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The adaptive stabilization scheme based on tuning function for stochastic nonlinear systems with
stochastic integral input-to-state stability (SiISS) inverse dynamics is investigated. By combining
the stochastic LaSalle theorem and small-gain type conditions on SiISS, an adaptive output feed-
back controller is constructively designed. It is shown that all the closed-loop signals are bounded
almost surely and the stochastic closed-loop system is globally stable in probability.

1. Introduction

Global stabilization control design of stochastic nonlinear systems is one of the most impor-
tant topics in nonlinear control theory, which has received and is increasingly receiving a
great deal of attention; see, for example, [1–37] and the references therein. For a class of
stochastic nonlinear systems with stochastic inverse dynamics, much progress has beenmade
in the design of the global stabilization controller [12, 13, 15, 16, 24, 25, 31]. However, all
these controllers are only robust against stochastic inverse dynamics with stringent stability
margin. To weaken the stringent condition on stochastic inverse dynamics, a natural idea is
to benefit from input-to-state stability (ISS) in [38] and integral input-to-state stability (iISS)
in [39] which are now recognized as the central unifying concepts in feedback design and
stability analysis of deterministic nonlinear systems. Tsinias in [21], Tang and Basar in [19]
first proposed the concept of stochastic input-to-state stability (SISS) independently. Further
in-depth study on SISS and its applications are presented in [9–11, 18, 22]. Motivated by
these aforementioned important results, [34] showed that SISS condition can be weakened to
stochastic integral input-to-state stability (SiISS) and developed a unifying output feedback
framework for global regulation.
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Nonlinear small-gain theorem plays an important role in the controller design and
stability analysis of deterministic nonlinear systems in [40, 41]. While for stochastic non-
linear systems, there are fewer results on the small-gain theorem. [25] firstly established a
gain-function-based stochastic nonlinear small-gain theorem for ISpS in probability. In some
succeeding research work, [9, 11, 35] presented some Lyapunov-based small-gain type
conditions on SISS and SiISS, respectively. [4] further discusses the relationship of small-
gain type conditions on SiISS and studies the problem of GAS in probability via output feed-
back.

In this paper, inspired by [4], a more general class of stochastic nonlinear systems with
uncertain parameters and stochastic integral input-to-state stability (SiISS) inverse dynamics
is investigated. By combining the stochastic LaSalle theorem and small-gain type conditions
on SiISS, an adaptive output feedback controller is proposed to guarantee that all the closed-
loop signals are bounded almost surely and the stochastic closed-loop system is globally
stable in probability.

The paper is organized as follows. Section 2 begins with the mathematical prelimi-
naries. Section 3 presents statement of the problem. The design of adaptive output feedback
controller is given in Section 4. The corresponding analysis is given in Section 5. Section 6
concludes the paper.

2. Mathematical Preliminaries

The following notations are used throughout the paper. �+ stands for the set of all nonneg-
ative real numbers, �n is the n-dimensional Euclidean space, and �n×m is the space of real
n × m-matrices. For x = (x1, . . . , xn), one defines xi = (x1, . . . , xi), i = 1, . . . , n − 1. Ci denotes
the family of all the functions with continuous ith partial derivatives. L1(�+ ;�+) is the family
of all functions l : �+ → �+ such that

∫∞
0 l(t)dt < ∞. For a given vector or matrix X, XT

denotes its transpose, Tr{X} denotes its trace when X is square. |X| denotes the Euclidean
norm of a vectorX, and ‖X‖ = (Tr{XXT})1/2 for a matrixX.K denotes the set of all functions:
�+ → �+ , which are continuous, strictly increasing, and vanishing at zero; K∞ is the set of
all functions which are of classK and unbounded;KL denotes the set of all functions β(s, t):
�+ × �+ → �+ , which are of K for each fixed t and decrease to zero as t → ∞ for each fixed
s.

Consider the stochastic nonlinear delay-free system

dx = f(x, t)dt + g(x, t)dw, ∀x(0) = x0 ∈ �n , (2.1)

where x ∈ �
n , w is an m-dimensional standard Wiener process defined in a complete

probability space {Ω,F, {Ft}t≥0, P} with Ω being a sample space, F being a σ-field, {Ft}t≥0
being a filtration, and P being the probability measure. Borel measurable functions f : �n ×
�+ → �

n and g: �n × �+ → �
n×m are piecewise continuous in t and locally bounded

and locally Lipschitz continuous in x uniformly in t ∈ �+ . Let LV (x) denote infinitesimal
generator of function V ∈ C2 along stochastic system (2.1) with the definition of

LV (x) =
∂V (x)
∂x

f(x, t) +
1
2
Tr

{

gT (x, t)
∂2V (x)
∂x2

g(x, t)

}

. (2.2)



Mathematical Problems in Engineering 3

Definition 2.1 (see [34]). Stochastic process {ξ(t)}t≥t0 is said to be bounded almost surely if
supt≥t0 |ξ(t)| <∞ a.s.

Lemma 2.2 (Stochastic LaSalle Theorem [14]). For system (2.1), if there exist functions V ∈ C2,
α1, α2 ∈ K∞, l ∈ L1(�+ ;�+), and a continuous nonnegative functionW : �n → � such that for all
x ∈ �n , t ≥ 0,

α1(|x|) ≤ V (x) ≤ α2(|x|), LV (x) ≤ −W(x) + l(t), (2.3)

then for each x0 ∈ �n ,

(i) system (2.1) has a unique strong solution on [0,∞), and solution x(t) is bounded almost
surely;

(ii) when f(0, t) ≡ 0, g(0, t) ≡ 0, l(t) ≡ 0, the equilibrium x = 0 is globally stable in probability.

In the following, we cite two small-gain type conditions on SiISS in [35].
Consider the following stochastic nonlinear system

dx = f(x, v, t)dt + g(x, v, t)dw, ∀x(0) = x0 ∈ �n , (2.4)

where x ∈ �
n is the state, v ∈ �

m is the input, and w is an r-dimensional standard Wiener
process defined as in (2.1). Borel measurable functions f : �n × �m × �+ → �

n and g: �n ×
�
m × �+ → �

n×r are locally bounded and locally Lipschitz continuous with respect to (x, v)
uniformly in t ∈ �+ .

Definition 2.3 (see [34]). System (2.4) is said to be stochastic integral input-to-state stable
(SiISS) using Lyapunov function if there exist functions V ∈ C2(�n ;�), α1, α2, γ ∈ K∞, and a
merely positive definite continuous function α such that

α1(|x|) ≤ V (x) ≤ α2(|x|), LV (x) ≤ −α(|x|) + γ(|v|). (2.5)

The function V satisfying (2.5) is said to be a SiISS-Lyapunov function, and (α, γ) in (2.5) is
called the SiISS supply rate of system (2.4).

Lemma 2.4 (see [35]). For system (2.4) satisfying (2.5), if there exists a positive definite continuous
function α̃ such that lim sups→ 0+ α̃(s)/α(s) < ∞, lim sups→∞ α̃(s)/α(s) < ∞, then there exists
a function γ̃ ∈ K∞ such that (α̃, γ̃) is a new SiISS supply rate of system (2.4). Moreover, if
lim sups→ 0+γ(s)/s

m <∞, then lim sups→ 0+γ̃(s)/s
m <∞, wherem is any positive integer.

The following lemma shows that the condition at infinity can be removed if more prior
information on stochastic system is known.

Assumption H. For functions g, V , α given in (2.4), (2.5) with lim infs→∞α(s) = ∞, there exist
known smooth positive definite functions φ1, φ2 such that ‖g(x, v, t)‖ ≤ φ1(|x|), |∂V (x)/∂x| ≤
φ2(|x|) and lim sups→ 0+φ

2
1(s)φ

2
2(s)/α(s) <∞.
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Lemma 2.5 (see [35]). For system (2.4) satisfying (2.5) and Assumption H, if there exists a positive
definite function α̃ such that

lim sup
s→ 0+

α̃(s)
α(s)

<∞,

∫∞

0
e−
∫s
0 (1/ζ(α

−1
1 (τ)))dτ

[
ξ
(
α−11 (s)

)]′
ds < ∞, (2.6)

where ξ(·) ≥ 0, ζ(·) > 0 are smooth increasing functions with ξ(s)α(s) ≥ 2α̃(s), ζ(s)α(s) ≥
φ2
1(s)φ

2
2(s) for any s ≥ 0, then there exists a function γ̃ ∈ K∞ such that (α̃, γ̃) is a new SiISS supply

rate of system (2.4). Moreover, if lim sups→ 0+γ(s)/s
m < ∞, then lim sups→ 0+γ̃(s)/s

m <∞, where
m is any positive integer.

Lemma 2.6. Let x, y be real variables, then for any positive integers m, n and continuous function
a(·) ≥ 0, a(·)xmyn ≤ b|x|m+n + (n/(m + n))((m + n)/m)−m/na(m+n)/n(·)bm/n|y|m+n, where b > 0
is any real number.

3. Problem Statement

In this paper, we consider a class of stochastic nonlinear systems described by

dη = ϕ0
(
η, x1

)
dt + ψ0

(
η, x1

)
dw,

dx1 = x2dt + ϕ1
(
η, x
)
dt + ψ1

(
η, x
)
dw,

...

dxn−1 = xndt + ϕn−1
(
η, x
)
dt + ψn−1

(
η, x
)
dw,

dxn = udt + ϕn
(
η, x
)
dt + ψn

(
η, x
)
dw,

y = x1,

(3.1)

where (x2, . . . , xn) ∈ �
n−1 , u, y ∈ � represent the unmeasurable state, the control input, and

the measurable output, respectively. η ∈ �n0 is referred to as the stochastic inverse dynamics.
The initial value (ηT (0), x1(0), . . . , xn(0)) can be chosen arbitrarily. w is an m-dimensional
standard Wiener process defined as in (2.1). Uncertain functions ϕi : �n0 × �n → �, ψi :
�
n0 × �n → �

m , 1 ≤ i ≤ n, are smooth functions. It is assumed that ϕ0 and ψ0 are locally
Lipschitz continuous functions.

The research purpose of this paper is to design an adaptive output feedback controller
for system (3.1) by using stochastic LaSalle theorem and small-gain type conditions on SiISS,
in such a way that, for all initial conditions, the solutions of the closed-loop system are
bounded almost surely and the closed-loop systems are globally stable in probability. To
achieve the control purpose, we need the following assumptions.

Assumption 3.1. For each 1 ≤ i ≤ n, there exist the unknown constant θi > 0, the known
nonnegative smooth functions ϕi0, ϕi1, ψi0 and ψi1 with ϕij(0) = 0, ψij(0) = 0, j = 0, 1, such that
|ϕi(η, x)| ≤ θi(ϕi0(|η|) + ϕi1(x1)), |ψi(η, x)| ≤ θi(ψi0(|η|) + ψi1(x1)).
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For Assumption 3.1, there exist smooth functions ϕi1 and ψi1 satisfying

ϕi1(x1) = x1ϕi1(x1), ψi1(x1) = x1ψi1(x1), (3.2)

which will be frequently used in the subsequent sections.

Assumption 3.2. For the η-subsystem, there exists an SiISS-Lyapunov function V0(η). Namely,
V0 satisfies α(|η|) ≤ V0(η) ≤ α(|η|), LV0(η) ≤ −α(|η|) + γ(|x1|), where α, α, γ are class K∞
functions, and α is merely a continuous positive definite function.

4. Design of an Adaptive Output Feedback Controller

4.1. Reduced-Order Observer Design

Introduce the following reduced-order observer:

˙̂xi = x̂i+1 + ki+1y − ki
(
x̂1 + k1y

)
, 1 ≤ i ≤ n − 2,

˙̂xn−1 = u − kn−1
(
x̂1 + k1y

)
,

(4.1)

where k = (k1, . . . , kn−1)T is chosen such that A0 =
[
−k In−2

0...0

]
is asymptotically stable. Define

the error variable

ei =
1
θ∗

(xi+1 − x̂i − kix1), 1 ≤ i ≤ n − 1, θ∗ = max{1, θ1, . . . , θn}. (4.2)

By (3.1), (4.1), and (4.2), one gets

dei = (ei+1 − kie1)dt + 1
θ∗
(
ϕi+1
(
η, x
) − kiϕ1

(
η, x
))
dt +

1
θ∗
(
ψi+1
(
η, x
) − kiψ1

(
η, x
))
dw,

(4.3)

whose compact form is

de =
(
A0e + Φ

(
η, x
))
dt + Ψ

(
η, x
)
dw, (4.4)

where

e = (e1, . . . , en−1)T ,

Φ
(
η, x
)
=

1
θ∗
(
ϕ2
(
η, x
) − k1ϕ1

(
η, x
)
, ϕ3
(
η, x
) − k2ϕ1

(
η, x
)
, . . . , ϕn

(
η, x
) − kn−1ϕ1

(
η, x
))T

,

Ψ
(
η, x
)
=

1
θ∗
(
ψ2
(
η, x
) − k1ψ1

(
η, x
)
, ψ3
(
η, x
) − k2ψ1

(
η, x
)
, . . . , ψn

(
η, x
) − kn−1ψ1

(
η, x
))T

.

(4.5)
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4.2. The Design of Adaptive Backstepping Controller

From (3.1), (4.1), (4.2), and (4.4), the interconnected system is represented as

dη = ϕ0
(
η, y
)
dt + ψ0

(
η, y
)
dw,

de =
(
A0e + Φ

(
η, x
))
dt + Ψ

(
η, x
)
dw,

dy =
(
x̂1 + k1y + θ∗e1 + ϕ1

(
η, x
))
dt + ψ1

(
η, x
)
dw,

dx̂1 =
(
x̂2 + k2y − k1

(
x̂1 + k1y

))
dt,

dx̂2 =
(
x̂3 + k3y − k2

(
x̂1 + k1y

))
dt,

...

dx̂n−1 =
(
u − kn−1

(
x̂1 + k1y

))
dt.

(4.6)

Next, we will develop an adaptive backstepping controller by using the backstepping meth-
od. Firstly, a coordinate transformation is introduced

z1 = y, zi+1 = x̂i − αi
(
y, x̂1, . . . , x̂i−1, θ̂

)
, i = 1, . . . , n − 1. (4.7)

Step 1. By (4.6) and (4.7), one has

dz1 =
(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))
dt + ψ1

(
η, x
)
dw. (4.8)

Since A0 is asymptotically stable, there exists a positive definite matrix P such that PA0 +
AT

0P = −In−1. Choose

V1

(
e, z1, θ̂

)
=
δ

2

(
eTPe

)2
+

1
2Γ
θ̃2 +

1
4
z41, δ > 0, Γ > 0, (4.9)

where θ̃ = θ̂ − θ, θ̂ is the estimate of θ = max{θ∗, θ∗(4/3), θ∗4}. In view of (2.2), (4.4), (4.8), and
(4.9), then

LV1 = 2δeTPeeTP
(
A0e + Φ

(
η, x
))

+
1
2
Tr
{
ΨT(η, x

)(
4δ
(
eTP
)T
eTP + 2δeTPeP

)
Ψ
(
η, x
)}

+
1
Γ
θ̃ ˙̂θ + z31

(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z21 Tr

{
ψT1
(
η, x
)
ψ1
(
η, x
)}
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= δeTPeeT
(
PA0 +AT

0P
)
e + 2δeTPeeTPΦ

(
η, x
)

+ Tr
{
ΨT(η, x

)
(
2δ
(
eTP
)T
eTP + δeTPeP

)
Ψ
(
η, x
)
}

+
1
Γ
θ̃ ˙̂θ + z31

(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z21 Tr

{
ψT1
(
η, x
)
ψ1
(
η, x
)}

≤ −δλmin(P)|e|4 + 2δ‖P‖2|e|3∣∣Φ(η, x)∣∣ + 3δ‖P‖2|e|2∥∥Ψ(η, x)∥∥2 + 1
Γ
θ̃ ˙̂θ

+ z31
(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z21 Tr

{
ψT1
(
η, x
)
ψ1
(
η, x
)}
.

(4.10)

Applying Assumption 3.1, (3.2), (4.3), (4.7), and Lemma 2.6, it follows that

2δ‖P‖2|e|3Φ∣∣(η, x)∣∣ ≤ a01|e|4 + a01
∣∣Φ
(
η, x
)∣∣4,

3δ‖P‖2|e|2∥∥Ψ(η, x)∥∥2 ≤ a02|e|4 + a02
∥∥Ψ(η, x)

∥∥4,

z31z2 ≤ a10z41 + a10z42, θ∗z31e1 ≤ a11e41 + θ∗(4/3)γ11(z1)z41 ≤ a11e41 + θγ11(z1)z41,

z31ϕ1
(
η, x
) ≤ |z1|3θ∗

(
ϕ10
(∣∣η
∣∣) + ϕ11(z1)

) ≤ a12ϕ4
10

(∣∣η
∣∣) + θγ12(z1)z41,

3
2
z21 Tr

{
ψT1
(
η, x
)
ψ1
(
η, x
)} ≤ 3z21θ

∗2
(
ψ2
10

(∣∣η
∣∣) + ψ2

11(z1)
)
≤ a13ψ4

10

(∣∣η
∣∣) + θγ13(z1)z41,

(4.11)

where a01, a02, γ11, γ12, and γ13 are smooth functions, a01, a02, a10, a10, a11, a12, a13 > 0 are
constants.

Using (a1 + · · · + an)2 ≤ (x + a)n = n
n∑

i=1
a2i , (a + b)4 ≤ 8a4 + 8b4, y = x1, Assumption 3.1,

(3.2), and (4.5), one gets

∣∣Φ
(
η, x
)∣∣4 ≤ 64(n − 1)

((
k41 +· · ·+ k4n−1

)(
ϕ4
10 + y

4ϕ4
11

)
+ ϕ4

20 +· · ·+ ϕ4
n0 + y

4
(
ϕ4
21 +· · ·+ ϕ4

n1

))
,

∥∥Ψ
(
η, x
)∥∥4 ≤ 64(n − 1)

((
k41 +· · ·+ k4n−1

)(
ψ4
10 + y

4ψ4
11

)
+ ψ4

20 +· · ·+ ψ4
n0 + y

4
(
ψ4
21 +· · ·+ ψ4

n1

))
.

(4.12)

Substituting (4.11)-(4.12) into (4.10) and using z1 = y lead to

LV1 ≤ −a00|e|4 + a11e41 + Δ1
(∣∣η
∣
∣) + a10z42 + z

3
1(α1 + k1z1 + Δ00(z1)z1 + a10z1)

+ θ
(
γ11(z1) + γ12(z1) + γ13(z1)

)
z41 +

1
Γ
θ̃ ˙̂θ,

(4.13)
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where

a00 = δλmin(P) − a01 − a02,

Δ1
(∣∣η
∣
∣) = 64(n − 1)a01

((
k41 + · · · + k4n−1

)
ϕ4
10

(∣∣η
∣
∣) + ϕ4

20

(∣∣η
∣
∣) + · · · + ϕ4

n0

(∣∣η
∣
∣)
)

+ 64(n − 1)a02
((
k41 + · · · + k4n−1

)
ψ4
10

(∣∣η
∣∣) + ψ4

20

(∣∣η
∣∣) + · · · + ψ4

n0

(∣∣η
∣∣)
)

+ a12ϕ4
10

(∣∣η
∣∣) + a13ψ4

10

(∣∣η
∣∣),

Δ00(z1) = 64(n − 1)a01
((
k41 + · · · + k4n−1

)
ϕ4
11(z1) + ϕ

4
21(z1) + · · · + ϕ4

n1(z1)
)

+ 64(n − 1)a02
((
k41 + · · · + k4n−1

)
ψ4
11(z1) + ψ

4
21(z1) + · · · + ψ4

n1(z1)
)
.

(4.14)

Choosing the virtual control α1(·) and the tuning function τ1(·)

α1
(
y, θ̂
)
= −z1

(
c1 + ν1(z1) + k1 + Δ00(z1) + a10 + θ̂

(
γ11(z1) + γ12(z1) + γ13(z1)

))
,

τ1
(
y
)
= Γ
(
γ11(z1) + γ12(z1) + γ13(z1)

)
z41,

(4.15)

one gets

LV1 ≤ −c1z41 − ν1(z1)z41 − a00|e|4 + a11e41 + Δ1
(∣∣η
∣∣) + a10z42 +

1
Γ
θ̃
( ˙̂θ − τ1

)
, (4.16)

where c1 > 0 is design parameter and ν1(z1) > 0 is a smooth function to be chosen later.

Step i (i = 2, . . . , n). For notation coherence, denote u = αn, zn+1 = 0. At this step, we can
obtain a property similar to (4.16), which is presented by the following lemma.

Lemma 4.1. For the ith Lyapunov function Vi(e, zi, θ̂) = (δ/2)(eTPe)2 + (1/2Γ)θ̃2 +
∑i

j=1(z
4
j /4),

there are the virtual control law αi(y, x̂1, . . . , x̂i−1, θ̂) and the tuning function τi with the form

αi
(
y, x̂1, . . . , x̂i−1, θ̂

)
= −Ωi − zi

⎛

⎝ci + ai−1,0 + ai0 + θ̂
(
γi1 + γi2 + γi3 + γi4

)

+Γ
(
γi1 + γi2 + γi3 + γi4

) i−1∑

j=1

∂αj

∂θ̂
z3j+1

⎞

⎠ +
∂αi−1

∂θ̂
τi,

τi
(
y, x̂1, . . . , x̂i−1, θ̂

)
= τi−1 + Γ

(
γi1 + γi2 + γi3 + γi4

)
z4i ,

(4.17)
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such that

LVi ≤ −
i∑

j=1

cjz
4
j +

i∑

j=2

bjz
4
1 − ν1(z1)z41 − a00|e|4 +

i∑

j=1

aj1e
4
1 + Δi

(∣∣η
∣
∣) + ai0z4i+1

+

⎛

⎝ 1
Γ
θ̃ −

i−1∑

j=1

∂αj

∂θ̂
z3j+1

⎞

⎠
( ˙̂θ − τi

)
,

(4.18)

where ci > 0 is the designed parameters, ai0, ai−1,0, ai1, bi are some positive constants, γi1, γi2, γi3, γi4
are smooth nonnegative functions, whose choices are given in the proof.

Proof. See the appendix.

Therefore, at the end of the recursive procedure, the controller can be constructed as

u = αn
(
y, x̂1, . . . , x̂n−1, θ̂

)
, ˙̂θ = τn

(
y, x̂1, . . . , x̂n−1, θ̂

)
. (4.19)

Choosing parameters δ, a01, a02, a11, . . ., an1, c2, . . . , cn to satisfy

a0 = δλmin(P) − a01 − a02 −
n∑

i=1

ai1 > 0, c2, . . . , cn > 0, (4.20)

by (4.16) and (4.18), one has

LVn ≤ −
n∑

i=1

ciz
4
i +

n∑

j=2

bjz
4
1 − ν1(z1)z41 − a0|e|4 + Δn

(∣∣η
∣∣), (4.21)

where

V n

(
e, z, θ̂

)
=
δ

2

(
eTPe

)2
+

1
2Γ
θ̃2 +

1
4

n∑

i=1

z4i ,

Δn

(∣∣η
∣
∣) = 64(n − 1)a01

((
k41 + . . . + k

4
n−1
)
ϕ4
10

(∣∣η
∣
∣) + ϕ4

20

(∣∣η
∣
∣) + . . . + ϕ4

n0

(∣∣η
∣
∣)
)

+ 64(n − 1)a02
((
k41 + . . . + k

4
n−1
)
ψ4
10

(∣∣η
∣∣) + ψ4

20

(∣∣η
∣∣) + . . . + ψ4

n0

(∣∣η
∣∣)
)

+
n∑

i=1

(
ai2ϕ

4
10

(∣∣η
∣∣) + ai3ψ4

10

(∣∣η
∣∣)
)
+

n∑

j=2

aj4ψ
4
10

(∣∣η
∣∣).

(4.22)

5. Stability Analysis

We state the main theorems in this paper. This section is divided into two parts.
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5.1. Case I

Theorem 5.1. Assume that Assumptions 3.1 and 3.2 hold with the following properties:

lim sup
s→ 0+

Δn

(∣∣η
∣∣)

α(s)
< ∞, lim sup

s→∞

Δn

(∣∣η
∣∣)

α(s)
<∞. (5.1)

If lim sups→ 0+γ(s)/s
4 < ∞ in Assumption 3.2, by appropriately choosing the positive smooth func-

tion ν1(·) in (4.15) and the parameters δ, a01, a02, a11, . . ., an1, c2, . . ., cn to satisfy (4.20), then

(i) the closed-loop system consisting of (3.1), (4.1), (4.2), (4.7), (4.15), (4.17), and (4.19) has
a unique and almost surely bounded strong solution on [0,∞);

(ii) for each initial value (η(0), x(0), x̂(0), θ̂(0)), the equilibrium (η, x) = (0, 0) is globally
stable in probability, where x̂ = (x̂1, . . . , x̂n−1).

Proof. For any constant ε > 0, by (5.1), one has

lim sup
s→ 0+

(1 + ε)Δn

(∣∣η
∣∣)

α(s)
< ∞, lim sup

s→∞

(1 + ε)Δn

(∣∣η
∣∣)

α(s)
<∞. (5.2)

For the η-subsystem, by Lemma 2.4, there exists a positive and radially unbounded Lyapunov
function Ṽ0(η) ∈ C2 and γ̃ = ργ such that

LṼ0
(
η
) ≤ −(1 + ε)Δn

(∣∣η
∣∣) + γ̃(|z1|), (5.3)

lim sup
s→ 0+

γ̃(s)
s4

<∞, (5.4)

where ρ is a positive constant satisfying (1 + ε)Δn(|η|) ≤ ρα(s) for all s ≥ 0. Choosing the
following Lyapunov function for the entire closed-loop system

V
(
η, e, z, θ̂

)
= Ṽ0

(
η
)
+ Vn

(
e, z, θ̂

)
(5.5)

and combining (4.21) and (5.3), one obtains

LV
(
η, e, z, θ̂

)
≤ −

n∑

i=1

ciz
4
i −
⎛

⎝ν1(z1) −
n∑

j=2

bj

⎞

⎠z41 − a0|e|4 − εΔn

(∣∣η
∣
∣) + γ̃(|z1|). (5.6)

By (5.4), there always exists a smooth function ν1(·) to satisfy the following two inequalities:

z41

⎛

⎝ν1(z1) −
n∑

j=2

bj

⎞

⎠ ≥ γ̃(|z1|), ν1(z1) ≥
n∑

j=2

bj . (5.7)
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Substituting (5.7) into (5.6) leads to

LV
(
η, e, z, θ̂

)
≤ −

n∑

i=1

ciz
4
i − a0|e|4 − εΔn

(∣∣η
∣∣)

� −W(η, e, z).
(5.8)

Noting that ϕi0(·) and ψi0(·) are nonnegative smooth functions and using (4.22), it follows
that Δn(·) and W(·) are continuous nonnegative functions. By (5.5), (5.8), and Lemma 2.2,
one concludes that all the solutions of the closed-loop system are bounded almost surely,
the equilibrium (η, e, z) = (0, 0, 0) is globally stable in probability. By (3.1), (4.1), (4.2), (4.7),
(4.15), (4.17), (4.19), and the almost sure boundedness of all the signals, it is not difficult to
recursively prove that the equilibrium (η, x) = (0, 0) is globally stable in probability.

5.2. Case II

If more information about α in Assumption 3.2 is known, that is, lim infs→∞α(s) = ∞, further
results under the weaker conditions is given as follows.

Assumption 5.2. For functions ψ0 and V0 given by (4.22) and Assumption 3.2, there exist
known smooth nonnegative functions ψ̃1 and ψ̃2 with ψ̃1(0) = ψ̃2(0) = 0, such that
‖ψ0(η, x1)‖ ≤ ψ̃1(|η|) and |∂V0(η)/∂η| ≤ ψ̃2(|η|).

Lemma 5.3. For Δn, α, α, ψ̃1 and ψ̃2 given by (4.22), Assumptions 3.2 and 5.2, if

lim sup
s→ 0+

Δn(s) + ψ̃2
1(s)ψ̃

2
2(s)

α(s)
<∞,

∫∞

0
e−
∫s
0(1/ζ1(α

−1(τ)))dτ
[
ξ1
(
α−1(s)

)]′
ds <∞, (5.9)

where ξ1(·) ≥ 0 and ζ1(·) > 0 are smooth increasing functions satisfying

ξ1(s)α(s) ≥ 2(1 + ε)Δn(s), ζ1(s)α(s) ≥ ψ̃2
1(s)ψ̃

2
2(s), ∀s ≥ 0, (5.10)

ε is any positive constant. Then there exists a function γ̃ ∈ K∞ such that ((1 + ε)Δn, γ̃) is a
new SiISS supply rate of the η-subsystem in (3.1). Moreover, if γ in Assumptions 3.2 satisfies
lim sups→ 0+γ(s)/s

4 <∞, then lim sups→ 0+γ̃(s)/s
4 <∞.

Since the condition (5.9) is weaker than (5.1), by using Lemma 5.3, we give further
results under the weaker condition (5.9).

Theorem 5.4. Suppose that Assumptions 3.1–5.2 and the conditions of Lemma 5.3 hold. If
lim sups→ 0+γ(s)/s

4 <∞ in Assumption 3.2, by appropriately choosing the positive smooth function
ν1(·) in (4.15) and the parameters δ, a01, a02, a11, . . ., an1, c2, . . ., cn to satisfy (4.20), then

(1) the closed-loop system consisting of (3.1), (4.1), (4.2), (4.7), (4.15), (4.17), and (4.19) has
a unique and almost surely bounded strong solution on [0,∞);

(2) for each initial value (η(0), x(0), x̂(0), θ̂(0)), the equilibrium (η, x) = (0, 0) is globally
stable in probability.
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6. Conclusions

This paper further considers a more general class of stochastic nonlinear systems with uncer-
tain parameters and SiISS inverse dynamics. By combining the stochastic LaSalle theorem
and small-gain type conditions on SiISS, an adaptive output feedback controller is designed
to guarantee that all the closed-loop signals are bounded almost surely and the stochastic
closed-loop system is globally stable in probability.

There are two remaining problems to be investigated: (1) an essential problem is
to find a practical example with explicit physical meaning for system (3.1). A preliminary
attempt on high-order stochastic nonlinear system can be found in [28]. (2) How to design
an output feedback controller by using this method in this paper for system (3.1) in which the
drift and diffusion vector fields depend on the unmeasurable states besides the measurable
output?

Appendix

Proof of Lemma 4.1. We prove Lemma 4.1 by induction. Assume that at Step i − 1, there are
virtual control laws

αi−1
(
y, x̂1, . . . , x̂i−2, θ̂

)
= −Ωi−1 − zi−1

×
⎛

⎝ci−1 + ai−2,0 + ai−1,0 + ai−1,1 + θ̂
(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)

+Γ
(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)
+

i−2∑

j=1

∂αj

∂θ̂
z3j+1

⎞

⎠ +
∂αi−2

∂θ̂
τi−1,

τi−1
(
y, x̂1, . . . , x̂i−2, θ̂

)
= τi−2 + Γ

(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)
z4i−1,

(A.1)

such that Vi−1(e, zi−1, θ̂) = (δ/2)(eTPe)2 + (1/2Γ)θ̃2 +
∑i−1

j=1(z
4
j /4) satisfies

LVi−1 ≤ −
i−1∑

j=1

cjz
4
j +

i−1∑

j=2

bjz
4
1 − ν1(z1)z41 − a00|e|4 +

i−1∑

j=1

aj1e
4
1 + Δi−1

(∣∣η
∣∣)

+ai−1,0z4i +

⎛

⎝ 1
Γ
θ̃ −

i−2∑

j=1

∂αj

∂θ̂
z3j+1

⎞

⎠
( ˙̂θ − τi−1

)
,

(A.2)

where ci−1 > 0 are the designed parameters, ai−1,0, ai−1,0, ai−1,1, bi−1 are some positive constants,
and γi−1,1, γi−1,2, γi−1,3, γi−1,4 are smooth nonnegative functions.In the sequel, we will prove that
Lemma 4.1 still holds for Step i. Choosing

Vi
(
e, zi, θ̂

)
= Vi−1

(
e, zi−1, θ̂

)
+
1
4
z4i , (A.3)
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with the use of (4.6), (4.7), (4.15), and (A.1), the ItÔ differential of zi is given as follows:

dzi =
(
αi + zi+1 + Ωi − ∂αi−1

∂y
θ∗e1 − ∂αi−1

∂y
ϕ1
(
η, x
) − ∂αi−1

∂θ̂

˙̂θ
)
dt

− 1
2
∂2αi−1
∂y2 ψ1

(
η, x
)
ψT1
(
η, x
)
dt − ∂αi−1

∂y
ψ1
(
η, x
)
dw,

(A.4)

whereΩi = kiy−ki−1(x̂1+k1y) −
∑i−2

j=1(∂αi−1/∂x̂j)(x̂j+1+kj+1y−kj(x̂1+k1y))− (∂αi−1/∂y)(x̂1+
k1y). Using (2.2) and (A.2)–(A.4), we arrive at

LVi ≤ −
i−1∑

j=1

cjz
4
j +

i−1∑

j=2

bjz
4
1 − ν1(z1)z41 − a00|e|4 +

i−1∑

j=1

aj1e
4
1 + Δi−1

(∣∣η
∣∣) + ai−1,0z4i

+

⎛

⎝1
Γ
θ̃ −

i−2∑

j=1

∂αj

∂θ̂
z3j+1

⎞

⎠
( ˙̂θ − τi−1

)

+ z3i

(

αi + Ωi − ∂αi−1

∂θ̂

˙̂θ + zi+1 − ∂αi−1
∂y

θ∗e1 − ∂αi−1
∂y

ϕ1
(
η, x
) − 1

2
∂2αi−1
∂y2 ψ1

(
η, x
)
ψT1
(
η, x
)
)

+
3
2
z2i Tr

{(
∂αi−1
∂y

)2

ψT1
(
η, x
)
ψ1
(
η, x
)
}

.

(A.5)

Now, we estimate the last five terms, respectively, in the right-hand side of (A.5). According
to Assumption 3.1, (3.2), (4.7), and Lemma 2.6, there exist positive real numbers ai0, ai0, ai1,
ai2, ai3, ai4, bi2, bi3, bi4, smooth nonnegative functions γi1, γi2, γi3, γi4 such that

z3i zi+1 ≤ ai0z4i + ai0z4i+1, −z3i
∂αi−1
∂y

θ∗e1 ≤ ai1e41 + θγi1(zi)z4i ,

−z3i
∂αi−1
∂y

ϕ1
(
η, x
) ≤ |zi|3

(

1 +
(
∂αi−1
∂y

)2
)1/2

(
ϕ10
(∣∣η
∣∣) + ϕ11(z1)

)

≤ ai2ϕ4
10

(∣∣η
∣∣) + bi2z41 + θγi2(zi)z

4
i ,

−1
2
∂2αi−1
∂y2 z3i ψ1

(
η, x
)
ψT1
(
η, x
) ≤ |zi|3

∣∣∣
∣∣
∂2αi−1
∂y2

∣∣∣
∣∣
(
ψ2
10

(∣∣η
∣∣) + ψ2

11(z1)
)

≤ ai3ψ4
10

(∣∣η
∣∣) + bi3z41 + θγi3(zi)z

4
i ,

3
2
z2i Tr

{(
∂αi−1
∂y

)2

ψT1
(
η, x
)
ψ1
(
η, x
)
}

≤ 3z2i

(
∂αi−1
∂y

)2(
ψ2
10

(∣∣η
∣∣) + ψ2

11(z1)
)

≤ ai4ψ4
10

(∣∣η
∣
∣) + bi4z41 + θγi4(zi)z

4
i .

(A.6)
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Choosing αi and τi as (4.17) and substituting (A.6) into (A.5), (4.18) holds, where ci > 0 is a
design parameter,

Δi

(∣∣η
∣
∣) = Δi−1

(∣∣η
∣
∣) + ai2ϕ4

10

(∣∣η
∣
∣ ) + ai3ψ4

10

(∣∣η
∣
∣) + ai4ψ4

10

(∣∣η
∣
∣), bi = bi2 + bi3 + bi4.

(A.7)
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