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The main purpose of this paper is to apply stochastic adaptive controller design to mechanical
system. Firstly, by a series of coordinate transformations, the mechanical system can be
transformed to a class of special high-order stochastic nonlinear system, based on which, a more
general mathematical model is considered, and the smooth state-feedback controller is designed.
At last, the simulation for the mechanical system is given to show the effectiveness of the design
scheme.

1. Introduction

In recent years, the study for deterministic high-order nonlinear systems has achieved
remarkable development, see, for example, [1–3] and references herein. Inspired by these
interesting and important results, it is natural to generalize their results to the following
stochastic high-order nonlinear systems which are neither necessarily feedback linearizable
nor affine in the control input:

dz = f0(z, x1)dt + gT0 (z, x1)dω,

dxi =
(
di(xi, t)x

pi
i+1 + fi(z, xi)

)
dt + gTi (z, xi)dω, i = 1, . . . , n − 1,

dxn =
(
dn(xn, t)upn + fn(z, xn)

)
dt + gTn (z, xn)dω,

(1.1)

where (zT , x1, . . . , xn)
T ∈ R

m+n, and u ∈ R are the measurable state and the input of system,
respectively, xi = (x1, . . . , xi)

T , i = 1, . . . , n, z = (z1, . . . , zm)
T ∈ R

m is referred to as the state of
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Figure 1: A mechanical system.

the stochastic inverse dynamics, ω is an r-dimensional standard Wiener process defined on
a probability space (Ω,F, P) with Ω being a sample space, F being a σ-algebra, and P being
a probability measure, pi ≥ 1, i = 1, . . . , n are odd integers, and the functions fi(·) and gi(·),
i = 0, 1, . . . , n are assumed to be smooth, vanishing at the origin (zT , xTn) = (01×m, 01×n).

For (1.1) with di(·) = 1, Xie and Tian in [4] considered the state-feedback stabilization
problem for the first time. After considering the stabilization of high-order stochastic
nonlinear systems, [5] further addressed the problem of state-feedback inverse optimal
stabilization in probability, that is, the designed stabilizing backstepping controller is also
optimal with respect to meaningful cost functionals. When di(·)/= 1, [6] designed an adaptive
state-feedback controller for a class of stochastic nonlinear uncertain systems with 0 < λi ≤
di(·) ≤ μi ≤ μ, and [7] designed a smooth adaptive state-feedback controller for high-order
stochastic systems with λi(xi) ≤ di(·) ≤ μi(xi, θ) by using the parameter separation lemma
and some flexible algebraic techniques. Recently, more excellent results [8–28] were achieved
by Xie and his group.

However, all these theoretical results mentioned above are demonstrated only by
some numerical simulation examples. Since many practical application systems in aerospace
industry, industrial process control, and so forth, can be described by (or transformed to)
stochastic high-order nonlinear systems, so it is very necessary to apply the control schemes
to these systems. Based on this reason, we consider a practical example of mechanical
movement in this paper. By a series of coordinate transformations, the mechanical system
can be transformed to a high-order stochastic nonlinear system, based on which, we consider
a more general mathematical model and design a smooth state-feedback control law. At last,
the simulation for the mechanical system is given to show the effectiveness of the design
scheme.

This paper is organized as follows. Section 2 gives a practical example. Section 3
provides preliminary knowledge and presents problem statement. Controller design and
stability analysis are given in Section 4. The simulation for the practical example is provided
to demonstrate the control scheme in Section 5. Section 6 gives some concluding remarks.

2. A Practical Example

Let us consider the following mechanical system which consists of two massesm1 andm2 on a
horizontal smooth surface as shown in Figure 1. The mass m1 is interconnected to the wall by
a linear spring and to the mass m2 by a nonlinear spring which has cubic force-deformation
relation. Let x be the displacement of mass m1 and y the displacement of mass m2 such that
at x = 0 and y = 0, that is, the springs are unstretched. A control force u acts on m1.
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Where the units of m1, x, and u are “kg”, “m”, and “N”, respectively, and y1 = x − y.
The equations of motion for the system are described by

ÿ =
k1

m2

(
x − y)3

,

ẍ = − k

m1
x − k1

m1

(
x − y)3 +

u

m1
,

(2.1)

where k and k1 are the spring coefficients, and their units are “N/m” and “N/m3”,
respectively.

Introducing the smooth change of coordinates

x1 = y, x2 = ẋ1 = ẏ,

x3 =
(
x − y) 3

√
k1

m1
, x4 = ẋ3,

(2.2)

one gets

y = x1, ẏ = x2,

x =
x3

3
√
k1/m1

+ y, x4 =
x4

3
√
k1/m1

+ x2.
(2.3)

The linear spring constant k has a specific nominal value k0 = 1.5 which is considered
uncertain, and k ∈ [0.75, 2.25]. Let Δ(t) = k(t) − k0. For all t ≥ 0, Δ(t) is the Gaussian white
noise process with EΔ(t) = 0 and EΔ2(t) = σ2. We can choose the value of parameter σ such
that k(t) obeys the bound 0.75 ≤ k ≤ 2.25 with a sufficiently high probability. This model
of spring rate variations leads to an uncertain stochastic system. By (2.2), one chooses the
smooth state-feedback control

u = m1
v

3
√
k1/m1

+
m1 +m2

m2
m1x

3
3, (2.4)

which together with the property of Δ(t) leads to

dx1 = x2dt,

dx2 =
m1

m2
x3

3dt,

dx3 = x4dt,

dx4 = v dt + k0f(x)dt + σf(x)dω,

y = x1,

(2.5)

where f(x) = −x3/m1 − 3
√
(k1/m1)(x1/m1), and ω is standard Wiener process.
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This stochastic high-order nonlinear systems can be generalized to a more general
system which will be given in the following section.

3. Preliminary Knowledge and Problem Statement

3.1. Preliminary Knowledge

In this section, we will introduce the concept of input-to-state practical stability (ISpS) in
probability.

Consider the following stochastic nonlinear system

dx = f(x, u)dt + gT (x, u)dω, x(0) = x0 ∈ R
n, (3.1)

where x ∈ R
n, u ∈ R

m are the state and the input of system, respectively. The Borel measurable
functions f : R

n+m → R
n and g : R

n+m → R
n×r are locally Lipschitz in x, and ω ∈ R

r is an r-
dimensional independent standard Wiener process defined on the complete probability space
(Ω,F, P).

The following definitions and lemmas will be used throughout the paper.

Definition 3.1 (see [29]). For any given V (x) ∈ C2, associated with stochastic system (3.1), the
differential operator L is defined as follows:

LV (x) =
∂V (x)
∂x

f(x, u) +
1
2

Tr

{
g(x, u)

∂2V (x)
∂x2

gT (x, u)

}
. (3.2)

Definition 3.2 (see [30]). The stochastic system (3.1) is input-to-state practically stable (ISpS)
in probability if for any ε > 0, there exist a class KL-function β(·), a class K∞-function γ(·),
and a constant d0 such that

P
{|x(t)| < β(|x0|, t) + γ(|ut|) + d0

} ≥ 1 − ε, x0 ∈ R
n \ {0}. (3.3)

Lemma 3.3 (see [30]). For system (3.1), if there exist a C2 function V (x), class K∞ functions α1,
α2, χ, a classK function α, and a constant d such that

α1(|x|) ≤ V (x) ≤ α2(|x|), (3.4)

LV (x) ≤ −α(|x|) + χ(|u|) + d, (3.5)

then

(1) There exists an almost surely unique solution on [0,∞);

(2) The system (3.1) is ISpS in probability.
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Lemma 3.4 (see [6]). Let x and y be real variables. Then, for any positive integers m, n and any
nonnegative smooth function b(·), the following inequality holds:

∣∣xmyn∣∣ ≤ m

m + n
b(·)|x|m+n +

n

m + n
b(·)−m/n∣∣y∣∣m+n

. (3.6)

Lemma 3.5 (see [2]). For real variables x ≥ 0, y > 0, and real number m ≥ 1, the following
inequality holds:

x ≤ y +
(
x

m

)m(m − 1
y

)m−1

. (3.7)

3.2. Problem Statement

From (2.5), we introduce a more general class of stochastic nonlinear systems as follows:

dxi = di(x)x
pi
i+1dt + fi(xi+1)dt + gi(xi)

Tdω, i = 1, . . . , n − 1,

dxn = dn(x)upndt + fn(xn)dt + gn(xn)
Tdω,

y = x1,

(3.8)

where x = (x1, . . . , xn)
T ∈ R

n, u, y ∈ R are the state, the input, and the measurable output
of system, respectively, xi = (x1, . . . , xi)

T , pi, i = 1, . . . , n, are positive odd integers, fi(·) :
R
i+1 → R and gi(·) : R

i → R × R
r are smooth functions with fi(0) = 0 and gi(0) = 0, di(x)

is unknown control coefficient with known sign, and ω is an r-dimensional standard Wiener
process defined on the complete probability space (Ω,F, P).

The following assumptions are made on system (3.8).
A1: for each di(x), there exist unknown constant θ′ > 0 and known nonnegative

smooth functions bi(xi) and bi(xi+1) such that

0 ≤ bi(xi) ≤ di(x) ≤ θ′bi(xi+1). (3.9)

A2: for functions fi(·), gi(·), i = 1, 2, . . . , n, there exist known nonnegative smooth
functions ϕij(xi) and ψi(xi) such that

∣∣fi(xi+1)
∣∣ ≤

pi−1∑
j=0

|xi+1|jϕij(xi),

∣∣gi(xi)
∣∣ ≤
(
|x1|(pi+1)/2 + · · · + |xi|(pi+1)/2

)
ψi(xi).

(3.10)

A3: the reference signal yr and its derivative ẏr are bounded.
The objective of this paper is to design an adaptive controller such that the closed-

loop system is ISpS in probability and the tracking error ξ1 = y − yr can be regulated to a
neighborhood of the origin with radius as small as possible.
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4. Controller Design and Stability Analysis

With the aid of Lemmas 3.3–3.5, we are ready to present the main results of this paper. In
this section, we show that under A1–A3, it is possible to construct a globally stabilizing,
state-feedback smooth controller for system (3.8). Introduce the odd positive integer p =
maxi=1,...,n{pi}, and the following coordinate change

ξ1 = x1 − yr,

ξi = xi − x∗
i

(
xi−1, yr , θ̂

)
, i = 2, . . . , n,

(4.1)

where x∗
i (xi−1, yr , θ̂), i = 2, . . . , n, are virtual smooth controllers to be designed later, θ :=

max{θ′, θ′(p+3)/(p−pi+3)}, and θ̂ denotes the estimate of θ. Then, according to Itô differentiation
rule, one has

dξ1 = d1x
p1

2 dt + f1dt + gT1 dω − ẏrdt,

dξi = dix
pi
i+1dt + fidt −

i−1∑
k=1

∂x∗
i

∂xk

(
x
pk
k+1 + fk

)
dt − 1

2

i−1∑
j,k=1

∂2x∗
i

∂xj∂xk
gTj gkdt

− ∂x∗
i

∂θ̂

˙̂θ dt − ∂x∗
i

∂yr
ẏrdt +

(
gTi −

i−1∑
k=1

∂x∗
i

∂xk
gTk

)
dω, i = 2, . . . , n − 1,

dξn = dnupndt + fndt −
n−1∑
k=1

∂x∗
n

∂xk

(
x
pk
k+1 + fk

)
dt − 1

2

n−1∑
j,k=1

∂2x∗
n

∂xj∂xk
gTj gkdt

− ∂x∗
n

∂θ̂

˙̂θ dt − ∂x∗
n

∂yr
ẏrdt +

(
gTn −

n−1∑
k=1

∂x∗
n

∂xk
gTk

)
dω.

(4.2)

Let GT
i = gTi −∑i−1

k=1(∂x
∗
i /∂xk)g

T
k

, i = 2, . . . , n. Next, we design the controller step by step by
backstepping.

Step 1. Consider the 1st Lyapunov candidate function

V1

(
ξ1, θ̃
)
=

1
p − p1 + 4

ξ
p−p1+4
1 +

1
2
θ̃2, (4.3)

where θ̃ = θ − θ̂ is the parameter estimation error. In view of (3.2), (4.1), and (4.2), one has

LV1

(
ξ1, θ̃
)
= ξp−p1+3

1

(
d1(x)x

p1

2 + f1(x2) − ẏr
)
+

1
2

Tr
{
g1(x1)

(
p − p1 + 3

)
ξ
p−p1+2
1 gT1 (x1)

}
− θ̃ ˙̂θ

≤ d1(x)ξ
p−p1+3
1 x

p1

2 + |ξ1|p−p1+3∣∣f1(x2) − ẏr
∣∣ + 1

2
(
p − p1 + 3

)
ξ
p−p1+2
1

∣∣g1(x1)
∣∣2 − θ̃ ˙̂θ.

(4.4)
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By Lemma 3.4 and A2, there exist nonnegative smooth functions ϕ1(x1) and ψ1(x1) such that

∣∣f1(x2)
∣∣ ≤

p1−1∑
j=0

|x2|jϕ1j(x1) =
p1−1∑
j=0

|x2|j
(
ϕ

1/(p1−j)
1j (x1)

)p1−j

≤
p1−1∑
j=0

(
j

p1

(
1
2j
b1(x1)

)
|x2|p1 +

p1 − j
p1

(
2j

b1(x1)

)j/(p1−j)
ϕ
p1/(p1−j)
1j (x1)

)

≤ b1(x1)
2

|x2|p1 + ϕ1(x1),

∣∣g1(x1)
∣∣ ≤ |ξ1|(p1+1)/2ψ1(x1),

(4.5)

which together with the boundedness of ẏr imply that

∣∣f1 − ẏr
∣∣ ≤ b1(x1)

2
|x2|p1 + ϕ′

1

(
x1, yr

)
, (4.6)

where ϕ′
1(x1, yr) is a nonnegative smooth function, ψ1(x1) = ψ1(x1). Then, for any real

number δ1 > 0, choosing a = |ξp−p1+3
1 |ϕ′

1(x1, yr), b = δ1, m = (p+ 3)/(p−p1 + 3), by Lemma 3.5,
there is a smooth function φ11(x1, yr) such that

|ξ1|p−p1+3∣∣f1 − ẏr
∣∣

≤ |ξ1|p−p1+3
(
b1(x1)

2
|x2|p1 + ϕ′

1

(
x1, yr

)) ≤ |ξ1|p−p1+3 b1(x1)
2

|x2|p1

+ δ1 +

((
p − p1 + 3

)|ξ1|p−p1+3ϕ′
1

(
x1, yr

)

p + 3

)(p+3)/(p−p1+3)

×
(

p1

δ1
(
p − p1 + 3

)
)p1/(p−p1+3)

= |ξ1|p−p1+3 b1(x1)
2

|x2|p1 + ξp+3
1 φ11

(
x1, yr

)
+ δ1, (4.7)

where φ11(x1, yr) = ((p − p1 + 3)ϕ′
1(x1, yr)/(p + 3))(p+3)/(p−p1+3)(p1/δ1(p − p1 + 3))p1/(p−p1+3).

Substituting (4.5) and (4.7) into (4.4), and adding and subtracting (b1(x1)/2)ξp−p1+3
1 x

∗p1

2 on
the right-hand side of (4.4), we have

LV1 ≤ d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

p1

2

∣∣∣ + ξp+3
1 φ11

(
x1, yr

)
+ δ1

+
p − p1 + 3

2
ξ
p−p1+2
1 ξ

p1+1
1 ψ2

1(x1) − θ̃ ˙̂θ

= d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2
|ξ1|p−p1+3|x2|p1 +

b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2

− b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 + ξp+3
1 φ11

(
x1, yr

)
+ ξp+3

1 φ12(x1) + δ1 − θ̃ ˙̂θ,

(4.8)
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where φ12(x1) = ((p − p1 + 3)/2)ξp−p1

1 ψ2
1(x1). Suppose the virtual smooth controller x∗

2 =
−ξ1β1(x1, yr , θ̂) with β1(x1, yr , θ̂) > 0, which together with A1 lead to

0 ≤ −b1(x1)ξ
p−p1+3
1 x

∗p1

2 ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 ,

−b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣ ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 ,

−b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 − b1(x1)
2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣.

(4.9)

Substituting (4.9) into (4.8), one can obtain

LV1 ≤ d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

p1

2

∣∣∣ + b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2

− d1(x)ξ
p−p1+3
1 x

∗p1

2 − b1(x1)
2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣ + δ1 − θ̃ ˙̂θ

− c1θξ
p+3
1 + c1θξ

p+3
1 + ξp+3

1 φ11
(
x1, yr

)
+ ξp+3

1 φ12(x1)

≤ −c1θξ
p+3
1 +

(
θb1(x2) +

b1(x1)
2

)
|ξ1|p−p1+3

∣∣∣xp1

2 − x∗p1

2

∣∣∣ + b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2

+ c1θ̂ξ
p+3
1 + ξp+3

1 φ11
(
x1, yr

)
+ ξp+3

1 φ12(x1) + δ1 + θ̃
(
τ1 − ˙̂θ

)
,

(4.10)

where τ1 = c1ξ
p+3
1 is a nonnegative smooth function. Choose x∗

2 as follows:

x∗
2

(
x1, yr , θ̂

)
= −ξ1β1

(
x1, yr , θ̂

)
,

β1

(
x1, yr , θ̂

)
=
(

2
b1(x1)

(
c1 + φ11

(
x1, yr

)
+ φ12(x1) + c1

√
1 + θ̂2

))1/p1

,

(4.11)

where β1(x1, yr , θ̂) ≥ 0 is a smooth function. Then,

LV1 ≤ −c1ξ
p+3
1 − c1θξ

p+3
1 +

(
θb1(x2) +

b1(x1)
2

)
|ξ1|p−p1+3

∣∣∣xp1

2 − x∗p1

2

∣∣∣ + δ1 + θ̃
(
τ1 − ˙̂θ

)
. (4.12)

Step i. 2 ≤ i ≤ n: Assume that at Step i− 1, there exists a smooth state-feedback virtual control

x∗
i

(
xi−1, yr , θ̂

)
= −βi−1

(
xi−1, yr , θ̂

)
ξi−1, (4.13)



Mathematical Problems in Engineering 9

such that

LVi−1 ≤ −
i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠θξ

p+3
j

+
(
θbi−1 +

bi−1

2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣ +
i−1∑
j=1

δj +

(
θ̃ +

i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
,

(4.14)

where βi−1 > 0 is a smooth function, and Vi−1 = (1/4)
∑i−1

k=1 ξ
p−pk+4
k + (1/2)θ̃2. We will prove

that (4.14) still holds for Step i.
Define the ith Lyapunov candidate function

Vi = Vi−1 +
1
4
ξ
p−pi+4
i . (4.15)

From (4.2) and (4.14), it follows that

LVi ≤ −
i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠θξ

p+3
j

+
(
θbi−1 +

bi−1

2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣ +
i−1∑
j=1

δj

+

(
θ̃ +

i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
+ ξp−pi+3

i di(x)x
pi
i+1 + ξ

p−pi+3
i

×
⎛
⎝fi −

i−1∑
k=1

∂x∗
i

∂xk

(
dk(x)x

pk
k

+ fk
)
− 1

2

i−1∑
j,k=1

∂2x∗
i

∂xj∂xk
gTj gk −

∂x∗
i

∂yr
ẏr −

∂x∗
i

∂θ̂

˙̂θ

⎞
⎠

+
1
2

Tr
{
Gi

(
p − pi + 3

)
ξ
p−pi+2
i GT

i

}
.

(4.16)

By A2 and Lemma 3.4, there is a smooth nonnegative function ϕi(xi) such that

∣∣fi(xi+1)
∣∣ ≤

pi−1∑
j=0

|xi+1|jϕij(xi) ≤
bi(xi)|xpii+1

2
+ ϕi(xi), (4.17)

then,

∣∣∣∣∣∣
fi −

i−1∑
k=1

∂x∗
i

∂xk
fk − 1

2

i−1∑
j, k=1

∂2x∗
i

∂xj∂xk
gTj gk −

∂x∗
i

∂yr
ẏr

∣∣∣∣∣∣
≤ bi(xi)|xpii+1

2
+ ϕi
(
xi, yr , θ̂

)
, (4.18)



10 Mathematical Problems in Engineering

where ϕi(xi, yr , θ̂) is a smooth function. By A2, (4.1) and (4.13), there exists a nonnegative
smooth function ψ ′

i(xi, yr , θ̂) such that

|Gi(xi)| ≤
(
|ξ1|(pi+1)/2 + · · · + |ξi|(pi+1)/2

)
ψ ′
i

(
xi, yr , θ̂

)
. (4.19)

By (4.13), we have

(
θbi−1(xi) +

bi−1(xi−1)
2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣

=
(
θbi−1(xi) +

bi−1(xi−1)
2

)pi−1∑
k=1

Ck
pi−1

|ξi|k|ξ1|p−k+3β
pi−1−k
1

≤
i−1∑
k=1

cik1ξ
p+3
k +

i−1∑
k=1

cikθξ
p+3
k + ϕi1

(
xi, yr , θ̂

)
ξ
p+3
i + θϕi2ξ

p+3
i , (4.20)

where ϕi1(xi, yr , θ̂) and ϕi2(xi, yr , θ̂) are two smooth functions. From A1, (4.1), and (4.13), it
follows that

∣∣∣∣∣−ξ
p−pi+3
i

i−1∑
k=1

∂x∗
i

∂xk
dk(x)x

pk
k

∣∣∣∣∣

≤ θ′|ξi|p−pi+3
i−1∑
k=1

bk−1(xk)
∣∣∣∣
∂x∗

i

∂xk

∣∣∣∣
∣∣ξk + x∗

k

∣∣pk

≤ θ′(p+3)/(p−pi+3)ξ
p+3
i ϕi3

(
xi, yr , θ̂

)
+ δi1

≤ θξp+3
i ϕi3

(
xi, yr , θ̂

)
+ δi1,

(4.21)

|ξi|p−pi+3

∣∣∣∣∣∣
fi −

i−1∑
k=1

∂x∗
i

∂xk
fk − 1

2

i−1∑
j,k=1

∂2x∗
i

∂xj∂xk
gTj gk −

∂x∗
i

∂yr
ẏr

∣∣∣∣∣∣

≤ |ξi|p−pi+3
(
bi(xi)|xi+1|pi

2
+ ϕ′

i

(
xi, yr , θ̂

))

≤ bi(xi)
2

|ξi|p−pi+3|xi+1|pi + ϕi4
(
xi, yr , θ̂

)
ξ
p+3
i + δi2,

(4.22)

where ϕi3(xi, yr , θ̂) and ϕi4(xi, yr , θ̂) are two smooth functions. From (4.19), one can obtain

1
2

Tr
{
Gi

(
p − pi + 3

)
ξ
p−pi+2
i GT

i

}
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≤ p − pi + 3
2

ξ
p−pi+2
2

(
|ξ1|(pi+1)/2 + · · · + |ξi|(pi+1)/2

)2
ψ

′2
i

(
xi, yr , θ̂

)

≤
i−1∑
k=1

cik2ξ
p+3
k + ϕi5

(
xi, yr , θ̂

)
ξ
p+3
i ,

(4.23)

where ϕi5(xi, yr , θ̂) is a smooth nonnegative function. Substituting (4.20)–(4.23) into (4.16),
one gets

LVi ≤ −
i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠θξ

p+3
j +

i−1∑
j=1

c′ij ξ
p+3
j

+
i−1∑
j=1

δj + θ
i−1∑
j=1

cijξ
p+3
j + h′i1ξ

p+3
i + θhi2ξ

p+3
i − ciθξp+3

i + ciθξ
p+3
i

+ ξp−pi+3
i di(x)x

pi
i+1 +

bi(xi)
2

|ξi|p−pi+3|xi+1|pi + bi(xi)
2

ξ
p−pi+3
i x

∗pi
3

− bi(xi)
2

ξ
p−pi+3
i x

∗pi
3 +

(
θ̃ +

i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
− ξp−pi+3

i

∂x∗
i

∂θ̂

˙̂θ, (4.24)

where

c′ij = cij1 + cij2, j = 1, . . . , i − 1,

h′i1 = ϕi1 + ϕi4 + ϕi5, hi2 = ϕi2 + ϕi3.
(4.25)

Suppose the virtual smooth controller x∗
i+1 = −ξiβi(xi, yr , θ̂) with βi(xi, yr , θ̂) > 0, which

together with A2 render

−bi(xi)
2

ξ
p−pi+3
i x

∗pi
i+1 ≤ −di(x)ξp−pi+3

i x
∗pi
i+1 −

bi(xi)
2

∣∣∣ξp−pi+3
i x

∗pi
i+1

∣∣∣. (4.26)

Substituting (4.26) into (4.24) leads to

LVi ≤ −
i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i∑
j=1

⎛
⎝cj −

i∑
k=j+1

ckj

⎞
⎠θξ

p+3
j +

i−1∑
j=1

c′ij ξ
p+3
j

+ h′i1ξ
p+3
i +

(
θ̂ + θ̃

)
hi2ξ

p+3
i + ci

(
θ̂ + θ̃

)
ξ
p+3
i + ξp−pi+3

i di(x)x
pi
i+1

+
bi(xi)

2
|ξi|p−pi+3|xi+1|pi + bi(xi)

2
ξ
p−pi+3
i x

∗pi
3 − di(x)ξp−pi+3

i x
∗p2

i+1
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− bi(xi)
2

∣∣∣ξp−pi+3
i x

∗pi
i+1

∣∣∣ +
(
θ̃ +

i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
− ξp−pi+3

i

∂x∗
i

∂θ̂

˙̂θ

+
i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i −

i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i

+ ξp−pi+3
i

∂x∗
i

∂θ̂
τi − ξp−pi+3

i

∂x∗
i

∂θ̂
τi,

(4.27)

where τi = τi−1 + (hi2 + ci)ξ
p+3
i . For (4.27), we have

∣∣∣∣∣−
i−1∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i

∣∣∣∣∣ ≤ ϕi6
(
xi, yr , θ̂

)
ξ
p+3
i ,

∣∣∣∣−ξ
p−pi+3
i

∂x∗
i

∂θ̂
τi

∣∣∣∣ ≤
i−1∑
k=1
cik3ξ

p+3
k

+ ϕi7
(
xi, yr , θ̂

)
ξ
p+3
i ,

(4.28)

where cik3 is a design parameter, ϕi6(xi, yr , θ̂) and ϕi7(xi, yr , θ̂) are the smooth functions. Let
cij = c′ij + cij3, hi1 = h′i1 + ϕi6 + ϕi7. (4.27) becomes

LVi ≤ −
i−1∑
j=1

⎛
⎝cj −

i−1∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i∑
j=1

⎛
⎝cj −

i∑
k=j+1

ckj

⎞
⎠θξ

p+3
j +

i−1∑
j=1

cijξ
p+3
j

+ h′i1ξ
p+3
i + θ̂hi2ξ

p+3
i +

(
θbi(xi+1) +

bi(xi)
2

)
|ξi|p−pi+3

∣∣∣xpii+1 − x
∗pi
i+1

∣∣∣

+
bi(xi)

2
ξ
p−pi+3
i x

∗pi
i+1 +

(
θ̃ +

i∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi − ˙̂θ

)
+

i∑
j=1

δj

≤ −
i∑
j=1

⎛
⎝cj −

i∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

i∑
j=1

⎛
⎝cj −

i∑
k=j+1

ckj

⎞
⎠θξ

p+3
j

+
(
θbi(xi+1) +

bi(xi)
2

)
|ξi|p−pi+3

∣∣∣xpii+1 − x
∗pi
i+1

∣∣∣ +
i∑
j=1

δj +

(
θ̃ +

i∑
k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi − ˙̂θ

)
,

(4.29)

by choosing
x∗
i+1

(
xi, yr , θ̂

)
= −ξiβi

(
xi, yr , θ̂

)
,

βi
(
xi, yr , θ̂

)
=
(

2
bi(xi)

(
ci + hi1 + (hi2 + ci)

√
1 + θ̂2

))1/pi

, (4.30)

where βi(xi, yr , θ̂) ≥ 0 is a smooth function.
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Figure 2: Gives the response of the closed-loop system, from which, the effectiveness of the controller is
demonstrated.

Finally, when i = n, xn+1 = x∗
n+1 = u is the actual control. By choosing the actual control

law and the adaptive law:

u
(
xn, yr, θ̂

)
= −βn

(
xn, yr, θ̂

)
ξn,

˙̂θ = τn =
n∑
k=1

Hk2ξ
p+3
k

, (4.31)

where βn ≥ 0 and H12, . . . ,Hn2 are smooth functions, one gets

LVn ≤ −
n∑
j=1

⎛
⎝cj −

n∑
k=j+1

ckj

⎞
⎠ξ

p+3
j −

n∑
j=1

⎛
⎝cj −

n∑
k=j+1

ckj

⎞
⎠θξ

p+3
j +

n∑
j=1

δj . (4.32)

Theorem 4.1. If A1–A3 hold for the high-order stochastic nonlinear system (3.8), under the smooth
adaptive state-feedback controller (4.32), the closed-loop system is ISpS in probability, and the tracking
error ξ1 = y − yr can be regulated to a neighborhood of the origin in probability with radius as small
as possible (Figure 2).

Proof. For Vn =
∑n

i=1(1/4)ξp−pi+4
i +(1/2)θ̃2, it is obvious that Vn satisfies (3.4). Choosing all the

design parameters cj and cj to satisfy

cj >
n∑

k=j+1

ckj , cj >
n∑

k=j+1

ckj , j = 1, . . . , n, (4.33)

such that (3.5) holds, and then using Lemma 3.3, one can prove Theorem 4.1.
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5. Simulation

Now, we apply the control scheme to the mechanical system (2.5). Let ξ1 = x1 − yr be the
tracking error, where yr = sin t is a bounded smooth reference signal. For (2.5), di(·) = 1, and
p = max{1, 3} = 3.

Choose V1(ξ1) = (1/(p − p1 + 4))ξp−p1+4
1 = ξ6

1/6. Then,

LV1(ξ1) = ξ5
1

(
x2 − ẏr

)
. (5.1)

The smooth virtual controller can be chosen as x∗
2(x1, yr) = −c1ξ1 + ẏr , which renders

LV1(ξ1) = −c1ξ
6
1 + ξ

5
1

(
x2 − x∗

2
)
. (5.2)

Next, defining V2(ξ1, ξ2) = V1 + (1/(p − p2 + 4))ξp−p2+4
2 = ξ6

1/6+ ξ4
2/4, a direct calculation

gives

LV2 = −c1ξ
6
1 + ξ

5
1ξ2 + ξ3

2

(
x3

3 −
∂x∗

2

∂x1
x2 −

∂x∗
2

∂yr
ẏr

)
= −c1ξ

6
1 + ξ

5
1ξ2 + ξ3

2

(
x3

3 − h2

)
, (5.3)

where ξ2 = x2 − x∗
2. By Lemma 3.5, choosing m = 3/2, one can obtain that for any constant

δ2 > 0,

∣∣∣ξ4
2h2

∣∣∣ ≤ δ2 +

(
2ξ4

2h2

3

)3/2(
1

2δ2

)1/2

≤ δ2 + ξ6
2ϕ2(x2). (5.4)

Then, by (5.4) and (5.5), it is easy to see that

LV (ξ1, ξ2) = −(c1 − c21)ξ6
1 − c2ξ

6
2 + ξ

3
2

(
x3

3 − x∗3
3

)
+ δ2, (5.5)

by choosing x∗
3(x1, x2, yr) = −ξ2(c2 + d2 + ϕ2)

1/3.
Defining ξ3 = x3 −x∗

3 and the Lyapunov function V3(ξ1, ξ2, ξ3) = V2(ξ1, ξ2) + (1/6)ξ6
3, one

gets

LV3 ≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 + ξ

3
2

(
x3

3 − x∗3
3

)
+ δ2 + ξ5

3

(
x4 −

∂x∗
3

∂x1
x2 −

∂x∗
3

∂x2
x3

3 −
∂x∗

3

∂yr
ẏr

)

≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 + δ31 + ξ6

3ϕ31 + δ32 + ξ6
3ϕ32 + ξ5

3

(
x4 − x∗

4

)
+ ξ5

3x
∗
4

= −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 + ξ

5
3

(
x4 − x∗

4

)
+ δ2 + δ3,

(5.6)
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by choosing x∗
4(x1, x2, x3, yr) = −ξ3(c3 + ϕ31 + ϕ32). At last, choosing ξ4 = x4 − x∗

4,
V4(ξ1, ξ2, ξ3, ξ4) = V3(ξ1, ξ2, ξ3) + (1/6)ξ6

4, a direct calculation gives

V4 ≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 + ξ

5
3

(
x4 − x∗

4

)
+ δ2 + δ3

+ ξ5
4

(
v + k0f − ∂x∗

4

∂x1
x2 −

∂x∗
4

∂x2
x3

3 −
∂x∗

4

∂x3
x4 −

∂x∗
4

∂yr
ẏr

)
+ 5ξ4

4σ
2f2

≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 − c4ξ

6
4 + δ2 + δ3 + δ41 + ξ6ϕ41 + δ42 + ξ6ϕ42 + ξ5

4v

= −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 − c4ξ

6
4 + δ2 + δ3 + δ4,

(5.7)

by choosing

v = −ξ4
(
c4 + ϕ41 + ϕ42

)
. (5.8)

Choose the design parameters σ = 0.125, δ2 = 0.01, δ3 = 0.01, and δ4 = 0.01. Moreover,
to satisfy (5.3), we choose c1 = 1 > c21 = 5/6, c2 = 1.5, c3 = 0.5 and c4 = 0.5. Choose the initial
values x1(0) = 0.45, x2(0) = 0.5, x3(0) = 0.5, and x4(0) = 0.5.

6. Concluding Remarks

In this paper, a mechanical system is firstly introduced. Then, by a series of coordinate tran-
sformations, the mechanical system can be transformed to a class of high-order stochastic
nonlinear system, based on which, a more general mathematical model is considered and
the smooth state-feedback controller is designed which guarantees that the tracking error
ξ1 = y−yr can be regulated to a neighborhood of the origin in probability with radius as small
as possible. At last, the simulation is given to show the effectiveness of the design scheme.
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