
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 829451, 16 pages
doi:10.1155/2012/829451

Research Article
Combination of Interacting Multiple Models with
the Particle Filter for Three-Dimensional Target
Tracking in Underwater Wireless Sensor Networks

Xin Wang,1 Mengxi Xu,2 Huibin Wang,1 Yan Wu,1 and Haiyan Shi3

1 College of Computer and Information, Hohai University, Nanjing, Jiangsu 211100, China
2 School of Computer Engineering, Nanjing Institute of Technology, Jiangsu 210000, China
3 College of Computer Science and Technology, Zhejiang University of Technology,
Zhejiang 310023, China

Correspondence should be addressed to Xin Wang, wang xin@hhu.edu.cn

Received 4 October 2012; Accepted 13 November 2012

Academic Editor: Sheng-yong Chen

Copyright q 2012 Xin Wang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Tracking underwater targets is a focused application area in modern underwater defence systems.
Using traditional techniques based on imaging or sensor arrays may be difficult and impractical
in some mission-critical systems. Alternatively, the underwater wireless sensor network (UWSN)
is able to offer a promising solution. This paper tackles the problem of accurately tracking
underwater targets moving through the UWSN environment. This problem is considered
nonlinear and non-Gaussian where the present solution methods based on the particle filter
technique are powerful and simple to implement. For three-dimensional underwater maneuvering
target tracking, the traditional particle filter tracking algorithmmay fail to track the targets robustly
and accurately. Thus, the interacting multiple model method is combined with the particle filter to
cope with uncertainties in target maneuvers. Simulation results show that the proposed method is
a promising substitute for the traditional imaging-based or sensor-based approaches.

1. Introduction

Nowadays, tracking targets in the underwater environment is an indispensable part in many
military or civil fields, such as modern underwater defense systems, navigation and control
of mobile robots, and traffic monitoring in intelligent transportation systems. Much attention
has been paid to it and various techniques have been developed based on imaging [1] or
sensor arrays [2, 3]. Thereinto, imaging-based methods utilize underwater optical imaging or
underwater sonar imaging for underwater target tracking. However, for the imaging process
is always disturbed by water turbidity, underwater illumination intensity, or underwater
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noise, such techniques usually cannot get satisfactory tracking results. Other underwater
target tracking techniques use underwater sensor arrays tomeasure azimuth, elevation angle,
and distance of the underwater targets and then track them by classical filtering techniques,
such as Kalman’s filter (KF), extended Kalman filter (EKF), and unscented Kalman filter
(UKF) [4]. Nevertheless, these sensor arrays are generally mounted on or towed by a ship or
a submersible or deployed prior to the application, which makes the tracking range limited
or makes them unsuitable for on-demand tracking missions [5].

In terms of surveillance and reconnaissance, the wireless sensor network (WSN)
stands as a promising technology [6–8]. The main advantages of WSN include its low cost,
rapid deployment, self-organization, and fault tolerance [9]. As a specific case of WSN, the
underwater wireless sensor network (UWSN) is developed to enable applications for assisted
navigation, oceanographic data collection, obstacle avoidance, and tactical surveillance [10].
Some effort has been made for underwater target tracking with UWSN [11–13]. For example,
in [11], Yu et al. present a distributed tracking algorithm for a single moving target through
UWSN as well as the issues of estimating the state of target and improving energy efficiency
by applying a Kalman filter in a distributed architecture. In [12], Isbitiren and Akan design a
three-dimensional (3D) underwater target tracking algorithm for underwater acoustic sensor
networks. Based on the time of arrival of the echoes from the target after transmitting acoustic
pulses from the sensors, the ranges of the nodes to the target are determined, and trilateration
is used to obtain the location of the target. The location and the calculated velocity of the
target are then exploited to achieve tracking. Kim et al. [13] propose a bearings-only tracking
scheme based on distributed floating beacons in UWSN. It adopts a multidimensional
assignment for rejecting clutters and unscented Kalman filter for tracking a target.

To achieve three-dimensional (3D) underwater target tracking, the following chal-
lenges must be considered. For example, the measurement value of the sensor usually has
a nonlinear relationship with the estimated value in UWSN. However, most of the existing
algorithms for underwater target tracking do not consider the nonlinear problem, which
results in poor tracking accuracy. Moreover, in order to avoid underwater obstacles or other
moving objects, the trajectory of the underwater target might be very complex. A single
motion model is not sufficient to capture its movement.

To solve the aforementioned issues, we present combination of interacting multiple
model (IMM) with the particle filter (PF) for three-dimensional target tracking in UWSN.
The particle filter [14–17] is a sequential Monte Carlo approach that uses random samples,
called particles, to approximate the posterior probability density. It is an efficient way to solve
nonlinear and non-Gaussian problems [18–20]. However, the traditional PF algorithm with a
single motion model cannot solve the maneuvering problems of underwater target tracking
[21]. For maneuvering target tracking, the interacting multiple model (IMM) method is
widely used [22, 23]. It can estimate the state of a dynamic system with several behavioral
modes that switch from one to another using mode likelihoods and mode transition
probabilities. In the beginning, the filter underlying themodes in the IMM frameworkwas KF
or EKF. Later, PF was substituted for KF or EKF in the IMM framework (so-called IMMPF)
[24]. Subsequently, IMMPF is widely applied to various target tracking problems [25, 26].
For instance, in [25], the IMMPF is applied to the problem of maneuvering target tracking
with passive coherent location radar. In [26], it is used for a land vehicle Global Position
System/Dead Reckoning navigation system. Although IMMPF has been extensively used,
the study of target tracking in UWSN is still in its infancy. Therefore, this paper focuses on
the issue of underwater target tracking based on IMMPF.
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The rest of the paper is organized as follows. In Section 2, the UWSN architecture and
target motion models, as well as the measurement model of the UWSN are given. Section 3
presents the IMMPF 3D underwater target tracking algorithm. Following that, simulation
results are presented in Section 4, and conclusions are drawn in Section 5.

2. Problem Formulation

2.1. UWSN Architecture

Figure 1 shows the architecture of the UWSN used for 3D underwater target tracking. It is
composed of multiple underwater acoustic sensors. These sensor nodes are deployed by
binding to ropes which are docked onto the bed of water or a floater. As a result, all nodes
form a three-dimensional network. In this paper, we consider three different types of sensor
nodes: surface buoys, anchor nodes, and ordinary nodes. Surface buoys are nodes that drift
on the water surface. They are often equipped with common Global Positioning System
(GPS) and can get their absolute locations fromGPS. Anchor nodes are those who can directly
contact the surface buoys to get their absolute positions. Ordinary nodes cannot directly talk
to the surface buoys because of cost or other constraints but can communicate with anchor
nodes to estimate their own positions. There are extensive studies for the localization of
UWSN [27–29]. In this paper, we will not contribute to this part. Instead, we mainly tackle
the problem of underwater target tracking with UWSN.

2.2. Underwater Target Motion Models

For underwater target tracking, to precisely predict and estimate the motion information of
targets, the exact motion models of targets should be designed [30–33]. In order to capture
the movement of the underwater target, three different dynamic models, namely, constant
velocity (CV), constant acceleration (CA), and coordinated turn (CT), are studied here.

Underwater target motion can be described by the following discrete dynamic state
equation:

Xk+1 = FkXk +wk, (2.1)

where Xk is the target state vector at the k time step; Fk is the state transition matrix;wk is the
process noise.

Considering that the underwater target moves in a three-dimensional physical world,
the target state vector Xk can be defined as

Xk =
[
xk ẋk ẍk yk ẏk ÿk zk żk z̈k

]T
, (2.2)

where xk is the position of the target along x-axis at k; ẋk is the x-axis velocity of the target at
k; ẍk is the x-axis acceleration of the target at k. yk, ẏk, ÿk, zk, żk, and z̈k are similarly defined.
Notice that the acceleration of the target at each coordinate equals to zero for CV model and
the state vector is taken to be Xk = [xk ẋk yk ẏk zk żk]

T .
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Figure 1: Architecture of UWSN.

2.2.1. CV Model

The constant velocity model is the basic motion manner for underwater targets, such as
submarines, torpedoes, and autonomous underwater vehicles. The state transition matrix Fk
of this model is

Fk =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.3)

where T is the time interval between samples.
While the underwater target does constant velocity motion, its speed may change

slightly due to the effect of wind and water flow, which can be represented by a white noise
process wk with variance σ2

w. The corresponding covariance matrix of the noise is given by

Qk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

T4

4
T3

2
0 0 0 0

T3

2
T2 0 0 0 0

0 0
T4

4
T3

2
0 0

0 0
T3

2
T2 0 0

0 0 0 0
T4

4
T3

2

0 0 0 0
T3

2
T2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

σ2
w. (2.4)
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2.2.2. CA Model

Beside the nonmaneuveringmotion, we need to consider maneuveringmotions for underwa-
ter targets. To account for the accelerations in the movement, the constant acceleration model
is introduced. Its state transition matrix Fk and the covariance matrix Qk of the independent
white noise process wk are

Fk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 T
T2

2
0 0 0 0 0 0

0 1 T 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 T
T2

2
0 0 0

0 0 0 0 1 T 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T
T2

2
0 0 0 0 0 0 0 1 T

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Qk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

T4

4
T3

2
T2

2
0 0 0 0 0 0

T3

2
T2

2
T 0 0 0 0 0 0

T2

2
T 1 0 0 0 0 0 0

0 0 0
T4

4
T3

2
T2

2
0 0 0

0 0 0
T3

2
T2

2
T 0 0 0

0 0 0
T2

2
T 1 0 0 0

0 0 0 0 0 0
T4

4
T3

2
T2

2

0 0 0 0 0 0
T3

2
T2

2
T

0 0 0 0 0 0
T2

2
T 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

σ2
w.

(2.5)

2.2.3. CT Model

Sometimes, the underwater target may make a turn. In order to capture this behavior, the
coordinated turn model is investigated. This model presumes that the target moves with
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constant speed and constant turn rate. Assuming that the underwater target turns only in the
XY -plane, the corresponding state transition matrix Fk is

Fk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
sinωT

ω
0 0 −1 − cosωT

ω
0 0 0 0

0 cosωT 0 0 − sinωT 0 0 0 0

0 0 1 0 0 0 0 0 0

0
1 − cosωT

ω
0 1

sinωT

ω
0 0 0 0

0 sinωT 0 0 cosωT 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.6)

where ω is the turn rate. The zero-mean white noisewk in the CAmodel is used to model the
perturbation of the trajectory from the CT motion.

2.3. Measurement Model of UWSN

Sensors used for target tracking provide measurements of a target, such as range r, azimuth
α, and elevation angle β [31]. For example, there are N = 3 sensor nodes involved in target
tracking (see Figure 2). (xk, yk, zk) are the coordinates of the target at time k. (xi, yi, zi)
represent the coordinates of the ith sensor node. Themeasurements rk,i, αk,i, and βk,i represent
the distance, azimuth, and elevation angle provided by the ith sensor node, respectively.

From Figure 2, we can see that the measurements can be calculated by the following
equations:

rk,i =
√
(xk − xi)2 +

(
yk − yi

)2 + (zk − zi)2, i = 1, 2, . . . ,N,

αk,i = arctan
yk − yi

xk − xi
, i = 1, 2, . . . ,N,

βk,i = arctan
zk − zi√

(xk − xi)2 +
(
yk − yi

)2
, i = 1, 2, . . . ,N.

(2.7)

The measurement equation from the ith sensor is given by

Zk,i = hk,i(Xk) + vk,i

=
[
rk,i, αk,i, βk,i

]T + vk,i, i = 1, 2, . . . ,N,
(2.8)
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Figure 2: Measurement system of UWSN.

where Zk,i is the measurement from the ith sensor at time k. vk,i is the independent zero-
mean Gaussian measurement noise with covariance matrix Rk. At time k, the accumulated
measurement of UWSN Zk is given by

Zk = [Zk,1,Zk,2, . . .Zk,N]T . (2.9)

3. IMMPF Underwater Target Tracking Algorithm

3.1. Interacting Multiple Model

The interacting multiple model, as one of the most efficient dynamic multiple model (MM)
estimators, was proposed by Blom and Bar-Shalom [34]. Different from many other methods
which assume a particular moving pattern of the node, the IMM filter incorporates all the
possible moving patterns of the node, by running a bank of filters parallel with each filter
corresponding to one particular moving pattern. And the overall state estimate is a certain
combination of these model-conditional estimates. A complete cycle of the IMM filter process
consists of four essential operations, namely, mixing/interaction, filtering, mode probability
update, and combination [35]. The flow diagram of an IMM method is shown in Figure 3.

3.2. IMMPF

Particle filter can solve the nonlinear problem of underwater target tracking. However, it
cannot handle the maneuvers of the target for it only uses a single motion model. The
interactingmultiplemodel method is suitable for trackingmaneuveringmotions of the target.
Therefore, we combine IMM with PF, namely, IMMPF, for three-dimensional target tracking
in UWSN. The flowchart of IMMPF algorithm is shown in Figure 4. It can be noted that
IMMPF has four stages: mixing and interaction stage, particle filter stage (emphasized by
the dotted box), mode probability update stage, and state update stage (combination).
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Figure 3: Flow diagram of the IMM method.

The outline of IMMPF algorithm is given below (it assumes that there are r modes).

(1) Interaction. For Mj,k, compute the initial state estimate and its covariance:

X̂0
j,k−1|k−1 =

r∑

i=1

X̂i,k−1|k−1μi|j, k−1|k−1,

P̂0
j,k−1|k−1 =

r∑

i=1

μi|j, k−1|k−1
[
P̂i,k−1|k−1 +

(
X̂i, k−1|k−1 − X̂0

j, k−1|k−1
)

(
X̂i, k−1|k−1 − X̂0

j, k−1|k−1
)T

]
,

(3.1)

where μi|j,k−1|k−1 = c−1j pijμi,k−1 is mixing probability; cj =
∑r

i=1 pijμi, k−1 is the
normalization constant; pij is the transition probability for switching from model
i to model j.

(2) Particle filter. Through the use of the initial state estimate and its covariance from
the interaction step, as well as the measurement Zk, model updates for Mj,k are
performed by computing the state estimate X̂j,k|k, and its covariance P̂j,k|k. The
process of particle filter is described as follows:
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Figure 4: Flowchart of the IMMPF algorithm.

(a) Initialization. Generate samples {X̂(i)
j,k−1|k−1}

Ns

i=1
from the prior probability den-

sity function byN(X̂0
j,k−1|k−1, P̂

0
j,k−1|k−1). Set initial weights w(i)

j,k−1 = 1/Ns.

(b) Sampling. Draw sample X̂(i)
j, k|k from the proposal distribution q(X̂j, k|k |

X̂j,0: k−1,Zj, 1:k).

(c) Importance weights computation. Compute and normalize the importance
weights:

w̃
(i)
j,k

= w̃
(i)
j,k−1

p
(
Zj,k | X̂(i)

j,k|k
)
p
(
X̂(i)
j,k|k | X̂(i)

j,k−1|k−1
)

q
(
X̂(i)
j,k|k | X̂(i)

j,0:k−1,Zj,1:k

) ,

w
(i)
j,k

=
w̃

(i)
j,k

∑Ns
i=1 w̃

(i)
j,k

.

(3.2)
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(d) Resampling. CalculateNj,eff = [
∑Ns

i=1 (w
(i)
j,k)

2
]
−1
. IfNj,eff is below a user-defined

threshold Nj,thres, perform resampling to generate equally weighted particles

{X̂(i)
j,k|k,w

(i)
j,k
}Ns

i=1
.

(e) Filtering output. Compute the state estimate and its covariance:

X̂j,k|k =
Ns∑

i=1

w
(i)
j,kX̂

(i)
j,k|k,

P̂j,k|k =
Ns∑

i=1

w
(i)
j,k

(
X̂(i)
j,k|k − X̂j,k|k

)(
X̂(i)
j,k|k − X̂j,k|k

)T
.

(3.3)

(3) Mode probability update. The mode probability of Mj,k is computed as

μj,k =
1
c
Λj,kcj , (3.4)

where c =
∑r

i=1 Λi,kci. And the likelihood function is calculated as

Λj,k = N

(
Z̃j,k; 0, Ŝj,k

)
, (3.5)

where N(·) represents Gaussian distribution; Z̃j,k is the filter residual; Ŝj,k is the
corresponding filter residual covariance.

(4) Combination. The combined state estimate and its covariance are computed as:

X̂k|k =
r∑

i=1

μi,kX̂i,k|k,

P̂k|k =
r∑

i=1

μi,k

[
P̂i,k|k +

(
X̂i,k|k − X̂ k|k

)(
X̂i,k|k − X̂ k|k

)T
]
.

(3.6)

4. Simulation and Results

To evaluate our proposed method, we design two simulation cases. At first, PF, EKF, and
UKF are used to compare the tracking performance for the nonlinear problem of underwater
target tracking. Then, the proposed algorithm and PF are applied to a problem on the 3D
underwater target tracking, respectively.

4.1. Performance Evaluations

We analyze the performance of the presented algorithm and other filtering methods by state
estimation errors. The total number of independent simulation runs is R = 50. Let (xk, yk, zk)
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Figure 5: Real and estimated 3D target trajectories obtained with PF, EKF, and UKF.

denote the real position at time k, and the corresponding estimated position is (x̂k|k, ŷk|k, ẑk|k).
The tracking errors along the x-axis, y-axis, and z-axis are given as

Ex(k) =
1
R

R∑

i=1

∣∣xk − x̂i,k|k
∣∣,

Ey(k) =
1
R

R∑

i=1

∣∣yk − ŷi,k|k
∣∣,

Ez(k) =
1
R

R∑

i=1

∣∣zk − ẑi,k|k
∣∣,

(4.1)

The root mean square error (RMSE) in the estimation of position is defined as

E(k) =

√√√
√ 1

R

R∑

i=1

[(
xk − x̂i,k|k

)2 +
(
yk − ŷi,k|k

)2 +
(
zk − ẑi,k|k

)2]
. (4.2)

4.2. Tracking Performance Comparison between PF, EKF, and UKF

4.2.1. Simulation Conditions

In our first experiment, we assume the initial position of the target is (−20, 10, 5)m, and
the initial velocity is (2, 1.5, 1)m/s. From 0 to 30 s, it moves at CV. The process noise or
measurement noise is N(0, 0.12) Gaussian distribution. The sampling interval (time interval
between successive scans) is T = 1 s and the total number of time steps for the duration of
tracking a target is L = 30.
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Figure 6: Tracking performance of PF, EKF, and UKF. (a) The estimation error of the x-axis. (b) The
estimation error of the y-axis. (c) The estimation error of the z-axis. (d) RMSE of target position estimation.

4.2.2. Simulation Results

Figure 5 shows the real and estimated target trajectories obtained with PF, EKF, and UKF.
Figure 6 provides the corresponding target position estimation errors. The comparison
results indicate that PF has a better tracking accuracy than EKF and UKF. This is because
tracking targets in UWSN is a nonlinear and non-Gaussian problem. EKF uses the first-order
Taylor series expansions to approximate nonlinear system functions, and its performance
may degrade as the system becomes nonlinear or non-Gaussian. Compared with EKF,
UKF transforms the analytic integral operator into an approximate summation operator
through a set of deterministic point, so it can improve the tracking precision. Nevertheless,
its performance may still be unsatisfactory in multimode and non-Gaussian problems.
Moreover, PF is not bounded by linearization models and Gauss assumptions and applies
to any nonlinear and non-Gaussian random systems. Therefore, PF is more suitable for
underwater target tracking.
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Figure 7: Real and estimated 3D target trajectories obtained with PF and the presented scheme.

4.3. Tracking Performance Comparison between
the Presented Algorithm and PF

4.3.1. Simulation Conditions

The initial state vector is [−20, 2, 0, 10, 1.5, 0, 5, 1, 0]T . From 0 to 40 s, it moves at CV. From 41
to 70 s, it makes a CT with turn rate ω = −0.1 rad/s. From 71 to 100 s, it moves at CA. From
101 to 140 s, it makes a CT with turn rate ω = 0.1 rad/s. From 141 to 170 s, it moves at CV. The
process noise or measurement noise is N(0, 0.12)Gaussian distribution. The sampling interval
is T = 1 s and the total number of time steps is L = 170.

Let model 1, model 2, model 3, and model 4 denote CV, CA, and CT with turn rate
ω = −0.1 rad/s, CT with turn rate ω = 0.1 rad/s, respectively. The transition probability
matrix and the initial mode probability are

⎡

⎢⎢
⎣

0.8 0.1 0.05 0.05
0.2 0.7 0.05 0.05
0.15 0.05 0.75 0.05
0.15 0.05 0.05 0.75

⎤

⎥⎥
⎦, [0.8 0.1 0.05 0.05]. (4.3)

The initial covariance matrixes are P01 = diag(9, 4, 9, 4, 9, 4), P02 = diag(9, 4, 1, 9, 4, 1, 9, 4, 1),
P03 = P04 = diag(9, 4, 0.09, 9, 4, 0.09, 9, 4, 0.09).

4.3.2. Simulation Results

Figure 7 shows the real and estimated target trajectories of PF and our algorithm, and the
corresponding state estimation errors are given in Figure 8. In USWN, the target often does
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Figure 8: Tracking performance of PF and the presented scheme. (a) The estimation error of the x-axis.
(b) The estimation error of the y-axis. (c) The estimation error of the z-axis. (d) RMSE of target position
estimation.

maneuvering motions, which makes the tracking problem intractable. Nevertheless, it can
be seen from Figures 7 and 8 that compared with PF, the presented method combining IMM
with PF can yield higher tracking precision. In addition, the surges in state estimation errors
at the onset and at the termination of a maneuver are also significantly smaller than those for
PF.

5. Conclusions

This paper focuses on the nonlinear and maneuvering problems for underwater target
tracking based on underwater wireless sensor networks. It firstly designs the UWSN
architecture for target tracking. Then, to estimate the states of the target, a 3D underwater
target tracking algorithm combining interacting multiple model with the particle filter is
presented. The simulation results show that compared with PF, EKF, or UKF, the presented
method can improve the accuracy and effectiveness of the underwater target tracking.
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