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The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double
averaging procedure that removes both the mean anomaly of the satellite and that of the moon.
Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s
oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation
of the expansion of the third-body disturbing function up to the second degree. Using canonical
perturbation theory, the averaging is carried out up to the order where second-order terms in
the Earth oblateness coefficient are apparent. This truncation order forces to take into account
up to the fifth degree in the expansion of the lunar disturbing function. The small values of the
moon’s orbital eccentricity and inclinationwith respect to the ecliptic allow for some simplification.
Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity,
it is not restricted to low-eccentricity orbits.

1. Introduction

In an increasingly saturated space about the Earth, aerospace engineers confront the
mathematical problem of accurately predicting the position of Earth’s artificial satellites. This
is required not only for the correct operation of satellites but also for preserving the integrity
of space assets. Thus, operational satellites are threatened by the not so remote possibility of a
collision with a defunct satellite [1] but most probably by the impact with other uncontrolled
man-made space objects as spent rocket stages or collision fragments—all of them commonly
called space debris.

Precise predictions require the integration of complete force models including both
gravitational and nongravitational effects, like a high-degree and order geopotential,
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ephemerides-based lunisolar perturbations, drag, solar radiation pressure including eclipses,
and so forth (see [2, 3], for instance). The most accurate integration is expected from numeri-
cal methods, although precision ephemeris can also be obtained by means of semianalytical
integration [4]. In fact, both approaches, numerical and semi-analytical, do not need to enter
a competition. Thus, for instance, while semi-analytical methods may be efficient in keeping a
running catalog of hundreds of thousands of space objects within a reasonable accuracy, if the
probability of impact with an operational satellite is detected to surpass a certain threshold,
then a more accurate numerical integration will help control engineers in deciding whether
a collision avoidance maneuver is required or, on the contrary, the integrity of the satellite is
not in risk [5].

In a semi-analytical approach the highest frequencies of the motion, which normally
have small amplitudes, are filtered analytically via averaging procedures. This filtering
allows the numerical integration of the averaged system to proceed with very long step sizes.
Then, the short-period terms are recovered analytically, if desired, at any step of the numerical
integration [6–8].

Averaging techniques are also used for exploring questions affecting stability, such
as those derived from tesseral resonances or third-body perturbations, in a reduced-phase
space [9]. In this respect, much attention has been recently paid to the long-term evolution of
classical GNSS constellations, either for operational or disposal orbits [10].

While the noncentralities of the Earth gravitational potential play a key role in the
motion of low altitude satellites, third-body perturbations have also a decisive influence
in the long-term evolution of medium- and high-altitude Earth orbits. The third-body
disturbing function is commonly given by a series expansion in Legendre polynomials. Often,
the series is truncated to the first term in the expansion [11], but this early truncation is not
always accurate enough to represent the real dynamics [4, 12, 13]. Nevertheless, recursions in
the literature allow to extend the Legendre polynomial expansion to any desired order either
in classical or nonsingular elements [14–16].

Because of the physical characteristics of the Earth gravitational potential, where the
second-order zonal coefficient (J2) clearly dominates over all other harmonics, second-order
effects of J2 may be important and must be taken into account when the effect of higher-
order harmonics is studied. Correspondingly, the truncation in the expansion of third-body
perturbations must include terms of magnitude comparable to J2-squared. Because the third-
body disturbing function is expanded in the ratio semi-major axis of the satellite’s orbit
to semi-major axis of the third-body’s orbit, the degree at which the expansion must be
truncated depends on the altitude of the satellites to be studied.

In this paper we study the effect of lunisolar perturbations on high-altitude orbits
about a noncentral Earth, which is assumed to be oblate although without equatorial symme-
try. More specifically, we are interested in the semi-analytical integration of satellites on alti-
tudes of classical global navigation satellite system (GNSS) constellations such as GPS, Glo-
nass, or Galileo. Note, however, that the assumption of an axisymmetric geopotential pre-
vents to tackle the tesseral resonance problem that commonly suffer this kind of orbits. With
respect to previous research [17], where we approached the general case of third-body pertur-
bations via double averaging, we release here the common simplification of assuming the
third-body in circular orbit. Also, we focus on the case of Earth’s artificial satellites deal-
ingwithmore real lunisolar perturbations.We do that because recent results [18] seem to con-
tradict the claim that taking the third-body in circular orbit does not produce any noticeable
degradation in the long-term propagation of real Earth orbits [19]. Besides, for the actual
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values of the orbits of the sun and moon, neglecting terms in the eccentricity is not
consistent with a higher-order expansion of the lunisolar disturbing function. Hence, both the
eccentricity of the orbits of the sun and moon are taken into account in the present work. For
the latter, the moon, the orbit is assumed to remain with constant inclination with respect to
the ecliptic plane, over which the longitude of the ascending node moves with linear motion.
The argument of the perigee of the moon is also assumed to evolve linearly, while we take
the apparent orbit of the sun to be purely Keplerian.

We use canonical perturbation theory by Lie transforms [20–22]. The order of each
term of the disturbing function is determined by a virtual small parameter that is taken
proportional to the ratio of the satellite’s orbit semimajor axis to the moon’s orbit semi-major
axis. Then, we check that the magnitude of second order terms due to the Earth oblateness is
comparable to that of the fifth degree in the expansion of themoon’s third-body potential, and
hence we truncate the moon’s third-body potential up to the fifth degree. On the contrary, the
usual truncation up to the second degree is enough for modeling the sun disturbing function
assumed that we limit the theory to the order of J2-squared terms. The Hamiltonian model
also takes into account the asymmetries in the Earth potential caused by the J3 term, whose
influence in the dynamics of the lower eccentricity orbits is clearly noted.

The initial Hamiltonian is of three degrees of freedom and time dependent. Note, how-
ever, that the time appears in different scales related to the mean motion of the moon, that of
the sun, and the rate of variation of the moon’s argument of the perigee and longitude of the
ascending node. In our averaging procedure, we eliminate the mean anomaly of the satellite
and that of the moon to obtain a two-degrees-of-freedom Hamiltonian, which still depends
on time albeit only through very slowly varying quantities. As far as we do not find reso-
nances between the mean motions of the satellite and the moon, the averaging can be done in
two steps: the mean anomaly of the satellite is removed first by means of a classical Delaunay
normalization [23]; then, a similar transformation is used to eliminate the mean anomaly
of the moon. The splitting of the averaging has the advantage of simplifying computations.
Specifically, the generating function of each transformation is obtained from the solution of
simple quadratures.

The averaging is carried out not only in closed form of the satellite’s orbit eccentricity,
thus making the simplified Hamiltonian useful for studying the long-term evolution of any
orbit, but also in closed form of the eccentricity of the moon’s orbit. Nevertheless, because of
the small values of the eccentricity of the orbits of both perturbing bodies as well as the small
inclination of the orbit of the moon with respect to the ecliptic, further simplifications can be
done by neglecting terms of order higher than the truncation order of the theory.

Numerical experiments using the doubly averaged Hamiltonian demonstrate that the
inclusion in the model of the orbital eccentricities of the sun and moon does not cause
qualitative differences with respect to the circular orbit approximation. Besides, the re-
covery of the short-period effects by means of the analytical transformation equations of the
averaging provides a quite reasonable precision in the long-term integrations.

2. Model

We study the motion of an Earth artificial satellite of negligible mass whose Keplerian motion
is slightly distorted by the noncentralities of the geopotential due to the Earth’s oblateness
and latitudinal asymmetry, as represented by the harmonic coefficient J2 and J3, respectively,
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and under the point-mass attraction of the sun and moon. Thus, the motion of the satellite is
derived from the potential
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μ
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where μ is the Earth’s gravitational parameter, α its equatorial radius, Ji is the zonal harmonic
coefficient of degree i, r is distance from the origin, and z is the satellite’s coordinate in the
direction of the symmetry axis of the Earth. In the mass-point approximation, the third-body
disturbing potential V�, � ∈ (�,�), is
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where μ� is the third-body’s gravitational parameter, r and r� are the radius vector of the
satellite and of the third-body, respectively, of corresponding modulus r and r�. If the
disturbing body is far away from the perturbed body, (2.2) can be expanded in power series
of the ratio r/r�:
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where β = m�/(m�+m), n� is the meanmotion of the third-body in its orbit of semi-major axis
a�, Pj are Legendre polynomials, and ψ is the angle encompassed by r and r�. The absence
of the Keplerian term −μ�/r� as a summand in (2.3) has no effect in the restricted problem
approximation, in which the mass of the satellite has negligible effects on the third-body’s
orbit.

In our model we assume an Earth-centered frame with the origin defined by the
intersection of the Earth’s equator and the ecliptic; we both of which consider fixed planes.
Whereas we take the sun’s apparent orbit about the Earth to be purely Keplerian, we assume
that themoonmoveswith Keplerianmotion on a precessing ellipse that evolves with constant
rate of the argument of perigee. Besides, the moon’s orbital plane is assumed to have constant
inclination with respect to the ecliptic; yet it is also assumed to be precessing over the ecliptic
with linear variation of the longitude of the ascending node.

Calling a, e, i, ω, Ω, and M to semimajor axis, eccentricity, inclination, argument of
the perigee, longitude of the ascending node, and mean anomaly, respectively, we use the
approximate values

a� = 150 × 106 km, e� = 0.017, i� = ε = 23.44 deg, (2.4)
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for the sun, where ε notes the obliquity of the ecliptic, we assume a fictitious epoch in which
ω� = Ω� = 0, and take n� = 2π/sidereal year. For the moon,

a� = 384 400 km, e� = 0.055, i� = J = 5.1 deg = 0.089, (2.5)

and take Ω� =N =N0 + nNt, ω� = w = w0 + nwt, with

nN = − 2π
18.61 year

, nw =
2π

8.85 year
− nN, n� =

2π
27.32 day

− nw − nN. (2.6)

We recall that J andN are referred to the ecliptic. Besides, β = 1 for the sun and β = 1/28.8245
for the moon.

Remark that this simple model is not, of course, valid for computing precise ephemeris
of the moon, who may be clearly out of the predicted position because of the amplitude of
periodic oscillations inN and J , and also in e� and i�, comper [24]. Nevertheless, it will be
enough for our purposes of investigating the qualitative features that lunisolar perturbations
introduce in the long-term behavior of Earth’s artificial satellites.

3. Perturbation Approach

By using canonical variables we can study the problem inHamiltonian form. Besides, in order
to apply perturbation theory, we arrange the Hamiltonian as a power series in a small para-
meter:

H =
∑
m≥0

δm

m!
Hm,0. (3.1)

We are interested in high-altitude orbits in the range of 20 000 to 35 000 km, the so-
called upper mean earth orbit (MEO) region. In order to take account of all relevant lunisolar
perturbations, we take a virtual small parameter proportional to the ratio semimajor axis of
the satellite semimajor axis of the moon. For the altitudes of interest, this ratio is δ ∼ O(10−1).
Then, we find that the Earth’s oblateness coefficient is a fourth-order quantity, and the J3 effect
appears at the eighth order. With respect to the moon the consecutive terms of the Legendre
polynomials expansion of the moon disturbing function appear at consecutive orders of the
Hamiltonian, starting by the fifth order. We include up to the fifth degree, whose effect may
be comparable to second-order effects of J2. For the sun, it is enough to take the first term in
the Legendre polynomials expansion. Then, the zero-order term is the Keplerian

H0,0 = −1
2
n2a2. (3.2)
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Besides, Hi,0 = 0 for i < 4, and
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with
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where f is the true anomaly and η =
√
1 − e2 is the usual eccentricity function. The equations

of motion are obtained from the Hamilton equations:

d
(
�, g, h

)
dt

=
∂H

∂(L,G,H)
,

d(L,G,H)
dt

= − ∂H
∂
(
�, g, h

) . (3.6)

Recall that the Cartesian coordinates of the satellite are expressed in orbital elements
by means of simple rotations. Thus,

⎛
⎝x
y
z

⎞
⎠ = R3(−Ω)R1(−i)R3(−θ)

⎛
⎝r

0
0

⎞
⎠, (3.7)

where θ = f + ω is the argument of latitude and R1 and R3 are the usual rotation matrices
about the x- and z-axes, respectively.

Since the Hamiltonian must be expressed in canonical variables, we assume hereafter
that the orbital elements of the satellite are always expressed as function of the Delaunay
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variables (�, g, h, L, G, H), given by the known relations � = M, g = ω, h = Ω, L = √
μ a,

G = L η, and H = G cos i. Nevertheless, we use the orbital elements notation because of its
immediate physical insight.

Delaunay’s variables are singular for zero eccentricity and/or zero inclination. In
spite of that, the Lie transforms theory is naturally computed in Delaunay variables. Once
the generating function of the averaging is computed, it can be applied to any function of
the Delaunay’s variables. Specifically nonsingular variables are assumed to be functions of
Delaunay variables to obtain the transformation equations of the averaging in nonsingular
variables [25].

We note that the sun and moon coordinates are assumed to be known functions of
time. Therefore, (3.1) is a time-dependent Hamiltonian of three degrees of freedom. In our
perturbation approach, we avoid dealing with time by moving to an “extended” phase space
(see, for instance, [26]). Since the time-dependent variables evolve in quite different time
scales, we find convenient to introduce four new pairs of canonical conjugate variables: (l,L)
for the mean anomaly of the sun and its conjugate momentum (λ,Λ) the same for the moon,
(w,W) for the moon argument of perigee and its conjugate momentum, and (N,Γ) for the
moon longitude of the ascending node and its conjugate momentum. The specific values of
the introduced canonical momenta are irrelevant for our purposes, and we find convenient
to make the ordering

H1,0 = Λn�, H2,0 = 2!Ln�, H3,0 = 3!(Wnw + ΓnN). (3.8)

Once we have set the Hamiltonian order, we will apply perturbation theory by the
Lie transforms in order to filter the short-period effects in the potential equation (2.1). More
precisely, we base our computations on Deprit’s algorithm, which is specifically designed for
automatic computation by machine [21, 27].

3.1. The Delaunay Normalization

We compute the canonical transformation T : (�, g, h, L,G,H) → (�′, g ′, h′, L′, G′,H ′) that
removes the mean anomaly of the satellite from the Hamiltonian up to the eighth order.
Note that the mean anomaly does not appear explicitly but through its dependence on the
true anomaly. This fact introduces some subtleties in the averaging procedure, but the usual
differential relations between true, mean, and eccentric anomalies allow to carry out the
normalization on closed form of the eccentricity.

After normalization, we get the new Hamiltonian

(
H′ ≡ T : H

)
=
∑
m≥0

δm

m!
H0,m, (3.9)
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where the H0,m terms are expressed in the prime variables. We find H0,m = Hm,0 for m < 4,
and
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where s and c stand for sine and cosine of the inclination, respectively;

〈M�
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(3.11)

where m/2 is an integer division. The eccentricity coefficients E, the inclination ones p, and
the third-body direction coefficients t� and d� are given in Tables 1, 2, and 3.

Note that except for J2-squared terms the new Hamiltonian is obtained by the simple
average over the mean anomaly of all the terms in (3.1). Besides, we introduced Kozai’s
arbitrary constant [28] in the solution of the fourth-order generating function to keep the
prime variables as close as possible to the average value of corresponding osculating ones.

The semimajor axis of the satellite remains constant after averaging, as well as its
canonical partner, the Delaunay action L′. Then, the time evolution of the mean anomaly
decouples from the two-degrees-of-freedom, time-dependent system

d
(
g ′, h′

)
dt

=
∂H′

∂(G′,H ′)
,

d(G′,H ′)
dt

= − ∂H′

∂
(
g ′, h′

) . (3.12)

The numerical integration of this system can be done with longer step sizes than the
original one because of the filtering of short periodic effects via averaging. At each step of
the numerical integration, the osculating elements can be recovered analytically using the
transformation equations computed also by the Lie transforms method.
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Table 1: Direction coefficients tj,k and dj,k and eccentricity coefficients Ej,k . The unit vector (x, y, z) defines
the direction of the center of mass of the third body.

j k tj,k dj,k Ej,|k|

2
0 1 − 3z2 0 2 + 3e2

±1 yz −kxz
±2 x2 − y2 kxy e2

3

0 0 z(3 − 5z2)
±1 x(1 − 5z2) ky(1 − 5z2) (4 + 3e2)e
±2 4xyz −k(x2 − y2)z
±3 3x(x2 − 3y2) ky(3x2 − y2) e3

4

0 3 − 30z2 + 35z4 0 8 + 40e2 + 15e4

±1 yz(3 − 7z2) −kxz(3 − 7z2)
±2 (x2 − y2)(1 − 7z2) kxy(1 − 7z2) (2 + e2)e2

±3 3y(3x2 − y2)z −kx(x2 − 3y2)z
±4 x4 − 6x2y2 + y4 kxy(x2 − y2) e4

5

0 0 z(15 − 70z2 + 63z4)
±1 x(1 − 14z2 + 21z4) ky(1 − 14z2 + 21z4) (8 + 68e2 + 29e4)e
±2 4xyz(1 − 3z2) −k(x2 − y2)z(1 − 3z2)
±3 3x(x2 − 3y2)(1 − 9z2) ky(3x2 − y2)(1 − 9z2) (8 + 7e2)e3

±4 16xy(x2 − y2)z −k(x4 − 6x2y2 + y4)z
±5 5x(x4 − 10x2y2 + 5y4) ky(5x4 − 10x2y2 + y4) e5

Table 2: Inclination coefficients p2,j,k and p3,j,k ; for brevity, we use the notation γ ≡ (1 ± c).

k p2,0,k p2,2,k p3,1,k p3,3,k

0 (1/8)(2 − 3s2) (15/8)s2 (15/64)s(1 − 5c2) −(175/64)s3

±1 (3/4)cs ∓(15/4)sγ (15/256)γ(1 ± 10c − 15c2) −(525/256)s2γ
±2 (3/16)s2 (15/16)γ2 ±(75/256)sγ(1 ∓ 3c) ±(525/256)sγ2

±2 −(25/256)s2γ −(175/768)γ3

Table 3: Inclination coefficients p4,j,k and p5,j,k ; for brevity, we use the notation γ ≡ (1 ± c).

j k p4,j,k p5,j+1,k

0

0 (3/2048)(3 − 30c2 + 35c4) −(15/4096)s(1 − 14c2 + 21c4)
±1 −(15/512)sc(3 − 7c2) −(15/8192)γ(1 ± 28c − 42c2 ∓ 84c3 + 105c4)
±2 −(15/1024)s2(1 − 7c2) ∓(105/4096)sγ(1 ∓ 3c − 9c2 ± 15c3)
±3 (35/512)s3c (35/16384)s2γ(1 ± 6c − 15c2)
±4 (105/4096)s4 ±(315/32768)s3γ(1 ∓ 5c)
±5 −(63/16384)s4γ

2

0 −(105/512)s2(1 − 7c2) (245/8192)s3(1 − 9c2)
±1 ±(105/256)sγ(1 ± 7c − 14c2) (735/16384)s2γ(1 ± 6c − 15c2)
±2 (105/256)γ2(1 ∓ 7c + 7c2) ±(735/8192)sγ2(1 ∓ 12c + 15c2)
±3 ∓(245/256)sγ2(1 ∓ 2c) −(245/98304)γ3(13 ∓ 54c + 45c2)
±4 (735/1024)s2γ2 ±(2205/65536)sγ3(3 ∓ 5c)
±5 −(441/32768)s2γ3

4

0 (2205/2048)s4 −(6615/8192)s5
±1 ∓(2205/512)s3γ −(33075/16384)s4γ
±2 (2205/1024)s2γ2 ±(33075/8192)s3γ2
±3 ∓(735/512)sγ3 −(11025/32768)s2γ3
±4 (2205/4096)γ4 ±(33075/65536)sγ4
±5 −(1323/32768)γ5
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3.2. Elimination of the Mean Anomaly of the Moon

A new canonical transformation T′ : (�′, g ′, h′, L′, G′,H ′) → (�′′, g ′′, h′′, L′′, G′′,H ′′) removes
the mean anomaly from the Hamiltonian. The algorithm starts now by setting the newHami-
ltonian

K =
∑
m≥0

δm

m!
Km,0, (3.13)

where Km,0 = H0,m. Then, we express the direction of the moon (x�, y�, z�) in terms of the
moon’s orbital elements by the composition of rotations:

⎛
⎝x�
y�
z�

⎞
⎠ = R1(−ε)R3(−N)R1(−J)R3

(
−θ�)

⎛
⎝r�

0
0

⎞
⎠, (3.14)

where θ� = f� + ω�. The components of the moon direction vector are then replaced
in coefficients t�, d� of Table 1. Finally, application of the Lie triangle provides the new
Hamiltonian

(
K′ ≡ T′ : K

)
=
∑
m≥0

δm

m!
K0,m, (3.15)

where the K0,m terms are expressed in the double prime variables, as well as the generating
function of the transformation.

The new averaging is similar to the preceding Delaunay normalization in the sense
that we base on the differential relations between the true andmean anomalies to perform the
averaging. As before, up to the computed order in the perturbation theory, there is no coupl-
ing between the different Hamiltonian terms, which, therefore, reduce to their averaging over
the mean anomaly of the moon λ. Thus, K0,m = Km,0 form < 5, and
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n2�
n2

a3�
r3�

〈
M�

2

〉
�
,

K0,6

6!K0,0
= β

n2�
n2

〈
a4�
r4�
〈
M�

3

〉
�

〉
λ

,

K0,7

7!H0,0
= β

n2�
n2

〈
a5�
r5�
〈
M�

4

〉
�

〉
λ

,

K0,8

8!K0,0
= β

n2�
n2

〈
a6�
r6�
〈
M�

5

〉
�

〉
λ

+ J3
α3

a3
3e
4η5
(
4 − 5s2

)
s sinω +

α4

a4
J22

3
32η7

×
{
+
1
2

[
8
(
5 + 2η − η2

)
− 8
(
10 + 6η − η2

)
s2 +

(
35 + 36η + 5η2

)
s4
]

−
1 − η
1 + η

[
2
(
15 + 30η + 7η2

)
− 5
(
7 + 14η + 3η2

)
s2
]
s2 cos 2ω

}
,

(3.16)
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Table 4: Averaged moon direction coefficients t̃j,k . Here, c ≡ cos J , s ≡ sin J , and e ≡ e�.

j k t̃j,k

2

0
(
1 − 3

2
e2
)[

1
4
(2 − 3σ2)(2 − 3s2) − 3σκcs cosN +

3
4
σ2s2 cos 2N

]

±1
(
1 − 3

2
e2
)[

1
4
σκ(2 − 3s2) +

1
2
(1 − 2σ2)cs cosN − 1

4
σκs2 cos 2N

]

±2
(
1 − 3

2
e2
)[

1
4
σ2(2 − 3s2) + σκcs cosN +

1
4
(2 − σ2)s2 cos 2N

]

3

0 0

±1 e

[
1
4
(4 − 5σ2) cos(N +ω�) − 5

2
σκs cos(2N +ω�)

]

±2 e[σκ cos(N +ω�) + (1 − 2σ2)s cos(2N +ω�)]

±3 e

[
9
4
σ2 cos(N +ω�) +

9
2
σκs cos(2N +ω�)

]

4

0
3
8
(8 − 40σ2 + 35σ4) − 15

2
(4 − 7σ2)σκs cosN

±1 3
8
(4 − 7σ2)σκ +

3
8
(4 − 29σ2 + 28σ4)s cosN

±2 3
8
(6 − 7σ2)σ2 +

3
2
(3 − 7σ2)σκs cosN

±3 9
8
σ3κ +

9
8
(3 − 4σ2)σ2s cosN

±4 3
8
σ4 +

3
2
σ3κs cosN

where, from (3.11),

〈
am+1�
rm+1�

〈
M�

m

〉
�

〉
λ

=
am−2

am−2�
m/2∑
j=0

Em,2j+k
m∑

i=−m
pm,2j+k,i

(
t̃m,i cosφ + d̃m,i sinφ

)
,

φ =
(
2j + k

)
ω + iΩ, k = m mod 2,

(3.17)

with

t̃m,i =

〈(
a�
r�
)m+1

t�m,i
〉

λ

, d̃m,i =

〈(
a�
r�
)m+1

d�
m,i

〉
λ

. (3.18)

To get some further simplification, we note that e�∼ i�∼ O(δ). Thus, in our eighth-
order theory, we neglect higher-order terms factored by em�sinnJ δk such that m + n + k > 8.

Under these simplifying assumptions, the coefficients t̃m,i and d̃m,i are presented in Tables 4
and 5, respectively.
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Table 5: Averaged moon direction coefficients d̃j,k . Here, c = cos J , s = sin J , and e ≡ e�.

j k d̃j,k

2

0 0

±1 k

(
1 − 3

2
e2
)(

1
2
κcs sinN − 1

4
σs2 sin 2N

)

±2 k

(
1 − 3

2
e2
)(

1
2
σcs sinN +

1
4
κs2 sin 2N

)

3

0 e

[
3
2
(2 − 5σ2)κs sinω� +

3
4
(4 − 5σ2)σ sin(N +ω�) − 15

4
σ2κs sin(2N +ω�)

]

±1 ke

[
−3
2
(4 − 5σ2)σs sinω� +

1
4
(4 − 15σ2)κ sin(N +ω�) − 5

4
(2 − 3σ2)σs sin(2N +ω�)

]

±2 ke

[
3
2
σ2κs sinω� − 1

4
(2 − 3σ2)σ sin(N +ω�) − 1

4
(2 − 3σ2)κs sin(2N +ω�)

]

±3 ke

[
−3
2
σ3s sinω� +

3
4
σ2κ sin(N +ω�) +

3
4
(2 − σ2)σs sin(2N +ω�)

]

4

0 0

±1 k
3
8
(4 − 7σ2)κs sinN

±2 k
3
8
(6 − 7σ2)σs sinN

±3 k
9
8
σ2κs sinN

±4 k
3
8
σ3s sinN

As in the preceding averaging, adequate arbitrary constants have been introduced in
the computation of the generating function to guarantee its average to zero.

After the double averaging, the Hamiltonian only depends on long-period terms
related to the sun’s apparent motion and very long-period terms related to the precession of
the nodes and recession of the line of apsides of the moon’s orbit. The numerical integration
of corresponding Hamilton equations

d
(
g ′′, h′′

)
dt

=
∂K′

∂(G′′,H ′′)
,

d(G′′,H ′′)
dt

= − ∂K′

∂
(
g ′′, h′′

) (3.19)

is, now, very much faster and efficient.

4. Numerical Experiments

For the numerical tests we used a higher-order Runge-Kutta method. Specifically, the
numerical integration was performed with the Dormand and Prince implementation of the
Runge-Kutta method coded in FORTRAN 77 by Hairer et al. [29].
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Figure 1: Semianalytical theory versus numerical integration. From top to bottom, errors in semimajor axis
of the secular terms and after computing the fourth, fifth, sixth, seventh, and eighth order transformation
equations, respectively. Abscissas are days.

Table 6: Initial conditions in the single- (top) and double-averaged phase space (bottom) after different
truncation orders n of the semi-analytical theory. Distances are km, and angles are deg.

n 28560 − a 0.2 − e 56 − i 0 −ω 72 −Ω 0 − �
4 3.06217 0.0000723 0.0014902 0.0000000 0.0000000 0.0000000
5 3.06923 0.0000722 0.0014713 −0.0016703 0.0000132 0.0016800
6 3.06073 0.0000720 0.0014808 −0.0017529 0.0000081 0.0018807
7 3.06077 0.0000720 0.0014820 −0.0017477 0.0000075 0.0018817
8 3.06085 0.0000721 0.0014819 −0.0017510 0.0000042 0.0018783
4 3.06073 0.0000453 −0.0030387 −0.0149534 −0.0027445 0.0167622
5 3.06923 0.0000431 −0.0026903 −0.0153934 −0.0028968 0.0172767
6 3.06073 0.0000432 −0.0026846 −0.0153427 −0.0029047 0.0173255
7 3.06077 0.0000432 −0.0026744 −0.0153287 −0.0028995 0.0173220
8 3.06085 0.0000433 −0.0026745 −0.0153319 −0.0029027 0.0173187

To illustrate the significance of recovering the short-period effects up to higher orders,
we first show in Figure 1 a sequence of the errors obtained in the semimajor axis after one
month semi-analytical propagation. For this example, we take the initial osculating elements
a = 28 560 km, e = 0.2, i = 56deg., ω = 0, Ω = 72deg., and � = 0; besides we assumed
that both the mean anomalies of the moon and the sun are zero at the origin of time.
Corresponding elements in the single- and double-averaged phase space depend on the
truncation order of the perturbation theory and are presented in the top and bottom parts
of Table 6, respectively.
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Figure 2: Sample long-term propagations for ω = 0 andΩ = 0 full line, 90 dashed, 180 dotted, and 270deg.
dash-dotted. (a) Eccentricity variation. (b) Inclination variations.

In reference to Figure 1, the top plot shows a direct comparison between the
numerical integration of the Hamilton equations of the original, nonaveraged problem—
whose disturbing potential is given in (2.1)—and that of the long-term Hamiltonian after the
double averaging up to the eight order of the small parameter. Then, from top to bottom, we
show the errors obtained at each step of the integration when recovering short-period terms
by computing the transformation equations of the averaging up to the fourth, fifth, sixth,
seventh, and eighth orders. For the latter, the amplitude of the periodic errors is reduced to
several centimeter; note that, in addition to short-period errors related to the orbital period of
the satellite, we can appreciate a two-week modulation related to the moon’s mean motion.
Remark that the amplitude of the periodic errors roughly divides by ten with each order of
the transformation equations, which is consistent with the assumed magnitude of the virtual
small parameter δ ∼ 0.1.

The short-period effects can be ignored in the study of the long-term orbital behavior,
where the simple propagation of the double-averaged equations appears very fast and
efficient. Sample propagations are shown in figures below, which show the important effects
that have the initial right ascension of the ascending node and argument of perigee of the
satellite’s orbit in the long term and specifically in the eccentricity and inclination evolution
of the satellite’s orbit. Thus, Figure 2 shows the notably different evolution of the satellite’s
eccentricity and inclination for different initial nodes; for the other initial conditions we have
taken the same as in the preceding short-term propagations but now assuming directly that
they are mean elements. In fact, the more relevant parameter is the difference between the
node of the satellite’s orbit and that of the moon’s orbit, as illustrated in Figure 3 where the
initial longitude of the ascending node of the moon’s orbit over the ecliptic has been taken as
N = 180 instead ofN = 0deg.

Figure 4 shows that the effect of the initial argument of the perigee of the satellite’s
orbit is also important in the long term, eccentricity evolution. The effect is almost negligible
in the orbital inclination in the long-term and it is not presented.

Finally, we must mention that further tests demonstrated that there are no important
qualitative differences in the long term when using lower-order truncations of the theory,
resulting in faster numerical integration of the mean elements. So the fifth-order truncation
should be the preferred long-term Hamiltonian. Besides, we also checked for a variety of
orbits that making e� = e� = 0 does not either introduce qualitative differences in the long-
term, in agreement with [19].
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Figure 3: The same as Figure 2 but nowN = 180 instead ofN = 0deg.
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Figure 4: Sample long-term propagations for Ω = 0 and ω = 0 full line, 30 dashed, 60 dotted, and 90deg.
dash-dotted. Eccentricity variation.

5. Conclusions

Modeling lunisolar perturbations on high-altitude Earth orbits requires to retain high degrees
in the Legendre polynomials expansion of the third-body disturbing function of the moon. In
consequence the eccentricity of the third-body’s orbit cannot be neglected in the case of either
the moon or the sun.

The long-term behavior of high-altitude Earth orbits is approached in a semianalytical
way via averaging procedures, in which we take advantage of the different scales in which
appears the time to do the averaging in the extended phase space. In addition, up to second-
order terms in the Earth’s oblateness coefficient, the averaging has been computed in closed
form of the eccentricity, and, therefore, the semianalytical integration can be applied to any
orbit.

Sample numerical propagations of test cases show that themore relevant parameter on
the long-term behavior is the difference between the right ascension of the ascending node of
the satellite’s orbit and the longitude of the ascending node of the moon’s orbit over the eclip-
tic, having an apparent effect manifested by the almost-secular growing of the orbit eccentric-
ity and also by very-long-period oscillations of the inclination with an amplitude of several
degrees. Also the initial argument of the perigee of the satellite’s orbit has notable effects in
the satellite’s orbit, but only in what respects to the long-term evolution of the eccentricity.
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