therefore we obtain

14 7 4
lo(x2/3) = T Li(x2/3) = 57 L(x23) = ~57 I3(x2/3) = 31’ o6
5 .
lo(xay3) = ~37 Li(x43) = 77 Ir(x43) = 57 I3(x43) = “3T



4 Mathematical Problems in Engineering

Thus,

14 28 7 4
Fip/3 = 8_11:1'0 + ﬁFu - EFLZ + 8_11:1’3'

5 20 10 4
Fias=-—Fio+ —Fi1+==Fi2— —F
1,4/3 81 1,0 + 57 11+ 77 1,2 31 1,37 o
14 28 4 '
Frp/3 = 8—1F2,0 + EF2,1 — 5o+ = Fa3,

10 4

5
Fru/3 = —ﬁFz,o + 2—7F2,1 + 2—7F2,2 - —=F3.

Substituting from (2.7) into (2.5) we obtain the following values for F, F»,

h
Fip = gi(x2) + 1

14 28 7 4
x {kl,l(xZIxOI F10) +3ky1 x <x2,x2/3, 8—1F1,0 + 2—7F1,1 - 2—7F1,2 + 8_11:1’3>

5 20 10 4 h
+3k1, (xz,x4/3,—ﬁ1:1,o + EFM + 2—7F1,2 - ﬁFm) + ki1 (x2, xz,F1,2)} t1

14 28 7 4
F —F —F,; - —F —F
X {kl,z(xz,xo, 20) +3ki (xz, Xos3 grban+ oobor = ooFan + o 2,3)

5 20 10 4
+3k1, (xz, X433, ——=Fro+ —F1+ —=Fp - —F2,3) + ki2(x2,x2, F2) },

81 27 27 81
2.8)
h
Fop = g(x2) + 1

14 28 7 4
X {kz,l(x2/ x0, F1,0) + ka1 x <x2,x2/3, 8—1F1,o + 2—7F1,1 - 2—7F1,2 + 8—1F1,3>

5 20 10 4
+3k21 (xz,x4/3,—8—1F1,0 + ﬁFl,l + EFLZ - 8—1F1,3> + ko (x2, x2, F1,2)}

h 14 28 7 4
+ Z{kz,z (%2, x0, F20) + 3ko (xz, X2/3, 8—1F2,0 + ﬁFzJ - ﬁFz,z + 8—1F2,3)

10

5 20 4
+3ko <x2,x4/3,—ﬁ1:2,0 + 2—7F2,1 + 2—7F2,2 - 8_1F2’3> + koo (x2,x2,Fa) }

Also we get

Fiq = fi(x1) = gi(x1) + J:Cl ki1(x1,s, fi(s))ds + f:l ki2(x1,8, f2(s))ds,
(2.9)

For = folx1) = ga(n) + f 0 K (x1, 5, f1(5))ds + fo Kaa(x1, 5, fo(s))ds,
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5

to evaluate the integrals on the right-hand sides, we introduce points x1,3 = h/3, x2/3 = 2h/3
and the corresponding values Fi,3, F»/3 and use the Simpson’s 3/8 rule with step size h/3.
Therefore we have

h
Fip=g1(x)+ 3

x {k1,1(x1, x0, F10) + 3k1,1(x1, x1/3, F1,1/3) + 3k1,1(x1, x2/3, F1,2/3) + k1,1 (x1, x1, F11)}

h
+ g{kl,z(xl,xm Frp) +3kip(x1, x1/3, Fa1/3) + 3k12(x1, X273, Fo0/3) + k12(x1, X1, F21) },

h
Fr1=g(x)+ 3

x {ka1(x1, x0, F10) + 3ko1(x1, x1/3, F1,1/3) + 3ko1(x1, x2/3, F1,2/3) + ko,1(x1, x1, F11) }

h
+ g{k2,2(x1/x0/ Frp) +3kop(x1, X173, Fa1/3) + 3koo(x1, X273, Fo0/3) + kop(x1,x1, F21) },

(2.10)

where Fi1/3, Fi2/3, F2,1/3, F22/3 have unknown values, similarly, that can be estimated by
Lagrange interpolation points xp, x1, x2, x3. As a result we obtain

and so

8
h(ip) =g h@p) =5 b)) =-5,  blas) =g
2.11)
14 7
lo(x2/3) = 31 li(x23) = 77 I (x2/3) = v I3(x2/3) = 37’
40 20 8 5
Fi13= 8_11:1'0 + EFM - EFLZ + 8_11:1’3'
14 28 7 4
Fip/3 = 8_11:1’0 + fFl’l - EFLZ + 8_11:1’3'
2.12)
40 20 8 5
Fo1/3= —Fop+ —=Fyi — —Fyy + —F
2,1/3 31 2,0t 57 2,1 57 22t 81 2,3,
14 28 7 4
Fro/s = ﬁFz,o + EFZJ - ﬁFz,z + ﬁFzs-



6 Mathematical Problems in Engineering

Substituting (2.12) into (2.10), we obtain the following values for F;; and F:

h
Fi1=gi(x1) + 3

20

40 8 5
x {kl,l (x1,x0, F10) + 3k1,1 x <x1,x1/3, ﬁFl,O + 2—7F1,1 - 2—7F1,2 + 8—1F1,3>

14 28 7 4
—F —F;1-—F —F F
+3k1,1 x (Xl,xz/a, griwtphn- bt o 1,3> + ki,1(x1,x1, 1,1)}

20

h 40 8 5
+ g{kl,z(xl,xo, Fap) +3ky % <x1,x1/3, ﬁFz,O + 2—7F2,1 - 2—7F2,2 + 8_1F2’3>

14 28 7 4
+3k1, (xl,xz/s, ﬁFz,o + 2—7F2,1 - 2—7F2,2 + 8—1F2,3> + kl,z(x1,x1,1:2,1)},

) (2.13)
Fo1 = g(x1)+ 3

20

40 8 5
X {kz,l(xl,xo, Fip) + 3k (xl,xl/s, ﬁFl,O + EFM - ﬁﬂ,z + ﬁpm)

14 28 7 4
—F —F;1 - —=F —F F
+3ks1 <x1,x2/3, griwt - Zhe+ o 1,3> + ko1 (x1,x1, 1,1)}

20

h 40 8 5
+ g{kz,z(xl,xo, Fap) +3kpp x (xl,x1/3, ﬁFz,o + 2—7F2,1 - 2—7F2,2 + 8—11:2,3)

14 28 7 4
—F —F,; - —F —F. F .
+3kap (xl,xz/s, gii20t mhan - 5ohnt o 2,3> + kop(x1,x1, 2,1)}

Equations (2.2), (2.8), and (2.13) are three pairs of simultaneous equations in terms of
unknowns Fi1, Fa1, Fi, Fap, F13, and F,3 for the nonlinear system of VIE. The solutions
of these equations may be found by the method of successive approximation or by a suitable
software package such as Maple. For the linear system of VIE a direct method can be used for
solving system of linear algebraic equations.

3. The General Scheme

Consider the system of VIE
f(x) =g(x) +J K(x,s, f(s))ds, 0<x<a. (3.1)
0

Let 0 = xp < x1 < --+ < xy = a be a partition of [0, a] with the step size h, such that x; =
ih for i = 0,1,...,N. Then we can construct a block by block approach so that a system
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of p simultaneous equations is obtained and thus a block of p values of F is also obtained
simultaneously. We put p = 6 for simplicity. Setting x = x3,,41 in (3.1) we get

X3m+1

Figma1 = f1(x3m+1) = §1(X3m41) +I ‘ k11 (x3m+1, 8, f1(8))ds +f k12 (x3ms1, 8, f2(8))ds,
0 0

X3m+1

X3m+1
Fosme1 = fo(x3me1) = £2(X3ma1) + f ko (X3m+1, 8, f1(s))ds + J ko (X3ms1, S, f2(s))ds
0 0

(3.2)
or equivalently
Fism+1 = §1(X3m41) +I \ k11 (x3ms1, 5, f1(s))ds +f \ ki (X3m+1, 8, f2(s))ds
0 0
+ f k11 (xX3m+1, 8, f1(s))ds + f k1o (xX3m+1, 8, f2(s))ds,
X3m X3m (3.3)

X3m X3m
Frsme1 = @ (X3m+1) + f ko (x3ms1, 8, f1(s))ds + J‘ koo (X3m41, S, f2(s))ds
0 0

X3m+1

X3m+1
+ j k2,1 (X3me1, S, f1(s))ds + f ko (X3m+1, S, f2(s))ds.

X3m X3m

Now, integration over [0, x3,,] can be accomplished by Simpson’s 3/8 rule and the integral
over X3, X3m4+1] is computed by using a cubic interpolation. Hence

3h
Fi3me1 = 1 (X3ms1) + 3

x {k1,1(x3m+1, X0, F1,0) + 3k1,1(X3m+1, X1, F1,1)
+3k1,1(X3m+1, X2, F12) + 2k1,1(X3m41, X3, F1,3) + -+ + k1,1 (X3m+1, X3m, F1,3m) }

3h

-y {k12(x3m+1, X0, F2,0) + 3k1,2(X3m41, X1, F2,1)

+3k12(X3m+1, X2, F22) + 2k10(X3m41, X3, Fo3) + -+ + k1,2 (X3ms1, X3m, F2,3m) }

h
t3 {k1,1 (X3m+1, X3m, F1,3m) + 3k1,1

40 20 8 5
X <x3m+1,x3m+1/3, ﬁme + §F1,3m+1 - ﬁFl,ngfz + ﬁFl,3m+3)

14 28 7 4
+ 3k, <x3m+1/x3m+2/3/ 8_1F1,3m + ﬁpmmﬂ - §F1,3m+2 + 8_1F1,3m+3>

h

+k1,1(X3m+1, X3m+1, F1,3m+1) } *3
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X {kl,Z(x3m+1/ X3m, F23m)+

40 20 8 5

+ 3k, <x3m+11x3m+1/3/ 8_1F2,3m + ﬁFz,3m+1 - ﬁFz,3m+2 + 8_1F2,3m+3>
14 28 7 4

+ 3k, <x3m+11x3m+2/3r 8_1F2,3m + ﬁF2,3m+1 - ﬁF2,3m+2 + 8_1P2,3m+3>

+k12(X3m+1, X3me1, F2,3m+1) },

(3.4)

and in a similar way the right-hand side is obtained for F3,,+1, where F1o = g1(x0), F20 =

g2(x0).
By setting x = x3,,,42 in (3.1) we get

X3m+2
Fisme2 = f1(X3me2) = 1 (X3m42) + f k11 (X3ms2, 5, f1(s))ds
0

X3m+2
+f ki (X3m+2, 8, f2(s))ds,
0

X3m+2 (35)
Fosme2 = fo(X3m+2) = $2(X3m+2) +J ko1 (x3ms2, 8, f1(s))ds
0

X3m+2
+f ko (X3m+2, 8, f2(s))ds
0

or equivalently

X3m

X3m
Fi3m2 = §1(X3ms2) + k11 (x3ms2, 8, f1(s))ds + J‘ k12 (X3mi2, S, f2(s))ds
0 0

X3m+2

X3m+2
+ f ki1 (X3ms2,8, f1(s))ds + f ki2(X3ms2,5, f2(s))ds,
X3m . X3m . (3,6)
Foami2 = §2(X3ms2) + J‘ ko (X3ms2, 8, f1(s))ds + j koo (X3me2, 8, f2(s))ds
0 0

X3m+2

X3m+2
+ f ko (X3m+2, S, f1(s))ds + ’[ koo (x3m+2, S, f2(8))ds.

X3m X3m

Now, the integration over [0, x3,,] can be accomplished by Simpson’s 3/8 rule and the integral
over [X3m, X3m4+2] is computed by using a cubic interpolation. Hence

3h
Fi3me2 = 1 (X3ms2) + 3

x {k1,1(X3m+2, X0, F1,0) + 3k1,1(X3m42, X1, F1,1) + 3k1,1(X3m42, X2, F12)

+2k1,1 (X3m42, X3, F13) + -+ - + k1,1 (X3m42, X3m, F1,3m) }
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3h
t3 {k1,2(x3m+2, X0, F2,0) + 3k1,2(X3m+2, X1, F2,1) + 3k1,2 (X3m+2, X2, F2 )

+2k12(X3me2, X3, F23) + -+ + k12 (X3m+2, X3m, F2,3m) }

h
+7 {k1,1 (X3m+2, X3m, F1,3m) + 3k1,1

14 28 7 4
X <x3m+2/x3m+2/3r ﬁFlsm + 2_7F1,3m+1 - 2_7F1,3m+2 + 8_1F1,3m+3> +3k1,1
5 20 10 4
X <x3m+2/x3m+4/31_8_1F1,3m + 2_7F1,3m+1 + 2_7F1,3m+2 - 8_1F1,3m+3)

h

+k1,1(X3m+2, X3m+2, F1,3m+2) } *71

X {kl,Z(x3m+2/ X3m, F23m) + 3ki

14 28 4
X <x3m+2/ X3m+2/3, ﬁme + = Fo3ms1 — 5 F23me2 + _F2,3m+3>

27 27 81
5 20 10 4
+ 3k <x3m+2/ X3m+4/3, _ﬁFZISm + EF2,3m+1 + EF2,3m+2 - ﬁF2,3m+3>
+ki1,2(X3m42, X3m+2, F23m+2) }, (3.7)

and a similar right-hand side obtains for F; 3,42, where F1 g = g1(x0), F2,0 = g2(x0). In a similar
manner we obtain

X3m+3
Figmes = f1(xX3m+3) = 81 (X3m+3) + f ki1 (x3ms3, 5, f1(s))ds
0

+I o k1,2<x3m+3/ s, fz(S))dS,
0

X3m+3
Fosmes = fo(X3m+3) = Q2(X3m4+3) +J‘ ko1 (x3me3, S, f1(s))ds
0

X3m+3
+ f ko (X3m+3, S, f2(s))ds,
0

(3.8)
3h

Fi3me3 = 1(x3mq3) + 3

x {k1,1(x3m+3, X0, F1,0) + 3k1,1(X3m+3, X1, F1,1)
+ 3k1,1 (x3m43, X2, F1,2) + 2k1,1 (X343, X3, F1,3)

3h

4o+ kl,l (x3m+3,X3m+3,F1,3m+3)} + ?
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x {k12(x3m43, X0, F2,0) + 3k1,2(X3m+3, X1, F2,1)
+3k12(X3m43, X2, F2.2) + 2k12(X3m43, X3, F2,3)

+ -t k1o (X3me3, X3ma3, F23ma3)

3h
Fr3mi3 = @ (X3m43) + 3

x {k2,1(x3m+3, X0, F1,0) + 3ko,1(X3m+3, X1, F1,1)
+ ka1 (X3m43, X2, F12) + 2ko 1 (X343, X3, F1,3)

3h

+ oo+ ko1 (X343, X3m43, F13me3) | + )

x {k2,2(x3m+3, X0, F2,0) + 3ko2(X3m+3, X1, F2,1)
+ 3k 2 (X3me3, X2, F22) + 2k 2 (X343, X3, F2,3)

4.0+ k2,2 (X'3m+3, X3m+3, F2,3m+3) } .
(3.9)

Equations (3.4)—(3.9) form a system with six unknowns for m = 1,2,.... In fact, we have six
simultaneous equations at each step.

4. Convergence Analysis

In this section we investigate the convergence of the proposed method. The following
theorem shows that the order of convergence is at least four.

Theorem 4.1. The approximate method given by the systems Equations (3.4), (3.7), and (3.9), is
convergent and its order of convergence is at least four.

Proof . We have

le1smet] = |F1me1 — f1(X3me1) |

3m 3m
h > wiks 1 (Xame, Xi, F1i) + b wiki 2 (X3me1, Xi, Fai)
i=0 i=0

h 3h
+ gkm (3m+1, X3m, F13m) + gkl,l

40 20 8 5
x <x3m+lrx3m+1/3/ 8_1F1,3m + 2_7P1,3m+1 - 2_7P1,3m+2 + 8_1P1,3m+3>

3h 14 28 7 4
+ §k1,1 <x3m+1/x3m+2/3/ ﬁFl,E}m + 2_7F1,3m+1 - 2_7F1,3m+2 + ﬁF1,3m+3)

h h
+ §k1,1(x3m+1,x3m+1,F1,3m+1) + gkl,z (X3m+1, X3m, F2,3m)



Mathematical Problems in Engineering 11

3h 20 8 5

40
+ §k1,2 <x3m+1/x3m+1/3/ ﬁFZ,:’)m + 2_7F2,3m+1 - 2_7F2,3m+2 + ﬁF2,3m+3)

3h 14 28 7 4
+ §k1,2 <x3m+11x3m+2/3/ ﬁFZ,Sm + 2_7F2,3m+1 - 2_7F2,3m+2 + 8_1F2,3m+3>

h
*3 k1,2 (X3m+1, X3ma1, F23m+1)

X3m+1

- f k1 (xX3m+1, 8, f1(s))ds — I k12 (x3m+1, S, f2(s))ds
0 0

7

(4.1)
using the Lipschitz condition it can be written as
3m 3m
levamet| < her D Jenil + heo Y. leail + hesleysme| + healeozmal
i=0 i=0
(4.2)

+ hesler zmaa| + heslea3man| + herler zmas] + hes|€23mas]

+ [R1zme1] + [Rogm1| + |R13mez2| + |Roame2l,

where R; 341, Rizm+2 (i = 1,2) are the errors of integration rule. Without loss of generality, we
assume that

el = i) f:3m+fgr?li(2,3m+3|£l'j | = levomal, (4.3)

then let R = max;[|R1 |, |Rz,|], hence

3m
lenill, < e (levil + leail) + 6hc' |||, + 4R,
i=0

(4.4)
he & 4R
”51,]'”oo < 1_—6hc,20(|511| +le2il) + 1_6hc’
i
then from Gronwall inequality, we have
4R 6he!
levjll., < g—gmet/ (4.5)

For functions k and f with at least fourth-order derivatives, we have R = o(h*) and so
llemll., = o(h*) and the proof is completed. O

5. Numerical Results

In this section, some examples are given to certify the convergence and error bounds of
the presented method. All results are computed using the well-known symbolic software
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Table 1: Numerical results of Example 5.1.

x €HPM in [9] h=0.1 h=0.05
e(f1) e(f2) e(f1) e(f2) e(f1) e(f2)
0.1 9.678¢~"7 4711e™% 0 0 0 0
0.2 3.002¢~% 7.111e”% 0 0 0 0
0.3 2.211e~% 3.399¢703 0 0 0 0
0.4 9.053¢™% 1.015¢~%2 0 0 0 0
0.5 2.687¢7% 2.346¢702 0 1.0e710 0 1.0e710
0.6 6.511¢7% 4.605¢™2 0 0 0 0
0.7 1.372¢~%2 8.084¢702 0 1.0e710 0 1.0e710
0.8 2.609¢702 0.131 1.0e710 1.0e710 0 1.0e710
0.9 2929702 0.198 0 0 0 0
1.0 7.601e% 0.287 0 0 0 0
Table 2: Numerical results of Example 5.2.
. h=0.1 h=0.05 h =0.025
e(f1) e(f2) e(f1) e(f2) e(f1) e(f2)

0.1 8.76¢08 5.4267¢~%7 2.5¢7% 42379 3.e710 5.3¢710
0.2 1.582¢7%7 1.721e7™%7 1.93¢78 1.96¢~%8 1.1e7% 3.0e710
0.3 9.821e7 "7 1.480e~%7 5.86¢~8 9.1¢7% 3.6 6.0e710
0.4 1.279¢% 9.462¢77 7.26¢7%8 2.73¢7%8 6.0e”% 2.1 %
0.5 1.5475¢7%° 8.662¢77 1.432¢77 6.44¢708 8.7¢7% 3.1e™%
0.6 3.7774e7% 1.2556¢7% 2.320e™%7 8.35¢7%8 1.44¢708 5.3¢”%
0.7 4.4688¢700 2.7058¢70 2.707¢77 1.421e7"7 1.92¢708 9.4¢7%
0.8 5.1935¢06 3.4142¢706 3.935¢707 2.295¢~%7 2.43¢708 1.38¢78
0.9 8.4753¢700 4.7428¢7% 5.286e~"7 3.101e”" 3.30e"% 2.0e7%8
1.0 9.8341¢7% 7.3373¢7% 6.107¢7%7 44277 4.04e708 2.86¢78

Maple 12. Tables 1-3 show the obtained results for nonlinear examples and Tables 4-6 contain
the results for linear examples. The results in Tables 1-6 show the absolute errors | f (x;) — Fi,
i=1,2,...,N,where f(x;) is the exact solution evaluated at x = x; and F; is the corresponding
approximate solution.

Example 5.1. Consider the following system [9]:

x—x2+ | (fils) + fr(s))ds = filx), 0<x<1

xz X3

- 2oL [0+ 20)ds = o, 0x51

(5.1)

with the exact solutions fi(x) = x and f>(x) = x. In Table 1 we compare the errors e(f;) and
e(f) obtained using the present method and method in [9].
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Table 3: Numerical results of Example 5.3.

h=01 h=0.05 h=0.025
e(f1) e(f2) e(f1) e(f2) e(f1) e(f2)
0.1 3.398¢°00 3.4931¢70 3.4¢708 821708 3.0e7% 1.49¢~08
0.2 1.853¢70° 3.2536¢70 1.36¢7%7 5.302¢7%7 2.0e™% 2.76e708
0.3 1.934¢70 1.55679¢ % 8.8¢708 9.580e~%7 5.0e7% 5.88¢708
0.4 1.0510e7% 2.52780e% 2.53e77 1.0938¢0 1.7e708 9.17e708
0.5 1.1155¢% 2.21338¢7%5 6.96e77 2.3675e706 2.9¢708 1.245¢77
0.6 1.7852¢705 6.29575¢ 705 9.93¢77 3.9457¢706 6.0e708 244177
0.7 6.2599¢~%5 1.201563¢~% 2.259¢70 4.5288¢700 1.44¢797 4.090e~%7
0.8 8.9572¢70 9.5467¢7% 5.569¢ 7% 1.2368¢~% 2.90e77 6.01e™"7
0.9 1.70559¢ % 3.70854¢~% 1.0249¢~% 2.4445¢70 6.51e™"7 1.533¢70
1.0 7.91069¢~% 1.185001¢~% 2.6732¢~% 3.0637¢~% 1.730e7% 3.391e7%

Table 4: Numerical results of Example 5.4.

. h=0.1 h=0.05 h =0.025
e(fl) E(fz) €(f1) E(fz) E(fl) e(fz)

0.1 2.848¢°7 2.375¢~%7 2.39¢708 9.0e710 4779 2.0e710
0.2 7.777¢~%7 3.0e710 1.835¢7%7 5.0e”% 1.07¢7%8 9.0e710
0.3 5.6610e70 5.69¢708 3.433¢77 2.75¢708 2.13¢708 2.3¢7%
0.4 5.5049¢-% 7.029¢~% 3.371e”"7 8.39¢708 2.36e%8 5.6e™%
0.5 5.5930e 00 2.1033¢7% 4.788¢77 1.254¢°%7 2.96¢~08 1.30e7%8
0.6 1.03890e~% 2.115¢7% 6.279¢™%7 1.97¢%7 3.86¢708 1.3¢708
0.7 1.00566¢ % 5211e7% 6.128¢7% 4.05¢7%7 4.12¢798 2.4¢708
0.8 1.01662¢~% 9.770e~% 7.676e7 6.02¢7%7 4.56¢708 3.9¢708
0.9 1.56375¢% 1.2629¢~% 09.480e77 9.28¢™"7 5.81¢708 6.2¢708
1.0 1.60249¢-% 2.3160e~% 9.813¢~"7 1.592¢7% 6.54¢708 1.03¢~%7

Example 5.2. Consider the following system [7]:

cos(x) — %sinz(x) + f:(fl(s)fz(s))ds = fi(x), 0<x<1

x x (5.2)
sin(x) —x + I flz(s)ds + f fzz(s)ds = fo(x), 0<x<1
0 0

the exact solutions are fi(x) = cos(x) and f>(x) = sin(x). The errors are given in Table 2.

Example 5.3. Consider the following system [15]:

sec(x) — x + f:<ff(s) —fzz(s)>ds = fi(x), 0<x<1

" (5.3)
3tan(x) - x —f (f2(s) + f3(9))ds = fo(x), 0<x<1,
0

where the exact solutions are fi(x) = sec(x) and f,(x) = tan(x).
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Table 5: Numerical results of Example 5.5.

h=01 h=0.05 h=0.025
e(f1) e(f2) e(f1) e(f2) e(f1) e(f2)
0.1 3.671e”"7 2.9894¢~%7 1.30e7%8 1.057¢7% 7.0e710 2.11e7%
0.2 4.491¢7%7 3.780e~"7 8.39¢708 7.33¢708 5.0e% 4.6
0.3 2.1364¢7% 2.0417¢7% 1.439¢7%7 1.335¢7%7 1.07¢~% 8.4e™%
0.4 3.1803e7% 2.5989¢706 1.946e77 1.627e7%7 1.22¢708 1.17¢™98
0.5 3.8590e 00 3.0494¢706 2.841e77 24417 1.82¢708 1.54¢708
0.6 5.3109e7% 5.0008e% 3.539¢707 3.262¢77 2.28¢708 2.06e7%8
0.7 7.0863¢700 5.9892¢706 4.518¢77 3.856¢7%7 2.86¢708 2.52¢708
0.8 8.5579¢~00 7.0265¢~ 5.596¢~%7 4.947¢~07 3.55¢708 3.15¢708
0.9 9.9840¢706 9.3934¢706 6.597¢77 6.118¢7%7 4.28¢708 3.89¢708
1.0 1.29156¢~% 1.10909¢-% 8.334¢7 7 7.207¢~%7 5.42¢708 4.64¢708

Table 6: Numerical results of Example 5.6.

x EHPM h =0.1 h =0.05
e(fl) e(fz) e(fl) €(f2) €(f1) e(fz)

0.2 3.947¢0 6.333¢7% 0 4.0e”% 6.7¢7%8 6.0e”%
0.4 6.060e~%3 1.962¢703 4.445¢700 8.83¢~7 2.25¢7%7 1.23¢7%7
0.6 2.855¢702 1.409¢702 1.3¢708 7.150e70 2.0e7% 5.69¢="7
0.8 8.088¢702 5.465¢702 1.4583¢~% 1.5812¢7% 3.62¢77 1.199¢70¢
1.0 1.685¢~ 1.483¢~01 1.3989¢%5 3.2971¢~% 7.27¢7% 2.346¢70
1.2 2.770e0 3.135¢ 701 2.173¢70° 7.3764e"% 1.51e™%7 4.865¢70
1.4 3.567e0! 5.369¢ 01 3.4677¢7% 9.9081¢~% 1.006e~% 7.222¢700
1.6 3.034¢~"1 7.325¢701 3.5568¢% 1.62912¢04 2.002¢7% 1.0807¢~%
1.8 6.562¢~2 6.821e~01 2.7768e~% 2.77606e~%* 1.765¢70 1.7732¢79
2.0 1.043 4.961¢72 9.6763¢~% 3.46228¢% 4.258¢706 2.4040e-%

Example 5.4. Consider the following system [7]:
cosh(x) + xsin(x) — J‘ e * fi(s)ds - I cos(x —s) fa(s)ds = fi(x), 0<x<1
0« 0 x (5.4)
2sin(x) + x(sinz(x) + ex> - f e f1(s)ds — f xcos(s) f2(s)ds = fo(x) 0<x<1,
0 0

with the exact solutions fi(x) = e™ and f>(x) = 2sin(x). Table 4 shows the errors.

Example 5.5. Consider the following Volterra system of integral equations [5]:

g1(x) - Jj(sin(s -x)—-1)fi(s)ds + j:(l —scos(x)) fa(s)ds = fi(x), 0<x<1

x x (5.5)
D(x)+ ’[0 fi(s)ds + .[0 (x=s)fa(s)ds = fo(x), 0<x<1

the functions g1 (x) and g»(x) are chosen such that the exact solutions are to be f;(x) = cos(x)
and f>(x) = sin(x). The errors are given in Table 5.
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Example 5.6. Consider the following Volterra system of integral equations [5]

g1(x) + fx (x =)’ fi(s)ds + f (x —8) fa(s)ds = fi(x), 0<x<2
0 0 (5.6)

200+ [ @-9'fi©ds+ [ (r-9"fads = (), 0sx<2

the functions g1 (x) and g (x) are chosen such that the exact solutions are to be fi(x) = x* + 1
and f(x) =1 - x® + x. Table 6 compares errors.

6. Conclusion

Now let E(h) = chf be error of the block by block using Simpson’s 3/8 rule where ¢ and g
are, respectively, a constant and order of the error, then we have g = In(E(h)/c)/ In(h). By
computing the order g from this formulae for the errors reported in Tables 1-6, we conclude
that g > 4. This confirms the claim that was stated in introduction and was proved by the
convergence analysis. For example in Table 2 for x = 0.1, E(f1(h)) = 0.876e~ where h = 0.1,
so we get g = 8 or in Table 4 for x = 0.5, E(f2(h)) = 0.130e”"” where h = 0.025, so we get
q = 4.14268 or in Table 6 for x = 0.6, E(f1(h)) = 0.2¢7%, h = 0.05 then q = 6.148974.

Note that in the Table 1 we compare the order of convergence between the results
which were obtained by Yusufoglu [9] (by using HPM method) and block by block method.
Further, the results of the Table 6 show that block by block method is efficient for the large
values of x, whereas HPM method isnt applicable. Also, the time of computation in block by
block method is less than HPM method whenever programming of both method is done in
MAPLE package.
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