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Due to the shortcomings in the traditional methods which dissatisfy the examination requirements
in composing test sheet, a new method based on tabu search (TS) and biogeography-
based optimization (BBO) is proposed. Firstly, according to the requirements of the test-sheet
composition such as the total score, test time, chapter score, knowledge point score, question
type score, cognitive level score, difficulty degree, and discrimination degree, a multi constrained
multiobjective model of test-sheet composition is constructed. Secondly, analytic hierarchy process
(AHP) is used to work out the weights of all the test objectives, and then the multiobjective
model is turned into the single objective model by the linear weighted sum. Finally, an improved
biogeography-based optimization—TS/BBO is proposed to solve test-sheet composition problem.
To prove the performance of TS/BBO, TS/BBO is compared with BBO and other population-based
optimization methods such as ACO, DE, ES, GA, PBIL, PSO, and SGA. The experiment illustrates
that the proposed approach can effectively improve composition speed and success rate.

1. Introduction

Examination is the process of teaching management which plays an important role in
evaluating student achievement, inspiring students’ creativity, and improving student
learning outcomes. As an important means of testing student learning and teacher teaching,
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it also provides the necessary information for teachers to improve their teaching methods
and the quality of teaching [1]. Also, tests are often used to help instructors assess students’
prior knowledge [2]. With the advent of computer based education (CBE), how to take full
advantage of computers to replace manual to help the examination organizer deal with a
variety of complex repetitive work is an important topic in computer managed instruction,
so computer-aided test (CAT) come into being. Computer-aided test can best satisfy the
different evaluation requirements; quickly and effectively complete test-sheet composition
with randomness, scientificity and rationality.

Test-sheet composition is a hot issue in computer-aided testing. At present, the
algorithms to solve test-sheet composition are abductive machine learning [3], harmony
search algorithm [4], genetic algorithm [5, 6], and particle swarm optimization [7]. However,
these algorithms has many shortcomings, such as, meeting the local constraints, parameter
uncertainty, the lack of random selection and too long time required for composing test-sheet,
which lead to dissatisfy evaluation requirements.

Firstly proposed by Simon in 2008, biogeography-based optimization (BBO) [8–10] is
a novel powerful metaheuristic algorithm, which has good global optimization capability,
insensitivity for selection of initial values and parameters, strong robustness, simplicity, and
easy implementation. Therefore, it has been widespread concern in the academic research
and application and penetrated to a number of fields [11]. However, in the field of test-sheet
composition, no application of BBO algorithm exists yet. In this paper, we use an improved
BBO algorithm to solve the test-sheet composition problem. To reduce the search space and
improve efficiency, an improved BBO algorithmmakes use of subencoding based on question
type. Moreover, we use tabu search (TS) to avoid duplication of encoding in the migration
and mutation operations. Analytic hierarchy process (AHP) is used to determine the weight
of the test-sheet goal, and then multiobjective optimization model is converted to a single-
objective model by a linear weighted sum. In [12], Hwang et al. use tabu search to solve a
set of parallel test sheets with identical test ability and get a good performance. Here, we
combine BBO and TS to construct a new algorithm according to AHP and the principle and
feature of TS and BBO; that is, we use TS to optimize the mutation and migration operator in
BBO and then design the TS/BBO algorithm to get the most optimal question combination to
form a testsheet.

The structure of this paper is organized as follows. Section 2 describes the math-
ematical model in test-sheet composition problem. In Section 3, the weight in test-sheet
composition is determined by AHP. Subsequently, preliminary knowledge of TS and BBO
algorithm are introduced in Sections 4 and 5, respectively. Then, an improved BBO algorithm
for test-sheet composition is presented in Section 6 and the detailed implementation
procedure is also described. The simulation experiments are conducted in Section 7. Finally,
Section 8 concludes the paper and discusses the future path of our work.

2. Problem Description

Test-sheet composition model is a multiconstraint, multiobjective optimization problem. In
this section, we will describe the mathematical model for test-sheet composition, including
constraints and objective function.
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2.1. Constraints

Automatic test-sheet composition with computer is searching for questions to meet the
requirements from item bank. We determine the encoding for the main properties according
to objective analyzing and preestablish the goal state matrixA for all the questions in the item
bank:

AM×N =

⎛
⎜⎝

a11 · · · a1N
...

. . .
...

aM1 · · · aMN

⎞
⎟⎠, (2.1)

whereM is the total number of items in the item bank;N is the number of attributes for each
item (here,N = 9). For goal state matrixA, each row represents all properties every item, and
each column represents a property of the entire item in the item bank. It has not more than
N − 1 constraints because ai1 (i = 1, 2, . . . ,M)means item number.

The process of composing testsheet is as follows. Firstly, find the row to meet the
objectives and requirements of question combination x = (x1, x2, . . . , xp) in the state matrix
A according to the default settings or parameters user input, where xi = (xi,1, xi,2, . . . , xi,li) is
a vector composed by the question type i, xi,j ∈ [1,M] is the number for question j in the
type i, 1 ≤ i ≤ p, 1 ≤ j ≤ li, where p is the type number of questions in the item bank, li is
the number of the ith question, and

∑p

i=1 li = l, l is the total question number in a testsheet.
For simplicity, we use Boolean vector K = (K1, K2, . . . , KM) instead of x = (x1, x2, . . . , xp) to
represent the required question combination at last. Here,Km is the state variable for the mth
row (i.e., the mth item or question), where, Km = 1 means the mth row selected, that is, there
exists xi,j = m; Km = 0 means the mth row not selected, that is, there does not exist xi,j = m.
To simplify, without loss of generality, we use K(i) (1 ≤ i ≤ M) to represent the ith question
selected or not.

Every objective for test-sheet composition corresponds to a constraint, all theN−1 (9−
1 = 8) test-sheet objectives corresponding to the following N − 1 (eight) constraints. Thus,
the mathematical model, that is, the constraints for goal state matrix A, can be constructed as
follows:

(1) Total score

M∑
i=1

K(i)ai2 = SP , (2.2)

where SP is total score for the test-sheet composed; ai2 is score for the ith question.

(2) Test time

M∑
i=1

K(i)ai3 = TE, (2.3)

where TE is the total time completing the test-sheet composed; ai3 is estimated time for the
completion of the ith question.
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(3) Chapter scores

M∑
i=1

K(i)ai2C
(
j
)
= S

j

C, (2.4)

where C(j) =
{

0, j /=ai4
1, j=ai4; S

j

C is the score of the jth chapter; ai4 is the chapter number for the ith
question.

(4) Knowledge point score

M∑
i=1

K(i)ai2O
(
j
)
= S

j

O, (2.5)

where O(j) =
{

0, j /=ai5
1, j=ai5; S

j

O is the score for the jth knowledge point; ai5 is the knowledge point
number for the ith question.

(5) Question type score

M∑
i=1

K(i)ai2T
(
j
)
= S

j

T , (2.6)

where T(j) =
{

0, j /=ai6
1, j=ai6; S

j

T is the score for the jth question type; ai6 is the question type number
for the ith question. All the questions in item bank are divided into four kinds (i.e., Type 1,
Type 2, Type 3, and Type 4);

(6) Cognitive level score

M∑
i=1

K(i)ai2A
(
j
)
= S

j

A, (2.7)

where A(j) =
{

0, j /=ai7
1, j=ai7; S

j

A is the score for the jth cognitive level; ai7 is the cognitive level
number for the ith question.

(7) Difficulty degree

[∑M
i=1 K(i)ai2ai8

]

SP
= DIFP , (2.8)

where DIFP is the difficulty degree of the test-sheet composed; ai8 is difficult degree for the
ith question.
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(8) Discrimination degree

[∑M
i=1 K(i)ai2ai9

]

SP
= DISP , (2.9)

where DISP is the discrimination degree of the test-sheet composed; ai9 is discrimination
degree for the ith question.

2.2. Objective Function

Through analysis, eight constraints of the test-sheet composition model (total score, test time,
chapter score, knowledge point score, question type score, cognitive level score, difficulty
degree, and discrimination degree) should be equal to the evaluation requirements or
with the minimum error of the evaluation requirements. Thus, the test-sheet composition
is a multiconstraint, multiobjective optimization problem. In practical application, we can
consider the error between the above eight constraints and evaluation requirements as
objective function f . Therefore, the composed paper is optimal when f reaches minimum.

The mathematical model (i.e., objective function) for the test-sheet composition is as
follows:

min f =
2∑

j=1

(
d+
j + d−

j

)
×ωj +

h∑
i=1

(
d+
3i + d−

3i

) ×ω3 +
l∑

i=1

(
d+
4i + d−

4i

) ×ω4 +
p∑
i=1

(
d+
5i + d−

5i

) ×ω5

+
q∑
i=1

(
d+
6i + d−

6i

) ×ω6 +
8∑

j=7

(
d+
j + d−

j

)
×ωj

s.t.
M∑
j=1

K
(
j
)
aj2 − d+

1 + d−
1 = SP

M∑
j=1

K
(
j
)
aj3 − d+

2 + d−
2 = TE

h∑
i=1

⎛
⎝

M∑
j=1

K
(
j
)
aj2C(i) − d+

3i + d−
3i

⎞
⎠ =

h∑
i=1

Si
C

l∑
i=1

⎛
⎝

M∑
j=1

K
(
j
)
aj2O(i) − d+

4i + d−
4i

⎞
⎠ =

l∑
i=1

Si
O

p∑
i=1

⎛
⎝

M∑
j=1

K
(
j
)
aj2T(i) − d+

5i + d−
5i

⎞
⎠ =

p∑
i=1

Si
T
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q∑
i=1

⎛
⎝

M∑
j=1

K
(
j
)
aj2A(i) − d+

6i + d−
6i

⎞
⎠ =

q∑
i=1

Si
A

[∑M
j=1 K

(
j
)
aj2aj8

]

SP
− d+

7 + d−
7 = DIFP

[∑M
j=1 K

(
j
)
aj2aj9

]

SP
− d+

8 + d−
8 = DISP

d+
i , d

−
i ≥ 0, d+

i × d−
i = 0 (i = 1, 2, 7, 8)

d+
ij , d

−
ij ≥ 0, d+

ij × d−
ij = 0

(
i = 3, j = h

)

d+
ij , d

−
ij ≥ 0, d+

ij × d−
ij = 0

(
i = 4, j = l

)

d+
ij , d

−
ij ≥ 0, d+

ij × d−
ij = 0

(
i = 5, j = p

)

d+
ij , d

−
ij ≥ 0, d+

ij × d−
ij = 0

(
i = 6, j = q

)

ωj ≥ 0
(
j = 1, 2, . . . , 8

)
,

8∑
j=1

ωj = 1.

(2.10)

In the above objective function f , d+
i (i = 1, 2, 7, 8), d+

ij (i = 3, j = 1, 2, . . . , h),
d+
ij (i = 4, j = 1, 2, . . . , l), d+

ij (i = 5, j = 1, 2, . . . , p), and d+
ij (i = 6, j = 1, 2, . . . , q) are

the positive deviation between the test-sheet property and evaluation requirements, that is,
the part beyond the evaluation requirements; d−

i (i = 1, 2, 7, 8), d−
ij (i = 3, j = 1, 2, . . . , h),

d−
ij (i = 4, j = 1, 2, . . . , l), d−

ij (i = 5, j = 1, 2, . . . , p), and d−
ij (i = 6, j = 1, 2, . . . , q) are the negative

deviation between the test-sheet property and evaluation requirements, that is, the part less
than the evaluation requirements. The positive deviation and negative deviation cannot exist
at the same time; therefore, their product will be 0, that is, d− × d+ = 0; ωj (j = 1, 2, . . . , 8) is
weight for test-sheet composition, whose sum is 1.

In practice, the weight ωj (j = 1, 2, . . . , 8) has an important impact on the test-sheet
composition whether the result satisfies the requirements. Therefore, how to scientifically
and reasonably determine the weight of the test-sheet goal is worthy of further study. In the
next section, we will use AHP to determine the weights.

3. Determining the Weight in Test-Sheet Composition Using AHP

AHP [13] is an effective combination of qualitative and quantitative analysis of multiobjective
evaluation method, proposed by the University of Pittsburgh professor Saaty in the 1970s.
Advantages of AHP are easy implementation, simple structure, speed, and robustness. Due
to these advantages, it has many real-world applications, such as evaluating course website
quality, improving the service quality of e-learning, and evaluating the web-based e-learning
system.
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Begin
Step 1: Setting up the decision hierarchy by breaking down the decision problem into a

hierarchy of interrelated decision elements, as a tree containing the overall goal at
the top with many levels of criteria and subcriteria in between and the alternatives
at the bottom

Step 2: Collecting input data by pairwise comparisons of decision elements
Step 3: Using the eigenvalue method to estimate the relative weights of decision elements
Step 4: Aggregating the relative weights of decision elements to arrive at a set of ratings for

the decision alternatives.
End.

Algorithm 1: The algorithm of analytic hierarchy process.

3.1. AHP Algorithm

Proposed by Zahedi [14], four main steps are identified in using the AHP to solve a decision-
making problem. The detailed algorithm AHP is described in Algorithm 1.

3.2. Determining the Weights Using AHP

AHP can be used to determine goal weight for the test-sheet composition. Integrating
the feature of test-sheet composition into the AHP, specific solution process is shown in
Algorithm 2 (Figure 1).

We calculate consistency ratio CR = 0.0822 for the compassion matrix C with
Algorithm 2 and get the weights as shown in Table 2, so we can draw a conclusion that the
compassion matrix C has satisfactory consistency.

In the actual exam, test-sheet goal weight is various. AHP can determine different test-
sheet goal weight responding to different requirements according to the different compassion
matrix C.

4. Biogeography-Based Optimization (BBO)

Biogeography is the study of the migration, speciation, mutation, and extinction of species
[15]. Biogeography has frequently been thought of as a process that compels equilibrium
in the number of species in islands. However, equilibrium in a system can also be viewed
as a minimum-energy configuration, so we see that biogeography can be considered as an
optimization process. This idea is further discussed in [16].

Firstly proposed by Simon in 2008, biogeography-based optimization (BBO) is a
new evolution algorithm developed for the global optimization [8]. It is inspired by the
immigration and emigration of species between islands (or habitats) in search for more
compatible islands. Each solution is called a “habitat” (or “island”) with an HSI (habitat
suitability index) and represented by an n-dimension real vector. An initial individual of the
habitat vector is generated at random. The habitat with a high HSI is considered to be good
solution, while the habitat with a low HSI is considered to be bad solution. Low HSI can
take in many new good features form the high HSI, so that these low HSI solutions have
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Begin
Step 1: Define test-sheet problem and determine test-sheet composition goal
Step 2: Structure the hierarchy from the top through the intermediate levels (criteria on which

subsequent levels depend) to the lowest level (Figure 1).
Step 3: Construct a set of pair-wise comparison matrix C (size n × n, here n = 8, shown in

(Table 1). The pair-wise comparisons are done in terms of which element dominates
the other.

Step 4: Calculate the sorted weights. Calculate maximum eigenvalue λmax and its eigenvector
ω′ for comparison matrix C through Cx = λx, and then normalize ω′ to get the
final weight vector ω (Table 2).

Step 5: Test consistency
Step 5.1: Calculate consistency index CI through CI = (λmax − n)/(n − 1)
Step 5.2: Find the average Random Index RI through Table 3.
Step 5.3: Calculate consistency ratio CR through CR = CI/RI

Step 6: If CR < 0.1, the comparison matrix C is consistent and return; if CR ≥ 0.1, the
comparison matrix C should be modified, and return Step 4.

End.

Algorithm 2: The algorithm of AHP for test-sheet composition.
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Figure 1: Level tree structure of test-sheet composition.

a relatively high possibility that become high HSI solutions. In BBO, habitat H is a vector of
n (suitable index vectors (SIVs)) initialized randomly and then implements migration and
mutation operator to achieve the optimal solution. The new candidate solution is generated
from the entire habitat in population by using the migration and mutation operators.

In BBO, migration operator can change existing habitat and modify existing solution.
Migration is a probabilistic operator that adjusts habitat Xi. The probability Xi modified is
proportional to its immigration rate λi, and the source of the modified probability from Xj is
proportional to the emigration rate μj . Migration operator is shown in Algorithm 3.

Mutation is also a probabilistic operator that randomly modifies habitat SIVs based
on the habitat a priori probability of existence. Very high HSI solutions and very low
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Table 1: Comparison matrix C for test-sheet composition.

C1 C2 C3 C4 C5 C6 C7 C8
C1 1 3 5 6 3 6 5 6
C2 1/3 1 2 5 1 3 2 3
C3 1/5 1/2 1 1 1/4 3 1 4
C4 1/6 1/5 1 1 1/6 1/3 1/5 1/3
C5 1/3 1 4 6 1 6 5 6
C6 1/6 1/3 1/3 3 1/6 1 1/5 1
C7 1/5 1/2 1 5 1/5 5 1 3
C8 1/6 1/3 1/4 3 1/6 1 1/3 1
∗C1, C2, . . . , C8 present 8 constraints, respectively, that is, total score, test
time, chapter score, knowledge point score, question type score, cognitive
level score, difficulty degree, and discrimination degree.

Table 2:Weights ω.

Weights ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

ω′ 0.7511 0.3098 0.1738 0.0700 0.4924 0.0914 0.2130 0.0930
ω 0.3423 0.1412 0.0792 0.0319 0.2244 0.0417 0.0970 0.0424

HSI solutions are equally improbable. Medium HSI solutions are relatively probable. The
mutation rate m is expressed as

m = mmax

(
1 − Ps

Pmax

)
, (4.1)

where mmax is a user-defined parameter.
Additionally, the mutation operator tends to increase the population diversity.

Mutation can be described in Algorithm 4. The basic framework of BBO algorithm can
be simply described in Algorithm 5. More details about the migration operator, mutation
operator, and BBO algorithm can be found in [8] and in the Matlab code [17].

5. Tabu Search (TS)

Tabu search (TS) [18] is a metaheuristic framework which takes advantage of its use
of adaptive memory strategies to manage simultaneously the variety and intensification
searches in the solution space of the optimization problem under way. The TS framework
is composed by the following major components.

(1) Solution Configuration

The candidate solution for the optimization problem under way is encoded by a
configuration. Relying on the characteristic of the problem, the solution configuration x =
[x1, x2, . . . , xn], which contains n decision variables, could be a vector taking real numbers,
binary values, or mixed combinations of them. Initially, a configuration is set randomly
within the reasonable ranges of the decision variables.
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Table 3: Random index RI for different n.

n 3 4 5 6 7 8 9 10 11 12 13 14
RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57

Begin
for i = 1 to NP

Select Xi with probability based on λi
if rand(0, 1) < λi then

for j = 1 to NP
Select Xj with probability based on μj

if rand(0, 1) < μj then
Randomly select an SIV σ from Xj

Replace a random SIV in Xi with σ
end if
end for

end if
end for

End.

Algorithm 3: The algorithm of habitat migration operator.

(2)Move Function

Amove function S(x) is used to guide the solution configuration x to explore its local solution
space. The step size of the move should be limited in an appropriate range according to the
practical problem. An oversized step makes the search to step over a promising neighbor,
while an undersized step causes the algorithm to be inefficient. By performing the move
function, the solution configuration is turned into a neighboring configuration, that is, x′ =
S(x), where x′ is a neighboring configuration of x.

(3) Neighborhood

The move function defines a neighborhood which bounds the neighboring configurations
which are reachable by implementing a move operation to the current solution configuration
using S(x). Generally, the neighborhood of solution x is defined by Ω(x) = {x′ | x′ = S(x)}.

Begin
for i = 1 to NP

Compute the probability Pi

Select SIV Xi(j) with probability based on Pi

if rand(0, 1) < mi then
Replace Xi(j) with a randomly generated SIV

end if
end for

End.

Algorithm 4: The algorithm of mutation operator.
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Begin
1: Initialization. Set the generation counter G = 1; Initialize the population P randomly

and each habitat corresponding to a potential solution to the given problem.
Step 2: Evaluate the fitness for each individual in P
Step 3:While the termination criteria is not satisfied do

Sort the population from best to worst.
For each habitat, map the HSI to the number of species S,
Calculate the immigration rate λi and the emigration rate μi for each individual Xi.
Modify the population with the migration operator shown in Algorithm 3.
Update the probability for each individual.
Mutate the population with the mutation operation shown in Algorithm 4.
Evaluate the fitness for each individual in P .
Sort the population from best to worst.
G = G + 1;

Step 4: end while
End.

Algorithm 5: The algorithm of biogeography based optimization.

(4) Tabu List

A tabu list which stops a recent move to be reversed is kept and modified in the TS
framework. Once a move (say, swapping the ith and the jth entries of x) is carried out, the
inverse of this move (swapping the two entries again) is recorded in the tabu list and is
labeled tabu-active. All the tabu moves are excluded from the neighborhood Ω(x), and thus
become inaccessible.

(5) Aspiration Criterion

To allow the solution configuration to move to an attractive but tabu neighboring
configuration, an aspiration criterion is strategically designed to overrule the tabu status of
such a desiredmove. Aspiration criterion provides a restricted degree of freedom in accepting
a tabu move that achieves a threshold of attractiveness.

(6) Stopping Criterion

The stopping criterion depends on the purpose of the problem. There are a number of
alternatives such as a minimal solution quality level, a given CPU time limit, a maximal
number of iterations between two improvements of the best solution found.

Basically, the TS approach can be summarized as shown in Algorithm 6.

6. Tabu Search/Biogeography-Based Optimization (TS/BBO)

As we all know, the standard TS algorithm is good at exploring the search space and
locating the region of global minimum, but it is relatively slow at exploitation of the solution.
On the other hand, standard BBO algorithm is usually quick at the exploitation of the
solution, though its exploration ability is relatively poor. Therefore, in our work, a hybrid
metaheuristic algorithm by integrating tabu search into biogeography-based optimization,
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Begin
Step 1: Randomly generate an initial configuration, x = [x1, x2, . . . , xn], with an

empty tabu list
Step 2: Repeat the following statements until the stopping criterion is met

Step 2.1: Identify the neighborhood Ω(x) = {x′ | x′ = S(x)} of current
configuration x, and consider a subsetH(x) from Ω(x)

Step 2.2: Choose the best (in terms of a moving evaluation score)
configuration x∗ ∈ H(x) which is either nontabu or is tabu
but satisfying the aspiration criterion

Step 2.3: Update the tabu list and let x = x∗

Step 3: Output the best configuration found
End.

Algorithm 6: Algorithm of tabu search.

so-called TS/BBO, is used to solve the problem of test-sheet composition. The difference
between TS/BBO and BBO is that the hybridmigration operator is used to replace the original
BBO mutation operator. In this way, this method can explore the new search space by the
mutation of the TS algorithm and exploit the population information with the migration of
BBO, and therefore it can overcome the lack of the exploitation of the TS algorithm. In the
following, we will show the algorithm TS/BBO which is a variety of TS and BBO. Firstly, we
describe tabu search migration and mutation operation, and then a mainframe of TS/BBO is
shown.

6.1. Tabu Search Migration and Mutation Operation

The critical operator of TS/BBO is the tabu search migration operator, which composes the
tabu search with the migration of BBO. In this algorithm, we can find that the migration
between the population Xi and Xj has no repeat because of the use of tabu search. The
core idea of the proposed hybrid migration operator is based on two considerations. First,
poor solutions can receive many new features from good solutions. Second, the final solution
cannot include any repeat SIV. Pseudocode of tabu search migration operation can be
described in Algorithm 7.

In the same way, we compose the tabu search and original mutation operator which
modifies the habitat with lowHSI in order to avoid the repeat to improve the search efficiency.
Pseudocode of tabu search mutation operation can be described in Algorithm 8.

6.2. Mainframe of TS/BBO

By incorporating above-mentioned tabu searchmigration andmutation operator into original
BBO algorithm, the TS/BBO has been developed as a new algorithm. TS/BBO algorithm is
given in Algorithm 9.
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Begin
for i = 1 to NP

Select Xi with probability based on λi
if rand(0, 1) < λi then

for j = 1 to NP
Select Xj with probability based on μj

ALLOW = Xj

TS = Φ
for k = 1 to D

if rand(0, 1) < μj then
Randomly select an SIV σ from ALLOW
Replace a random SIV in Xi with σ
ALLOW = ALLOW\{σ}
TS = TS ∪ {σ}

end if
end for
end for

end if
end for

End.

Algorithm 7: Tabu search migration operator of BBO.

Begin
for i = 1 to NP

Compute the probability Pi

Select SIV Xi(j) with probability based on Pi

ALLOW = {1 to M}
TS = Φ
if rand(0, 1) < mi then

Replace Xi(j) with a randomly generated SIV from ALLOW
ALLOW = ALLOW\{SIV}
TS = TS ∪ {SIV}

end if
end for

End.

Algorithm 8: Tabu search mutation operator of BBO.

6.3. Algorithm TS/BBO for Test-Sheet Composition

In TS/BBO, the standard continuous encoding of TS/BBO cannot be used to solve test-sheet
composition directly. In order to apply TS/BBO to test-sheet composition, one of the key
issues is to construct a direct relationship between the test-sheet sequences and the vector of
individuals in TS/BBO.
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Begin
Step 1: Initialization. Set the generation counter G = 1; and randomly initialize

a population of NP individuals P , the parameter TS,M, ALLOW
Step 2: Evaluate the fitness(HSI) for each individual in P according to (4.1).
Step 3: while The halting criteria is not satisfied do

Sort the population from worst to best according to HSI
For each individual, map the HSI to the number of species
Calculate the immigration rate λi and the emigration rate μi for each
individual Xi

Modify the population with the tabu search migration operator shown in
Algorithm 7
Update the probability for each individual
Mutate the population with the tabu search mutation operator shown in
Algorithm 8
Evaluate the fitness for each individual in P
Memorize the best solution achieved so far
G = G + 1

Step 4: end while
End.

Algorithm 9: Algorithm description of TS/BBO.

6.3.1. Preprocessing

We will do the following preprocessing before the design of TS/BBO algorithm for test-sheet
composition

(a) We regroup all the questions in item bank according to question type, and then
the candidates take the same question type together to form a subset. So all the
questions in item bank can be divided into several different subsets, and then all
questions will be renumbered.

(b) Because question type in the requirements and item bank has the same score, we
can calculate the number of questions required for every question type, and then
we get the total number of questions in a testsheet.

6.3.2. Encoding

When using TS/BBO to solve test-sheet composition problem, the status code for each habitat
represents a candidate solution, that is, a test-sheet composition scheme. Therefore, how to
determine the effective habitat status code is a key issue.

Traditional encoding method is as follows: the status code of each habitat is
represented by a binary string whose length is the number of questions in total in item bank,
and the number “1” indicates that the question corresponding to the number is selected,
while number “0” indicates that the question corresponding to the number is not selected; the
length of the number “1” indicates the number of questions contained in total in a testsheet.
This encoding method is simple and maximizes a random search at most, but it has increased
the search space, reducing the search efficiency.

Therefore, an alternative encoding method is proposed in this paper. This method
rearranges questions into different subsets according to the different question type.
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The status code of each habitat is represented by an l-dimensional vector x = (x1, x2, . . . , xp).
The dimension l for vector x depends on total questions in a testsheet, where the vector
xi = (xi,1, xi,2, . . . , xi,li) is composed by the ith question type, the integer xi,j ∈ [1,M] means
the jth question in the ith question type; 1 ≤ i ≤ p, 1 ≤ j ≤ li, p is the total question in item
bank; li is the number of the ith question type, and

∑p

i=1 li = l, l is the total question in some
test-sheet composed.

For example, we have seven questions (1.a, 2.b, 3.c, 4.d, 5.e, 6.f, and 7.g) in item bank;
questions a and g belong to question type 1, 1 score for each question; questions b, e, and f
belong to question type 2, 2 scores for each question; questions c and d belong to question
type 3, 3 scores for each question. Questions in item bank will be rearranged and renumbered
according to question type and the result is (1.a, 2.g, 3.b, 4.e, 5.f, 6.c, and 7.d). According to
the question type requirement {question type 2 : question type 3} = {4 : 3}, we get a total of 3
questions in the testsheet, that is,M = 7. p = 3, l1 = 0, l2 = 2, l3 = 1, and l = l1+ l2+ l3 = 3. So (4,
5, 7) represents a test-sheet composition scheme; that is, it represents a test-sheet containing
three questions which are questions e, f, and d.

6.3.3. The Algorithm TS/BBO for Test-Sheet Composition

Improved BBO can adapt to the needs of testsheet, while optimization algorithms can
improve the BBO fast search capabilities and increase the search to the global possible
optimum solution. HSI in Habitat i is represented by the objective function f(xi) in test-sheet
composition model the smaller the value f , then the higher HSI in Habitat i.

Based on the above analysis, the pseudo code of improved BBO-TS/BBO for test-sheet
composition is described as shown in Algorithm 10.

7. Simulation Experiments

In this section, we look at the performance of TS/BBO as compared with BBO and other
population-based optimization methods. Firstly, we compare performances between BBO
and TS/BBO, and then we compare performances between TS/BBO and other population-
based optimization methods such as ACO, DE, ES, GA, PBIL, PSO, and SGA.

To allow a fair comparison of running times, all the experiments were performed on
a PC with a Pentium IV processor running at 3.0GHz, 1GB of RAM and a hard drive of
160Gbytes. Our implementation was compiled using MATLAB R2012a (7.14) running under
Windows XP. In the following, we will describe the problem we use to test the performance
of the TS/BBO.

7.1. TS/BBO versus BBO

We randomly generate an item bank with M (e.g., M = 10000) questions, and then choose
some questions to form a testsheet. Its constraints are shown as follows:

(1) the total score is 100;

(2) the test time is 120 minutes;

(3) chapter score {1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10} = {6 : 6 : 8 : 12 : 9 : 12 : 12 : 15 : 10: 10};
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Begin
Step 1: Preprocessing. Preprocess the questions in item bank described in

subsection 6.3.1, and determine L which is the total number of questions
contained in a test-sheet

Step 2: Initializing. Set the generation counter G = 1; set the status code of habitat i
(i.e., SIV) xi according to subsection 6.3.2; randomly initialize a
population of NP individuals P ; set the maximum variation rate mmax and
migration rate p mod ; set dimension for the optimization problem D; set the
maximum capacity of habitat species Smax; set maximum of immigration
function I and the maximum of emigration function E and the maximum of
elite individuals retained z; set the parameter TS,M, ALLOW related to
tabu search

Step 3: Calculating the immigration and emigration rate. Calculating the species
number Si, the immigration λ(Si) and emigration rate
μ(Si) (i = 1, 2, . . . , n) corresponding to habitat i based on its SIV f(xi)
according to (2.10)

Step 4: while The halting criteria is not satisfied do
Sort the population from worst to best according to HSI
For each individual, map the HSI to the number of species
Calculate the immigration rate λi and the emigration rate μi for each
individual Xi

Modify the population with the taboo search migration operator shown in
Algorithm 7
Update the probability for each individual
Mutate the population with the taboo search mutation operator shown in
Algorithm 8
Evaluate the fitness for each individual in P
Memorize the best solution achieved so far
G = G + 1

Step 5: end while
End.

Algorithm 10: Algorithm of TS/BBO for test-sheet composition.

(4) knowledge point score {1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10:11:12:13:14:15:16:17:18:19:20} =
{3 : 3 : 3 : 3 : 4 : 4 : 6 : 6 : 4 : 5 : 6 : 6 : 6 : 6 : 6 : 9 : 5 : 5 : 5 : 5} (a chapter contains two knowl-
edge points);

(5) question type score {Type 1 : Type 2 : Type 3 : Type 4} = {10 : 16 : 24: 50};
(6) cognitive level score {Memorizing : Understanding : Applying : Analyzing :

Comprehending : Evaluating} = {10 : 15 : 20 : 30 : 15 : 10};
(7) difficulty degree is 0.4900;

(8) discrimination degree is 0.4050.

We get the goal weights for test-sheet composition {total score : test time :
chapter score : knowledge point score : questions type score : cognitive level score : difficulty
degree : discrimination degree} = {0.3423 : 0.1412 : 0.0792 : 0.0319 : 0.2244 : 0.0417 : 0.0970 :
0.0424} according to the Algorithm 2 as shown in Section 3.2.

For BBO and TS/BBO, we used the same following parameters: habitat modification
probability = 1, immigration probability bounds per gene = [0, 1], step size for numerical
integration of probabilities = 1, maximum immigration and migration rates for each



Mathematical Problems in Engineering 17

Table 4: Best normalized optimization results on test-sheet composition problem. The numbers shown are
the best results found after 100 Monte Carlo simulations of BBO and TS/BBO algorithm.

Parameter Algorithm
Popsize Maxgen Keep BBO TS/BBO
50 50 10 3.2243 3.1316
50 50 2 3.8055 3.7929
100 50 2 3.7608 3.8957
100 100 2 3.4048 3.1300
100 100 10 3.5727 2.6118

island = 1, and mutation probability = 0.005. We must point out that TS/BBO needs to set
tabu search table except for the above parameters. To compare the different effects among
the parameters Popsize, Maxgen, and Keep (the number of elitisms), we ran 100 Monte Carlo
simulations of BBO and TS/BBO algorithm on the above problem to get representative
performances. Tables 4, 5, 6, and 7 show the results of the simulations. In other words, Tables
4, 5, and 6 shows the best, worst, and average performance of BBO and TS/BBO algorithm
found by BBO and TS/BBO algorithm over 100 Monte Carlo runs, respectively, while Table 7
shows the average CPU time consumed by BBO and TS/BBO algorithm averaged over 100
Monte Carlo runs.

From Table 4, we see that TS/BBO performed the best (on average) on four of the 5
groups. Table 5 shows that BBO was the worst at finding objective function minima when
multiple runs are made. Table 6 shows that TS/BBO performed the best on average on all
the five groups. Table 7 shows that TS/BBO was a little more effective at finding objective
function minima when multiple runs are made, performing the best on 3 of the 5 groups,
while BBO performed the best effective on two of the groups. In sum, from Tables 4, 5, 6, and
7, we can draw the conclusion that the more generations, the more populations, and the more
elitisms, the smaller objective function value, while the CPU time consumes more.

7.2. TS/BBO versus Population-Based Optimization Method

In order to explore the benefits of TS/BBO, in this section we compared its performance on
test-sheet composition problem with seven other population-based optimization methods.
ACO (ant colony optimization) [19–21] is an algorithm that is based on the pheromone
deposition of ants. DE (differential evolution) [22–25] is a simple method that uses
the difference between two solutions to probabilistically adapt a third solution. An ES
(evolutionary strategy) [26, 27] is an algorithm that allows more than two parents to
reproduce an offspring. AGA (genetic algorithm) [28–32] is a method that is based on natural
selection in the theory of biological evolution. PBIL (probability-based incremental learning)
[33] is a type of GA that maintains statistics about the population instead of maintaining
the population directly. PSO (particle swarm optimization) [34] is based on the swarming
behavior of birds, fish, and other creatures. A stud genetic algorithm (SGA) [35] is a GA that
uses the best individual at each generation for crossover.

We did some fine tuning on each of the optimization algorithms to get optimal
performance, to get the optima for every algorithm. For ACO, we used the following
parameters: initial pheromone value τ0 = 1E − 6, pheromone update constant Q = 20,
exploration constant q0 = 1, global pheromone decay rate ρg = 0.9, local pheromone decay
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Table 5: Worst normalized optimization results on test-sheet composition problem. The numbers shown
are the best results found after 100 Monte Carlo simulations of BBO and TS/BBO algorithm.

Parameter Algorithm
Popsize Maxgen Keep BBO TS/BBO
50 50 10 6.0553 5.3541
50 50 2 6.1344 5.6907
100 50 2 5.7704 5.5479
100 100 2 5.4701 4.8595
100 100 10 6.1830 4.5499

Table 6:Mean normalized optimization results on test-sheet composition problem. The numbers shown are
the minimum objective function values found by BBO and TS/BBO algorithm, averaged over 100 Monte
Carlo simulations.

Parameter Algorithm
Popsize Maxgen Keep BBO TS/BBO
50 50 10 4.5200 4.2490
50 50 2 4.9518 4.7521
100 50 2 4.7500 4.7138
100 100 2 4.2129 4.0310
100 100 10 4.4600 3.4253

rate ρl = 0.5, pheromone sensitivity α = 1, and visibility sensitivity β = 5. For TS/BBO, we
used the parameters presented in Section 7.1. For DE, we used a weighting factor F = 0.5 and
a crossover constant CR = 0.5. For the ES, we produced λ = 10 offspring for each generation
and standard deviation σ = 1 for changing solutions. For the GA, we used roulette wheel
selection, single-point crossover with a crossover probability of 1, and a mutation probability
of 0.01. For PBIL, we used a learning rate of 0.05, 1 good populationmember, 0 bad population
members to use to update the probability vector each generation, and a 0 probability vector
mutation rate. For PSO, we used only global learning (no local neighborhoods), an inertial
constant = 0.3, a cognitive constant = 1, and a social constant = 1 for swarm interaction. For
the SGA, we used single-point crossover with a crossover probability of 1, and a mutation
probability of 0.01. Note that the algorithm DE has not the parameter Keep, so we cannot
compare Keep between TS/BBO and DE.

To compare the different effects among the parameters Popsize, Maxgen, and Keep (the
number of elitism), we ran 100 Monte Carlo simulations of each algorithm on the above
problem to get representative performances. Tables 8, 9, 10, and 11 show the results of the
simulations. Tables 8, 9, and 10 show the best, worst, and average performance of each
algorithm over 100 Monte Carlo runs, respectively, while Table 11 shows the average CPU
time consumed by each algorithm over 100 Monte Carlo runs.

From Table 8, we see that TS/BBO performed the best (on average) on the five groups.
Table 9 shows that PBIL was the worst at finding objective function minima on all the five
groups when multiple runs are made, while the SGA was the best on three of the groups
and TS/BBO was the best on two of the groups in the worst values. Table 10 shows that
TS/BBO was the most effective at finding objective function minima when multiple runs are
made, performing the best on 3 of the 5 groups, while SGA was the second most effective,
performing the best on 2 of the 5 groups. Table 11 shows that TS/BBO was the most effective
at finding objective function minima when multiple runs are made, performing the best on
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Table 7: Average CPU time on test-sheet composition problem. The numbers shown are the minimum
average CPU time (Sec) consumed by BBO and TS/BBO algorithm.

Parameter Algorithm
Popsize Maxgen Keep BBO TS/BBO
50 50 10 5.80 5.52
50 50 2 4.24 3.60
100 50 2 9.19 8.31
100 100 2 17.56 17.78
100 100 10 25.77 26.01

Table 8: Best normalized optimization results on test-sheet composition problem. The numbers shown are
the best results found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm
Popsize Maxgen Keep ACO DE ES GA PBIL PSO SGA TS/BBO
50 50 10 5.4134 5.1592 5.5487 4.1308 6.7791 5.3212 3.5948 3.1316
50 50 2 6.3357 5.8272 6.1941 5.3657 8.1954 6.1651 4.4489 3.7929
100 50 2 5.9669 5.6499 5.9860 5.1919 7.9242 5.9516 3.9447 3.8957
100 100 2 5.6849 5.2775 5.6952 4.6971 7.8740 5.6846 3.4552 3.1300
100 100 10 5.7449 5.2911 5.7152 4.0889 7.6467 5.6881 3.5391 2.6118

Table 9: Worst normalized optimization results on test-sheet composition problem. The numbers shown
are the best results found after 100 Monte Carlo simulations of each algorithm.

Parameter Algorithm
Popsize Maxgen Keep ACO DE ES GA PBIL PSO SGA TS/BBO
50 50 10 7.1331 6.7607 7.2079 6.2192 9.8729 7.0046 6.0518 5.3541
50 50 2 7.0307 6.5340 6.9859 6.6226 9.8666 6.8968 5.6263 5.6907
100 50 2 6.8203 6.4536 6.9457 6.3000 9.2658 7.0567 5.1012 5.5479
100 100 2 6.6193 6.1777 6.5664 5.9887 9.2589 6.5046 4.6660 4.8595
100 100 10 6.7001 6.1475 6.5471 5.0184 9.2101 6.5030 4.7275 4.5499

all the 5 groups. In sum, from Tables 8, 9, 10, and 11 we can draw the conclusion that the
more generations, the more populations, and the more elitisms, the smaller objective function
value, while the CPU time consumes more. From Table 8 groups 2 and 3 (i.e., row 2 and row
3), we can arrive at a conclusion that the objective function value is not always better when
Popsize is increasing. FromTable 8 groups 1 and 2 (i.e., row 2 and row 3) or groups 4 and 5 (i.e.,
row 4 and row 5), we can come to a conclusion that the more Keep, the better results when
other parameters are the same. Also, From Table 8 we can reach a decision that increasing
Maxgen can get more effective than increasing Popsize.

The simulation implemented in this section shows that the algorithm TS/BBO that we
proposed performed the best and most effectively, and it can solve the test-sheet problem
perfectly.

8. Conclusion

To improve performance for test-sheet composition, we combined the advantage of tabu
search and biogeography-based optimization and proposed a new algorithm TS/BBO.
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Table 10: Mean normalized optimization results on test-sheet composition problem. The numbers shown
are the minimum objective function values found by each algorithm, averaged over 100 Monte Carlo
simulations.

Parameter Algorithm
Popsize Maxgen Keep ACO DE ES GA PBIL PSO SGA TS/BBO
50 50 10 6.4966 6.0329 6.4322 5.1371 8.7371 6.4414 4.7929 4.2490
50 50 2 6.5258 6.0020 6.3800 5.5267 8.4413 6.3501 4.5824 4.7521
100 50 2 6.3249 5.6499 6.3452 5.5034 8.3996 6.3087 4.1814 4.7138
100 100 2 6.0259 5.2775 6.0369 4.9790 8.3465 6.0256 3.6625 4.0310
100 100 10 6.0896 5.2911 6.0581 4.3342 8.1055 6.0294 3.7515 3.4253

Table 11: Average CPU time on test-sheet composition problem. The numbers shown are the minimum
average CPU time (Sec) consumed by each algorithm.

Parameter Algorithm
Popsize Maxgen Keep ACO DE ES GA PBIL PSO SGA TS/BBO
50 50 10 6.37 6.37 4.52 3.87 3.55 4.27 4.94 3.21
50 50 2 6.36 6.36 3.56 3.90 4.56 4.17 4.38 2.21
100 50 2 13.51 26.09 7.83 8.54 7.96 10.47 10.36 7.21
100 100 2 26.09 26.09 15.64 17.35 15.40 20.52 22.69 13.20
100 100 10 26.03 26.03 15.51 16.79 18.34 20.41 23.61 13.01

Simulation experiment demonstrates that AHP and TS/BBO that we proposed for test-sheet
composition optimization problem have the following advantages.

(a) Speed up extracting questions and compute the objective function after preprocess-
ing the item bank according to question type.

(b) Habitat encoding length is equal to the total number of testsheet, saving storage
space and reducing the optimization space, to ensure that the constraint for total
score is met and improve the solution accuracy.

(c) We use subencoding according to the question type to ensure that constraint for
question type score is satisfied, reducing the optimization space and improving the
solution accuracy.

(d) AHP determines the test-sheet composition weights, comprehensively considering
the objective and subjective factors, in line with the actual test environment, fitting
real test needs.

(e) Tabu search optimizes mutation and migration operator to create the algorithm
TS/BBO, improving solution efficiency and solution accuracy.

However, the algorithm TS/BBO that we proposed in this paper has the following
disadvantages: the preprocessing time increases when the number of questions in item bank
is getting bigger, which will affect the entire test-sheet composition speed; need further
optimization to improve accuracy; need for further ease the conflict between expanding
population diversity and reducing the optimization space. The above problems are worth
further study.
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