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The main aim of the present work is to determine the optimal design and maximum deflection of
double layer grids spending low computational cost using neural networks. The design variables
of the optimization problem are cross-sectional area of the elements as well as the length of the
span and height of the structures. In this paper, a number of double layer grids with various
random values of length and height are selected and optimized by simultaneous perturbation
stochastic approximation algorithm. Then, radial basis function (RBF) and generalized regression
(GR) neural networks are trained to predict the optimal design and maximum deflection of the
structures. The numerical results demonstrate the efficiency of the proposed methodology.

1. Introduction

The history of the applications of Artificial Intelligence to civil and structural engineering
is simultaneously brief and long. It is brief if compared to the history of civil and structural
engineering, whose definition as a discipline can be fixed a very long time ago. It makes sense
to consider civil and structural engineering as the most ancient applicative discipline, being
founded in preclassical world by Egyptians and Babylonians. It is long, instead, if compared
to the history of Artificial Intelligence, whose name first appeared in science at the end of the
sixties of the twentieth century. The earliest applications to civil and structural engineering
are very likely [1], where authors review tools and techniques for knowledge-based expert
system for engineering design. An even earlier paper whose scope was indeed wider, but
introduced some fundamental themes, is [2]. We can definitely settle a start date in 1986 when
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the first International Symposium on this theme took place [3]. In statistical terms, since we
can fix Artificial Intelligence engineering applications start date in 1950 when the first attempt
to provide a true intelligent program was carried out [4], this means that, nowadays, we are
experiencing 18 years of history of the applications of Artificial Intelligence techniques to civil
and structural engineering.

As in this study our main aim is to employ neural networks to predict the optimal
design and maximum deflection of the double layer grids, the next paragraph is devoted
to review the literature about the optimal design of space structures by soft computing
techniques.

Erbatur et al. [5] reported the development of a computer-based systematic approach
for discrete optimal design of planar and space structures composed of one-dimensional
elements. Rajasekaran [6] created the input for large space structures using Formian. In
this paper, a new optimization technique called cellular automata (CA) has been combined
with genetic algorithm (GA) to develop different search and optimization known as cellular
genetic algorithm (CGA), which considers the areas of the space structures as discrete
variables. Krishnamoorthy et al. [7] proposed GA with objective-oriented framework which
was used in space truss optimization. Tashakori and Adeli [8] adopted the patented
robust neural dynamics model for optimum design of space trusses made of commercially
available cold-formed shapes in accordance with AISC specification. E. Salajegheh and J.
Salajegheh [9] achieved the optimal design of space structures while the design variables
are continuous and discrete. To reduce the computational work involved in the optimization
process they employed a semiquadratic function; also they use a hybrid form of the
approximation. Kaveh and Dehkordi [10] trained neural networks for the analysis, design,
and prediction of the displacements of domes using the backpropagation and radial basis
Functions neural networks. The performance of these networks is compared when applied
to domes. Kaveh et al. [11] combined the energy method and the force method in the context
of transmission tower optimization in order to form a holistic design and optimization
approach, eliminating the need for time-intensive matrix inversion. The addition of a neural
network as an analysis tool reduces the overall computational load. Kaveh and Servati
[12] trained neural networks for design of square diagonal-on-diagonal double layer grids.
They employed backpropagation algorithm for training the networks for evaluation of
the maximum deflection, weight, and design of the double layer grids. Salajegheh and
Gholizadeh [13] employed a modified genetic algorithm (GA) and radial basis function
(RBF) neural networks to optimize space structures. Kaveh et al. [14] employed ant colony
optimization (ACO) algorithm for optimal design of space structures with fixed geometry.
Gholizadeh et al. [15] employed a combination of GA and wavelet radial basis function
(WRBF) neural networks to find the optimal weight of structures subject to multiple natural
frequency constraints.

Much more other applications of neural networks in the field of civil engineering can
be found in the literature [16–20].

In this investigation, an innovative methodology is proposed to predict the optimal
design and maximum deflection of the square-on-square double layer grids. This method-
ology consists of three stages. In the first stage, a number of the double layer grids with
random spans and heights are generated. In the second stage the generated double layer
grids are optimized by an optimization algorithm. Although, in the recent years many new
structural optimization algorithms have been proposed by the researchers [21–25], in this
paper, simultaneous perturbation stochastic approximation (SPSA) [26] algorithm is used
due to its computational merits. Also, the maximum deflections of the optimal structures are
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saved. In the third stage, radial basis function (RBF) [27] and generalized regression (GR)
[27] neural networks are trained to predict the optimal design and maximum deflection of
the double layer grids. To design neural networks MATLAB [28] is employed.

2. Formulation of Optimization Problem

In optimal design problem of space trusses the aim is to minimize the weight of the truss
under constraints on stresses and displacements. This optimization problem can be expressed
as follows:

minimize: w
(
x1, . . . , xn, . . . , xng

)
=

ng∑

n=1

xn

nm∑

m=1

γmlm, (2.1)

subject to: σi ≤ σall,i, i = 1, 2, . . . , ne,

δj ≤ δall,j, j = 1, 2, . . . , nj,
(2.2)

where xn, γm, and lm are cross-sectional area of members belonging to group n, weight
density, and length ofmth element in this group, respectively; ng and nm are the total number
of groups in the structure and the number of members in group n, respectively; ne and nj are
the total number of the elements and nodes in truss, respectively; σi and δj are stress in the
ith element and displacement of the jth node, respectively. Also, σall,i and δall,j are allowable
stress in the ith member and allowable deflection of the jth node, respectively.

In this study, besides cross-sectional areas (xn) the geometry dependent parameters of
the double layer grid, L and h, are also variables. In other words, the aim is to find optimal
cross-sectional areas for each set of L and h. Thus, (2.1) can be reexpressed as follows:

For each set of L and h minimize w
(
x1, . . . , xn, . . . , xng

)
=

ng∑

n=1

xn

nm∑

m=1

γmlm. (2.3)

It is obvious that the computational burden of the above optimization problem is very
high due to the fact that L and h are variables. Employing the neural network technique can
substantially reduce the computational costs.

As the SPSA requires less number of function evaluations (structural analyses) than
the other type of gradient-based methods, it is selected as the optimizer in this study. The
basic concepts of the SPSA are explained in the next section.

3. SPSA Optimization Algorithm

SPSA has recently attracted considerable international attention in areas such as statistical
parameter estimation, feedback control, simulation-based optimization, signal and image
processing, and experimental design. The essential feature of SPSA is the underlying gradient
approximation that requires only two measurements of the objective function regardless of
the dimension of the optimization problem. This feature allows for a significant reduction in
computational effort of optimization, especially in problems with a large number of variables
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to be optimized. The basic unconstrained SPSA optimization algorithm is in the general
recursive stochastic approximation (SA) form [26]:

X̂k+1 = X̂k − akĜk

(
X̂k

)
, (3.1)

where X̂k represents the estimate of X at kth iteration, ak > 0 represent a scalar gain
coefficient, and Ĝ(X̂k) represent an approximate gradient at X̂k. Under appropriate condition,
(3.1) will converge to optimum design X∗ in some stochastic sense. The essential part of
(3.1) is the gradient approximation that is obtained using the simultaneous perturbation (SP)
method. Let w(·) denote a measurement of objective function at a design level represented
by the dot and let ck be some positive number. The SP approximation has all elements of
X̂k randomly perturbed together to obtain two measurements of w(·), but each component is
formed from a ratio involving the individual components in the perturbation vector and the
difference in the two corresponding measurement. For two sided simultaneous perturbation,
we have

Gki

(
X̂k

)
=

w
(
X̂k + ckΔki

)
−w

(
X̂k − ckΔki

)

2ckΔki
, (3.2)

where the distribution of the user-specified nv dimensional random perturbation vectorΔk =
{Δk1,Δk2, . . . ,Δknv}T satisfies condition discussed in [26].

It is observed that each iteration of SPSA needs only two objective function
measurements independent of nv because the numerator is the same in all nv components.
This circumstance provides the potential for SPSA to achieve a large savings in the total
number of measurements required to estimate X∗ when nv is large.

3.1. Implementation of SPSA

The following step-by-step summary shows how SPSA iteratively produces a sequence of
estimates [26].

Step 1 (initialization and coefficient selection). Set counter index k = 0. Pick initial guess and
nonnegative coefficients a, c, A, α, and γ in the SPSA gain sequences ak = a/(A + k + 1)α and
ck = c/(k + 1)γ . The choice of gain sequences (ak and ck) is critical to the performance of
SPSA. Spall provides some guidance on picking these coefficients in a practically manner.

Step 2 (generation of the simultaneous perturbation vector). Generate by Monte Carlo
an nv-dimensional random perturbation vector Δk, where each of the nv components of
Δk is independently generated from a zero mean probability distribution satisfying some
conditions. A simple choice for each component of Δk is to use a Bernoulli ±1 distribution
with probability of 1/2 for each ±1 outcome. Note that uniform and normal random variables
are not allowed for the elements of Δk by the SPSA regularity conditions.

Step 3 (objective function evaluations). Obtain two measurements of the objective function
w(·) based on simultaneous perturbation around the current X̂k : w(X̂k + ckΔk) and w(X̂k −
ckΔk)with the ck and Δk from Steps 1 and 2.
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Setting the counter index k = 0 and initial nonnegative

coefficients a, c,A, α, and γ

Generating the simultaneous perturbation vector ∆k

Obtaining two measurements of the fitness function

f(·) around the current design vector ꉱXk

Start

Approximating the unknown gradient G(ꉱxk)

Updating ꉱXk estimate using

No

Yes

Termination?

Stop

k = k + 1

Figure 1: Flowchart of the SPSA.

Step 4 (gradient approximation). Generate the simultaneous perturbation approximation to
the unknown gradient G(X̂k):

Ĝk

(
X̂k

)
=

w
(
X̂k + ckΔk

)
−w

(
X̂k − ckΔk

)

2ck

⎡

⎢⎢⎢⎢⎢
⎣

Δ−1
k1

Δ−1
k2
...

Δ−1
knv

⎤

⎥⎥⎥⎥⎥
⎦
, (3.3)

where Δki is the ith component of Δk vector.

Step 5 (updating X estimate). Use the standard SA to update X̂k to new value X̂k+1.

Step 6 (iteration or termination). Return to Step 2 with k + 1 replacing k. Terminate the
algorithm if there is little change in several successive iterates or the maximum allowable
number of iterations has been reached. Figure 1 shows the flowchart of the SPSA.

In the present work, we suppose that the length and height of the double layer grids
are varied in specific ranges. Our aim is to optimize all of the possible structures defined in the
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ranges. Therefore it can be observed that the additional difficulty is the huge computational
burden of the optimization process. In order to mitigate the difficulty, RBF and GR neural
networks are employed to predict the optimal design of the double layer grids with various
length and height.

4. Neural Networks

In the recent years, neural networks are considered as more appropriate techniques for
simplification of complex and time consuming problems. The interest shown to neural
networks is mainly due to their ability to process and map external data and information
based on past experiences. Neural networks are not programmed to solve specific problems.
Indeed, neural networks never use rules or physic equations related to the specific problem in
which they are employed. Neural networks use the knowledge gained from past experiences
to adapt themselves to solve the new problems.

4.1. Radial Basis Function

The use of RBF in the design of neural networks was first introduced by Wasserman in 1993
[27]. The RBF network basically involves three entirely different layers: an input layer, a
hidden layer of high enough dimension, and an output layer. The transformation from the
hidden unit to the output space is linear. Each output node is the weighted sums of the
outputs of the hidden layer. However, the transformation from the input layer to the hidden
layer is nonlinear. Each neuron or node in the hidden layer forming a linear combination of
the basis (or kernel) functions which produces a localized response with respect to the input
signals. This is to say that RBF produce a significant nonzero response only when the input
falls within a small localized region of the input space. The most common basis of the RBF is
a Gaussian kernel function of the form:

ϕl(Z) = exp

[

− (Z − Cl)T (Z − Cl)
2σl

]

, l = 1, 2, . . . , q, (4.1)

where ϕl is the output of the lth node in hidden layer; Z is the input pattern; Cl is the weight
vector for the lth node in hidden layer, that is, the center of the Gaussian for node l; σl is the
normalization parameter (the measure of spread) for the lth node; and q is the number of
nodes in the hidden layer. The outputs are in the range from zero to one so that the closer the
input is to the center of the Gaussian, the larger the response of the node is. The name RBF
comes from the fact that these Gaussian kernels are radially symmetric; that is, each node
produces an identical output for inputs that lie a fixed radial distance from the center of the
kernel Cl. The network outputs are given by

yi = QT
i ϕl(Z), i = 1, 2, . . . ,M, (4.2)

where yi is the output of the ith node, Qi is the weight vector for this node, and M is the
number of nodes in the output layer.
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There are two common ways to calculate the measure of spread σl.

(1) Find the measure of spread from the set of all training patterns grouped with each
cluster center Cl; that is, set them equal to the average distance between the cluster
centers and the training patterns:

σ2
l =

1
Nl

∑

k∈Cl

(Zk − Cl)T (Zk − Cl), l = 1, 2, . . . , q, (4.3)

where Nl is the number of patterns that belong to the lth cluster and k is the index
number of a pattern that belongs to the lth cluster.

(2) Find the measure of spread from among the centers (p-nearest neighbor heuristic):

σ2
l =

1
Nl

q∑

k=1

(Ck − Cl)T (Ck − Cl), l = 1, 2, . . . , q. (4.4)

4.2. Generalized Regression

Generalized regression network (GR) subsumes the basis function methods. This network
does not require iterative training. The structure of GR is designated such that transpose of
input matrix and transpose of desired output (target) matrix are chosen as first layer and
second layer weight matrices, respectively. GR algorithm is based on nonlinear regression
theory, a well established statistical technique for function estimation. Except the approach
of adjusting of second layer weights, the other aspects of GR are identical to RBF neural
networks.

5. Proposed Methodology

5.1. Double Layer Grid Model

In this section dimensions of considered double layer grid structure and its corresponding
model are described. The model considered here is a double layer grid with bar elements
connected by pin joints. The length of the spans, L, is varied between 25 and 75m with step
of 5m. The height is varied between 0.035 and 0.095L with steps of 0.2m. The smallest and
biggest structures in this interval are shown in Figure 2. The sum of dead and live loads equal
to 250 kg/m2 is applied to the nodes of the top layer.

In order to satisfy practical demands, in the optimization of large-scaled structure
such as space structures, the structural elements should be divided into some groups. In this
study the elements are put into 18 different groups. For this purpose a step-by-step summary
defined bellow is employed.

Step 1. A similar cross sectional area is initially assigned to all elements of the structure.

Step 2. The structure is analyzed through FE and axial stresses of all members are obtained.



8 Mathematical Problems in Engineering

L

h = 0.875 m

h = 7.125 m

L

L = 25 m

L = 75 m

L

Figure 2: The smallest and biggest structures in the considered interval.

Step 3. All tension members of the structure are put into 6 groups according to their stress
states as follows:

0.00 ≤ σ < 200 kg/cm2 =⇒ group 1,

200 ≤ σ < 400 kg/cm2 =⇒ group 2,

400 ≤ σ < 600 kg/cm2 =⇒ group 3,

600 ≤ σ < 800 kg/cm2 =⇒ group 4,

800 ≤ σ < 1000 kg/cm2 =⇒ group 5,

σ ≥ 1000 kg/cm2 =⇒ group 6.

(5.1)

Step 4. All compressive members of top and bottom layer elements of structure are put into
6 deferent groups according to their stress values as follows:

−200 ≤ σ < −0.00 kg/cm2 =⇒ group 7,

−400 ≤ σ < −200 kg/cm2 =⇒ group 8,

−600 ≤ σ < −400 kg/cm2 =⇒ group 9,

−800 ≤ σ < −600 kg/cm2 =⇒ group 10,
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Specification of the

geometry of structures:
(L, h)i, i = 1, · · · , ns

SPSA algorithm

(flowchart of Fig. 3.8 )

Optimum design:

X
opt
i , i = 1, · · · , ns

Maximum deflection:

dmax
i , i = 1, · · · , ns

Figure 3: Data generation process.

−1000 ≤ σ < −800 kg/cm2 =⇒ group 11,

σ < −1000 kg/cm2 =⇒ group 12.

(5.2)

Step 5. All compressive members of middle layer elements of structure are also put into 6
deferent groups based on their stresses as follows:

−200 ≤ σ < −0.00 kg/cm2 =⇒ group 13,

−400 ≤ σ < −200 kg/cm2 =⇒ group 14,

−600 ≤ σ < −400 kg/cm2 =⇒ group 15,

−800 ≤ σ < −600 kg/cm2 =⇒ group 16,

−1000 ≤ σ < −800 kg/cm2 =⇒ group 17,

σ < −1000 kg/cm2 =⇒ group 18.

(5.3)

Preparing a neural network is achieved in three stages: data generating, training, and
testing. In the first stage, a number of input and output pairs are provided and divided into
training and testing sets. In the second stage, the training set is used and the modifiable
parameters of the neural network are adjusted. In the last stage the performance generality
of the trained neural network is examined through the testing set.

In order to provide the required data (data generation), a number of double layer grids
according to their L and h are randomly selected. All of the selected structures are optimized
using SPSA. Optimal designs of the selected structures and their corresponding maximum
deflections are saved. This process is shown in Figure 3.

In order to train neural networks, the generated data should be separated to ntr

training data and nts testing data (ntr + nts = ns) as follows.
Training data for optimal design predictor networks:

Training data :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Inputs: (L, h)i,

Outputs: Xopt
i =

⎡

⎢⎢⎢⎢⎢
⎣

x
opt
1

x
opt
2
...

x
opt
18

⎤

⎥⎥⎥⎥⎥
⎦

i

, i = 1, 2, . . . , ntr.
(5.4)
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k is setto 0 and initial coefficients 

No

Yes

Iteration or termination?

The optimal design and the maximum 
deflection are saved

Link to ANSYS for structural analysis

No

Yes

The NN training process is started;
data is separated to: 

training set and 
testing set 

Training NNs for predicting 
the optimal design

Training NNs for predicting 
the maximum deflection

RBF network GR network RBF network GR network

Optimization 
block

NN training 
block

Data generation 
block

Two measurements of the fitness
function are obtained by analysis

k
=
k
+

1

208 sets of L and H are selected on
random basis

ith structure (L,H)i is selected

Set i = 1

is i = 208?

i
=
i
+

1

The optimization process is terminated

Design vector is updated

The SP vector is generated

The unknown gradient is approximated

Figure 4: Flowchart of the proposed methodology.



Mathematical Problems in Engineering 11

Input layer

L

H

Hidden layer

Output layer

...

Optimal A1

Optimal A2

Optimal A3

Optimal A18

...

Figure 5: Typical topology of a neural network model to predict the optimal design.

Input layer

L

H

Hidden layer

Output layer

...

Maximum 
deflection

Figure 6: Typical topology of a neural network model to predict the maximum deflection.

Training data for maximum deflection predictor networks:

Training data :

{
Inputs: (L, h)i,
Outputs: dmax

i , i = 1, 2, . . . , ntr.
(5.5)

Testing data for optimal design predictor networks:

Testing data :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Inputs: (L, h)i,

Outputs: Xopt
i =

⎡

⎢⎢⎢⎢⎢
⎣

x
opt
1

x
opt
2
...

x
opt
18

⎤

⎥⎥⎥⎥⎥
⎦

i

, i = 1, 2, . . . , nts.
(5.6)

Testing data for maximum deflection predictor networks:

Testing data:

{
Inputs: (L, h)i,
Outputs: dmax

i , i = 1, 2, . . . , nts.
(5.7)
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Figure 7: Continued.
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Figure 7: RBF errors in approximation of optimal cross-sectional areas.
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Figure 8: Errors of RBF for predicting the maximum deflections.

5.2. Main Steps in Training Neural Network

As a summary the main steps in training of RBF and GR NNs to predict optimal design and
maximum deflection of the structure are as follows:

(1) configuration processing of the selected space structures employing Formian,

(2) selection a list of available tube sections from the standard lists,

(3) implementation member grouping,

(4) generation of some structures, based on span and height, to produce training set,

(5) static analysis of the structures,

(6) designing for optimal weight by SPSA according to AISC-ASD code,
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Figure 9: Continued.
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Figure 9: GR errors in approximation of optimal cross-sectional areas.
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Figure 10: Errors of GR for predicting the maximum deflections.

(7) training and testing RBF and GR to predict optimal design and maximum de-
flection,

(8) improving generalization of the neural networks if it is necessary.

5.3. Flowchart of the Methodology

The flowchart of the proposed methodology is shown in Figure 4. This flowchart includes
three main blocks: data generation, optimization, and NN training. The data generation block
includes the optimization block. In these two blocks the data needed for neural network
training is produced. The mentioned data are stated through (5.4) to (5.7).
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Table 1: Summary of errors of RBF and GRNN in approximation of optimal designs.

Cross-sectional area RBF GRNN
Max. error Mean of errors Max. error Mean of errors

1 32.8501 3.9054 8.8182 1.6575
2 30.0348 8.7955 22.8185 5.2312
3 18.3493 4.1153 15.6306 2.8343
4 36.8009 5.5074 10.8515 2.7220
5 15.6441 3.5933 13.4325 2.4476
6 24.8060 2.4974 6.1103 0.9992
7 33.3249 9.2145 20.4911 4.9154
8 18.7265 6.1936 33.8892 4.7607
9 26.1423 5.6690 16.1963 3.6055
10 29.7808 3.8814 10.6282 2.1702
11 21.9747 3.5231 11.3200 2.3858
12 29.3597 2.6233 2.6899 0.4795
13 26.4572 6.4117 28.6768 4.1939
14 23.7474 6.6549 37.5173 6.1356
15 29.8091 5.7633 18.2707 3.5529
16 32.8732 5.3975 17.5221 2.7931
17 21.5389 3.7532 13.8589 2.4312
18 29.6637 2.7991 4.4832 0.8361
Avr. 26.7714 5.0166 16.2892 3.0185

Table 2: Summary of errors of RBF and GRNN in approximation of maximum deflection.

RBF GRNN
Max. error Mean of errors Max. error Mean of errors
13.1166 1.6675 3.0084 0.4641

6. Numerical Results

Typical topology of the RBF and GR neural networks to predict the optimal design and
maximum deflection of the double layer grids is shown in Figures 5 and 6, respectively.

To find the optimal spread in the RBF and GR networks the minimum distance
between training set and test set errors are employed [29]. The spread values in RBF networks
trained to predict the optimal design and maximum deflection are 11.5 and 11.75 and for GR
are 12.5 and 10.25, respectively. The results of RBF for predicting the optimal cross-sectional
areas are shown in Figure 7.

The errors of RBF for predicting the maximum deflections are shown in Figure 8. The
results of GR for predicting the optimal cross-sectional areas are shown in Figure 9. The errors
of GR for predicting the maximum deflections are shown in Figure 10. Maximum and mean
of errors of RBF and GRNN in approximation of optimal designs and maximum deflection
are given in Tables 1 and 2, respectively.

The numerical results demonstrate that the generality of the GR is better than that
of the RBF neural network in prediction of optimal design and maximum deflection of the
double layer grids.
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7. Conclusion

In this investigation, an innovative methodology is proposed to predict the optimal design
and maximum deflection of the square-on-square double layer grids. This methodology
consists of three stages. In the first stage, a number of the double layer grids with random
spans and heights are generated. In the second stage the generated double layer grids are
optimized by SPSA algorithm. Also, the maximum deflections of the optimal structures are
saved. In the third stage, RBF and GR neural networks are trained to predict the optimal
design and maximum deflection of the double layer grids.

By concerning the following points, it can be observed that the proposed methodology
is novel and innovative.

(1) It is the first study based on employing the SPSA optimization algorithm to
optimize double layer grids with variable geometry.

(2) Application of the RBF and GR neural networks to predict the optimal design and
maximum deflection of the double layer is achieved for the first time in this study.

(3) The main advantage of the proposed methodology is to predict the optimal design
and maximum deflection of the double layer grids with high speed and trivial
errors in comparison with the traditional methods.
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