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This paper investigates robust finite-time H∞ control for a class of impulsive switched nonlinear
systems with time-delay. Firstly, using piecewise Lyapunov function, sufficient conditions
ensuring finite-time boundedness of the impulsive switched system are derived. Then, finite-time
H∞ performance analysis for impulsive switched systems is developed, and a robust finite-time
H∞ state feedback controller is proposed to guarantee that the resulting closed-loop system is
finite-time bounded with H∞ disturbance attenuation. All the results are given in terms of linear
matrix inequalities (LMIs). Finally, two numerical examples are provided to show the effectiveness
of the proposed method.

1. Introduction

A switched system is a hybrid dynamical system consisting of a family of continuous-time or
discrete-time subsystems and a switching law that orchestrates the switching between them
[1]. In the last decades, in the stability analysis and stabilization for switched systems, lots of
valuable results are established (see [2–5]). Most recently, on the basis of Lyapunov functions
and other analysis tools, the stability problem of linear and nonlinear switched systems
with time-delay has been further investigated (see [6–15]), and lots of valuable results are
established for H∞ control problems (see [16–22]).

It is well known that impulsive dynamical behaviors inevitably exist in some practical
systems like physical, biological, engineering, and information science systems due to abrupt
changes at certain instants during the dynamical process. Although hybrid system and
switched system are important models for dealing with complex real systems, there is little
work concerned with the above impulsive phenomena. Such a phenomenon can be modeled
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as an impulsive switched system, it is characteristic that their states change during the
switching because of the occurrence of impulses [23].

In recent years, the impulsive switched systems have drawn more and more attention
and many useful conclusions have been obtained. Multiple Krasovskii-Lyapunov function
approach is employed to study the problem of ISS stability of a class of impulsive
switched systems with time-delay in [24]. By the Lyapunov-Razumikhin technique, a delay-
independent criterion of the exponential stability is established on the minimum dwell time
in [25]. The problem of robustH∞ stabilization of nonlinear impulsive switched system with
time-delays is studied in [23].

Usually, the stability of a system is defined over an infinite-time interval. But in many
practical systems, we focus on the dynamical behavior of a system over a fixed finite-time
interval. Based on this, finite-time stability is first proposed by Dorato in 1961 [26]. Compared
with the classical Lyapunov stability, finite-time stability is proposed for the study of the
transient performance of the system, which is a totally different concept. The so-called finite-
time stability means the boundedness of the state of a system over a fixed finite-time interval.
Finite-time stability problems can be found in [27–32]. The finite-time stability of linear
impulsive systems is analyzed in [33], the finite-time stability and stabilization of impulsive
dynamic systems are carried out in [34–36]. The finite-time stability and stabilization of
switched systems are investigated in [37].

Recently, robust finite-time control of switched systems is studied in [38, 39]. However,
to the best of our knowledge, there are very few results on finite-time boundedness and
robust H∞ control of the impulsive switched systems, which motivates the present study.
The paper is organized as follows. In Section 2, problem formulation and some necessary
lemmas are given. In Section 3, based on the dwell time approach, finite-time boundedness
and finite-timeH∞ performance for switched impulsive systems are addressed, and sufficient
conditions for the existence of a robust finite-timeH∞ state feedback controller are proposed
in terms of a set of matrix inequalities. Numerical examples are provided to show the
effectiveness of the proposed approach in Section 4. Concluding remarks are given in
Section 5.
Notations. The notations used in this paper are standard. The notation P > 0 means that P
is a real positive definite matrix; diag{· · · } stands for a block-diagonal matrix; λmax(P) and
λmin(P) denote the maximum and minimum eigenvalues of matrix P , respectively; ‖x(t)‖ =
√
xT (t)x(t) and ‖x(t)‖2 = (

∫∞
0 ‖x(t)‖2dt)1/2.

2. Problem Formulation and Preliminaries

Consider the following impulsive switched system:

ẋ(t) = Âσ(t)x(t) + Âdσ(t)x(t − h) + B̂1σ(t)u1(t) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (2.1a)

Δx = Eσ(t)x(t) + u2(t), t = tk, k = 1, 2, 3, . . . (2.1b)

z(t) = Cσ(t)x(t) +Dσ(t)u1(t), (2.1c)

x(t) = ϕ(t), t ∈ [t0 − h, t0], (2.1d)
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where x(t) ∈ Rn is the state vector, z(t) ∈ Rr is the controlled output, w(t) ∈ Rp is the
disturbance input which belongs to L2[0,∞), u1(t) ∈ Rm, t /= tk is the switched control input,
u2(tk) ∈ Rn is the impulsive control input at tk, on the other hand, u2(t) = 0, t /= tk, k =
1, 2, 3, . . .. σ(t) : [t0,+∞) → N = {1, 2, . . . ,N} is a switching signal. t ∈ (tk, tk+1], σ(t) = ik,
ik ∈ N, k = 0, 1, 2, 3, . . .. Δx(t) = x(t+) − x(t−), x(t+) = limh→ 0+x(t + h), x(t) = x(t−) =
limh→ 0+x(t − h). tk, k = 0, 1, 2, 3, . . . are the impulsive jumping points or switching points.
t0 is the initial time, t0 < t1 < · · · < tk < · · · , and limk→∞tk = +∞. h > 0 is the time-delay
which is a positive constant. fi(·) : Rn → Rn, i ∈ N is nonlinear vector-valued function.
ϕ(t), t ∈ [t0 − h, t0] is a continuous vector-valued initial function. Âi, Âdi, B̂1i, i ∈ N are
uncertain real-valued matrices with appropriate dimensions, B2i, Ei, Ci, Di, i ∈ N are known
real constant matrices with appropriate dimensions.

Assumption 2.1. For each i ∈ N, Âi, Âdi, B̂1i are uncertain real-valued matrices with
appropriate dimensions. We assume that the uncertainties are of the form

Âi = Ai + ΔAi, Âdi = Adi + ΔAdi, B̂1i = B1i + ΔB1i, (2.2a)
[
ΔAi ΔAdi ΔB1i

]
= HiFi(t)

[
EAi EAdi EBi

]
, (2.2b)

where Ai, Adi, B1i, Hi, EAi, EAdi, and EBi are known real-valued constant matrices with
appropriate dimensions, Fi(t) is the uncertain matrix satisfying

FT
i (t)Fi(t) ≤ I. (2.3)

Assumption 2.2. For each i ∈ N, nonlinear vector-valued function fi satisfies Lipschitz
condition

∥∥fi(x(t))
∥∥ ≤ ‖Uix(t)‖, (2.4)

where Ui is the Lipschitz constant matrix.

Assumption 2.3. For a given time constant Tf > t0, the external disturbance w(t) satisfies

∫Tf

0
wT (t)w(t)dt ≤ d2. (2.5)

Assumption 2.4. For system (2.1a)–(2.1d), the impulsive jump matrices Ei satisfy that (I + Ei)
are invertible.

Definition 2.5 (see [32]). For a given time constant Tf > t0, impulsive switched system (2.1a),
(2.1b), (2.1c) and (2.1d) with u1(t) ≡ 0, u2(t) ≡ 0, and w(t) ≡ 0, is said to be finite-time stable
with respect to (c21, c

2
2, Tf , R, σ(t)) if the following inequality holds:

sup
t0−h≤τ≤t0

xT (τ)Rx(τ) ≤ c21 =⇒ xT (t)Rx(t) < c22, t ∈ (t0, Tf
]
, (2.6)

where c2 > c1 > 0, R is a positive definite matrix, and σ(t) is a switching signal.
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Remark 2.6. Equation (2.6) stands for the boundedness of the state of a system over a fixed
finite-time interval (t0, Tf], when the initial state is bounded.

Definition 2.7 (see [40]). For a given time constant Tf , impulsive switched system (2.1a)–
(2.1d) with u1(t) ≡ 0, u2(t) ≡ 0, and w(t) satisfying (2.5), is said to be finite-time bounded
with respect to (c21, c

2
2, Tf , d

2, R, σ(t)) if the condition (2.6) holds, where c2 > c1 > 0, R is a
positive definite matrix and σ(t) is a switching signal.

Definition 2.8. For any T2 > T1 > 0, letNσ(t)(T1, T2) denote the switching number of σ(t) on an
interval (T1, T2). If Nσ(t)(T1, T2) ≤ N0 + (T2 − T1)/τa holds for given N0 ≥ 0, τa > 0, then the
constant τa is called the average dwell time. In this paper we letN0 = 0.

Definition 2.9. For a given time constant Tf , impulsive switched system (2.1a)–(2.1d)
with u1(t) ≡ 0, u2(t) ≡ 0 is said to have finite-time H∞ performance with respect to
(0, c22, Tf , d

2, γ, R, σ(t)) if the system is finite-time bounded and the following inequality holds:

‖z(t)‖2 ≤ γ‖w(t)‖2, ∀w(t) ∈ L2[0,∞), (2.7)

where c2 > 0, γ > 0, R is a positive definite matrix and σ(t)is a switching signal.

Definition 2.10. For a given time constant Tf , impulsive switched system (2.1a)–(2.1d) is
said to be robust finite-time stabilization with H∞ disturbance attenuation level γ , if there
exists a switched controller u1(t) = Kσ(t)x(t), t /= tk and an impulsive controller u2(tk) =
Kσ(t)x(tk), t = tk, where t ∈ (t0, Tf] such that

(i) the corresponding closed-loop system is finite-time bounded with respect to
(0, c22, Tf , d

2, R, σ(t));

(ii) under zero initial condition, inequality (2.7) holds for any w(t) satisfying (2.5).

Lemma 2.11. Let U, V , W , and X be real matrices of appropriate dimensions with X satisfying
X = XT , then for all V TV ≤ I,

X +UVW +WTV TUT < 0, (2.8)

if and only if there exists a scalar ε > 0 such that

X + εUUT + ε−1WTW < 0. (2.9)
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3. Main Results

3.1. Finite-Time Boundedness Analysis

In this subsection, we focus on the finite-time boundedness of the following impulsive
switched system:

ẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.1a)

Δx = Eσ(t)x(t), t = tk, k = 1, 2, 3, . . . (3.1b)

x(t) = ϕ(t), t ∈ [t0 − h, t0]. (3.1c)

Before proceeding to Lemma 3.2, we first introduce a function v(t). For given positive
definite matrices Qik , ik ∈ N, by Assumption 2.4, there exists a real number ρik ≥ 1, ρ∗ =
max{ρik , ik ∈ N} such that

Qik−1 ≤ ρik(I + Eik−1)
TQik(I + Eik−1). (3.2)

Furthermore, we define the following function

vk(t) = ρik −
(t − tk)2

(tk+1 − tk)2
(
ρik − 1

)
, t ∈ (tk, tk+1]. (3.3)

Finally, a piecewise continuous function v(t) is as follows:

v(t) = vk(t), t ∈ (tk, tk+1]. (3.4)

Consider the function v(t), for each interval (tk, tk+1], v(t+k) = ρik , v(tk+1) = 1, and v(t) is
monotonically nonincreasing and bounded function, v(tk+1) ≤ v(t) ≤ v(t+

k
).

Remark 3.1. Note that the previous works require the conditionQik−1 ≤ (I +Eik−1)
TQik(I +Eik−1)

(see [23, 41]), which can be obtained by setting ρik = 1 in (3.2). Thus, the proposed approach
may provide more relaxed conditions.

Lemma 3.2. Consider the following Lyapunov functional candidate:

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds (3.5)

for system (3.1a), (3.1b), and (3.1c), where Pi andQi, i ∈ N are symmetric positive definite matrices
with appropriate dimensions.
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The following inequality is derived:

V̇ (t) ≤ 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(t)xT (t)Qikx(t) − v(t − h)xT (t − h)Qik−mx(t − h)eαh

t ∈ (tk, tk+1], t − h ∈ (tk−m, tk−m+1], m ∈ {0, 1, 2, 3, . . .}.

(3.6)

Proof. (i)When tk + h ≥ tk+1,

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

= xT (t)Pikx(t) +
∫ tk−m+1

t−h
v(s)xT (s)eα(t−s)Qik−mx(s)ds

+
∫ tk−m+2

tk−m+1

v(s)xT (s)eα(t−s)Qik−m+1x(s)ds · · · +
∫ t

tk

v(s)xT (s)eα(t−s)Qikx(s)ds,

V̇ (t) = 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(tk−m+1)xT (tk−m+1)eα(t−tk−m+1)Qik−mx(tk−m+1)

− v(t − h)xT (t − h)eαhQik−mx(t − h)

+ v(tk−m+2)xT (tk−m+2)eα(t−tk−m+2)Qik−m+1x(tk−m+2)

− v
(
t+k−m+1

)
xT(t+k−m+1

)
eα(t−tk−m+1)Qik−m+1x

(
t+k−m+1

) · · · + v(tk)xT (tk)eα(t−tk)Qik−1x(tk)

− v
(
t+k−1

)
xT(t+k−1

)
eα(t−tk)Qik−1x

(
t+k−1

)
+ v(t)xT (t)Qikx(t)

− v
(
t+k
)
xT(t+k

)
eα(t−tk)Qikx

(
t+k
)
,

V̇ (t) = 2xT (t)Pik ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

+ v(t)xT (t)Qikx(t) − v(t − h)xT (t − h)eαhQik−mx(t − h)

+ xT (tk−m+1)eα(t−tk−m+1)
[
Qik−m − ρik−m+1(I + Eik−m)

TQik−m+1(I + Eik−m)
]
x(tk−m+1) . . .

+ xT (tk)eα(t−tk)
[
Qik−1 − ρik(I + Eik−1)

TQik(I + Eik−1)
]
x(tk).

(3.7)
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From (3.2), we can obtain that

Qik−m − ρik−m+1(I + Eik−m)
TQik−m+1(I + Eik−m) ≤ 0

...

Qik−1 − ρik(I + Eik−1)
TQik(I + Eik−1) ≤ 0.

(3.8)

Combining (3.7) and (3.8), (3.6) is obtained.

(ii) When tk + h < tk+1,

(1) t ∈ (tk, tk + h], the proof is similar to the proof line in the situation (i).

(2) t ∈ (tk + h, tk+1],

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds

= xT (t)Pikx(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qikx(s)ds.

(3.9)

The proof for this situation is omitted.
The proof is completed.

Lemma 3.3. Consider the following Lyapunov function:

V (t) = xT (t)Pσ(t)x(t) +
∫ t

t−h
v(s)xT (s)eα(t−s)Qσ(s)x(s)ds (3.10)

for system (3.1a), (3.1b), and (3.1c), where Pi and Qi, i ∈ {1, 2, . . . ,N} are symmetric positive
definite matrices with appropriate dimensions. Under the condition

⎡

⎢
⎣

−eαhρ∗Pj I + ET
j ET

i

∗ −P−1
i 0

∗ ∗ −e−αh(ρ∗)−1Q−1
i

⎤

⎥
⎦ < 0, ∀i, j ∈ N, (3.11)

we have

V
(
t+k
)
< eαhρ∗V (tk), (3.12)

where ρ∗ = max{ρik , ik ∈ N}.
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Proof. Without loss of generality, let σ(t+k) = i, σ(tk) = j. Then, we have

V
(
t+k
)
= xT(t+k

)
Pσ(t+

k
)x
(
t+k
)
+
∫ t+

k

t+
k
−h

v(s)xT (s)eα(t
+
k
−s)Qσ(s)x(s)ds

≤ xT(t+k
)
Pσ(t+

k
)x
(
t+k
)
+ eαhρ∗

∫ t+
k

t+
k
−h

xT (s)Qσ(s)x(s)ds

≤ xT (tk)
(
I + Ej

)T
Pi

(
I + Ej

)
x(tk) + eαhρ∗xT (tk)ET

j QiEjx(tk)

+ eαhρ∗
∫ tk

tk−h
v(s)xT (s)eα(tk−s)Qσ(s)x(s)ds,

(3.13)

V (tk) = xT (tk)Pjx(tk) +
∫ tk

tk−h
v(s)xT (s)eα(tk−s)Qσ(s)x(s)ds. (3.14)

Combining (3.13) with (3.14), we have

V
(
t+k
) − eαhρ∗V (tk) ≤ xT (tk)

(
I + Ej

)T
Pi

(
I + Ej

)
x(tk)

+ eαhρ∗xT (tk)ET
j QiEjx(tk) − eαhρ∗xT (tk)Pjx(tk)

= xT (tk)Σijx(tk),

(3.15)

where

∑

ij

=
(
I + Ej

)T
Pi

(
I + Ej

)
+ eαhρ∗ET

j QiEj − eαhρ∗Pj. (3.16)

Using Schur complement, (3.11) is equivalent to

Σij < 0 or V
(
t+k
) − eαhρ∗V (tk) < 0. (3.17)

The proof is completed.
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Theorem 3.4. R is a positive definite matrix. Let P̃i = R−1/2PiR
−1/2, Q̃i = R−1/2QiR

−1/2, For all i ∈
N, if there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N}, α, λ1, λ2, λ3 and symmetric
positive matrices Pi, Pj , Qi, Ti, i, j ∈ N such that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.18)

⎡

⎢
⎢
⎢
⎢
⎣

P̃iA
T
i +AiP̃i − αP̃i + I AdiQ̃i B2i P̃i

∗ −eαhQ̃j 0 0
∗ ∗ −Ti 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)

⎤

⎥
⎥
⎥
⎥
⎦

< 0, ∀i, j ∈ N (3.19)

⎡

⎢⎢
⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤

⎥⎥
⎦ < 0, ∀i, j ∈ N (3.20)

λ1R
−1 < P̃i < R−1, λ2R

−1 < Q̃i, Ti < λ3I, ∀i ∈ N (3.21)

⎡

⎢⎢
⎣

−c22e−αTf + d2λ3 c1 c1
∗ −λ1 0

∗ ∗ − 1
ρ∗h

e−αhλ2

⎤

⎥⎥
⎦ < 0 (3.22)

hold, under the average dwell time scheme

τa > τ∗a =
Tf
(
αh + ln ρ∗

)

ln
(
c22e

−αTf ) − ln
[(
1/λ1 + hρ∗eαh/λ2

)
c21 + d2λ3

] , (3.23)

system (3.1a)–(3.1c) is finite-time bounded with respect to (c21, c
2
2, Tf , d

2, R, σ(t)).

Proof. Assuming that when t ∈ (tk, tk+1], σ(t) = ik, ik ∈ N, k = 0, 1, 2, 3, . . ..
Choose the following Lyapunov functional candidate:

V (t) = xT (t)P̃−1
σ(t)x(t) +

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds. (3.24)
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When t ∈ (tk, tk+1], according to (3.18) and Lemma 3.2, we have

V̇ (t) ≤ 2xT (t)P̃−1
ik
ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

+ v(t)xT (t)Q̃−1
ik
x(t) − v(t − h)xT (t − h)Q̃−1

ik−mx(t − h)eαh,

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) ≤ 2xT (t)P̃−1
ik
ẋ(t) + α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

+ v(t)xT (t)Q̃−1
ik
x(t) − v(t − h)xT (t − h)Q̃−1

ik−mx(t − h)eαh

− αxT (t)P̃−1
ik
x(t) − α

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds

−wT(t)Tikw(t)

≤ 2xT (t)P̃−1
ik
ẋ(t) + ρ∗xT (t)Q̃−1

ik
x(t)

− xT (t − h)Q̃−1
ik−mx(t − h)eαh − αxT (t)P̃−1

ik
x(t)

−wT(t)Tikw(t).
(3.25)

According to (3.1a)–(3.1c), and (3.25), Assumption 2.2, and the fallowing inequality:

2xT (t)P̃−1
ik
f(x(t)) ≤ fT

ik
(x(t))fik(x(t)) + xT (t)P̃−1

ik
P̃−1
ik
x(t)

≤ xT (t)UT
ik
Uikx(t) + xT (t)P̃−1

ik
P̃−1
ik
x(t),

(3.26)

we have

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) ≤ XT (t)ΞkX(t), (3.27)

where XT (t) = (xT (t)xT (t − h)wT (t)),

Ξk =

⎡

⎢
⎣
Δk P̃−1

ik
Adik P̃−1

ik
B2ik

∗ −eαhQ̃−1
ik−m

0
∗ ∗ −Tik

⎤

⎥
⎦,

Δk = AT
ik
P̃−1
ik

+ P̃−1
ik
Aik + ρ∗Q̃−1

ik
− αP̃−1

ik
+UT

ik
Uik + P̃−1

ik
P̃−1
ik
.

(3.28)

Using Schur complement, we obtain from (3.19) that

⎡

⎢
⎣
Oi P̃−1

i Adi P̃−1
i B2i

∗ −eαhQ̃−1
j 0

∗ ∗ −Ti

⎤

⎥
⎦ < 0, (3.29)
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where

Oi = AT
i P̃

−1
i + P̃−1

i Ai + ρ∗Q̃−1
i − αP̃−1

i +UT
i Ui + P̃−1

i P̃−1
i . (3.30)

Noticing that the above inequality holds for all i, j ∈ N, then we have Ξk < 0 for ik, ik−1 ∈ N.
Thus,

V̇ (x(t)) − αV (x(t)) −wT (t)Tikw(t) < 0. (3.31)

When t ∈ (tk, tk+1], according to Lemma 3.3, we can obtain (3.12) from condition (3.20).
Combining (3.31) and (3.12), we can obtain that

V (t) < eα(t−tk)V
(
t+k
)
+
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< eα(t−tk)eαhρ∗V (tk) +
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< eα(t−tk)eαhρ∗
[

eα(tk−tk−1)V
(
t+k−1

)
+
∫ tk

tk−1
eα(tk−s)wT (s)Tik−1w(s)ds

]

+
∫ t

tk

eα(t−s)wT(s)Tikw(s)ds

< · · ·

< eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

(
eαhρ∗

)Nσ(t0,t)
∫ t1

t0

eα(t−s)wT (s)Ti0w(s)ds

+
(
eαhρ∗

)Nσ(t1,t)
∫ t2

t1

eα(t−s)wT (s)Ti1w(s)ds

+ · · · + eαhρ∗
∫ tk

tk−1
eα(t−s)wT (s)Tik−1w(s)ds +

∫ t

tk

eα(t−s)wT (s)Tikw(s)ds

= eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
wT (s)Tikw(s)ds

< eαt
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

(
eαhρ∗

)Nσ(t0,t)
eαt
∫ t

t0

wT (s)Tikw(s)ds

< eαTf
(
eαhρ∗

)Nσ(t0,t)
[

V (t0) +
∫Tf

t0

wT (s)Tikw(s)ds

]

< eαTf
(
eαhρ∗

)Nσ(t0,t)[
V (t0) + λmax(Tik)d

2
]
.

(3.32)
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Noticing that Nσ(t0, Tf) < Tf/τa and according to (3.21), we have

V (t) < e(α+αh/τa)Tf
(
ρ∗
)Tf/τα

[
V (t0) + λ3d

2
]
,

V (t) ≥ xT (t)P̃−1
ik
x(t) = xT (t)R1/2P−1

ik
R1/2x(t)

≥ λmin

(
P−1
ik

)
xT (t)Rx(t) =

1
λmax(Pik)

xT (t)Rx(t).

(3.33)

Because λ1R−1 < P̃i < R−1, we have

V (t) > xT (t)Rx(t). (3.34)

According to the Lyapunov function that we have chosen, we have

V (t0) = xT (t0)P̃−1
i x(t0) +

∫ t0

t0−h
v(s)xT (s)e−α(t0−s)Q̃−1

i x(s)ds

≤ max
i∈N

λmax

(
P−1
i

)
xT (t0)Rx(t0)

+ heαhρ∗max
i∈N

λmax

(
Q−1

i

)
sup

t0−h≤θ≤t0
xT (θ)Rx(θ)

≤
⎛

⎝ 1
min
i∈N

λmin(Pi)
+

ρ∗heαh

min
i∈N

λmin(Qi)

⎞

⎠ sup
t0−h≤θ≤t0

xT (θ)Rx(θ).

(3.35)

According to (3.21), the following inequality is derived:

V (t0) <

(
1
λ1

+
ρ∗heαh

λ2

)

c21. (3.36)

Combining (3.33), (3.34), and (3.36), we can obtain that

xT (t)Rx(t) < V (t) < e(α+αh/τa)Tf
(
ρ∗
)Tf/τα

[(
1
λ1

+
ρ∗heαh

λ2

)

c21 + λ3d
2

]

. (3.37)

Using Schur complement, (3.22) is equivalent to

(
1
λ1

+
ρ∗heαh

λ2

)

c21 + λ3d
2 < c22e

−αTf . (3.38)

From (3.38), we can obtain that τa > 0.
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Substituting (3.23) into (3.37) leads to

xT (t)Rx(t) < c22. (3.39)

Thus, system (3.1a)–(3.1c) is finite-time bounded with respect to (c21, c
2
2, Tf , d

2, R, σ(t)).
The proof is completed.

Corollary 3.5. R is a positive definite matrix, let w(t) ≡ 0, P̃i = R−1/2PiR
−1/2, Q̃i =

R−1/2QiR
−1/2 for all i ∈ N. If there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N},

α, λ1, λ2 and symmetric positive matrices Pi, Pj ,Qi for all i, j ∈ N with appropriate dimensions such
that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N

⎡

⎢
⎣

P̃iA
T
i +AiP̃i − αP̃i + I AdiQ̃i P̃i

∗ −eαhQ̃j 0
∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)

⎤

⎥
⎦ < 0, ∀i, j ∈ N

⎡

⎢⎢
⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤

⎥⎥
⎦ < 0, ∀i, j ∈ N

λ1R
−1 < P̃i < R−1, λ2R

−1 < Q̃i, ∀i ∈ N

⎡

⎢⎢
⎣

−c22e−αTf c1 c1
∗ −λ1 0

∗ ∗ − 1
ρ∗h

e−αhλ2

⎤

⎥⎥
⎦ < 0

(3.40)

hold with average dwell time

τa > τ∗a =
Tf
(
αh + ln ρ∗

)

ln
(
c22e

−αTf ) − ln
[(
1/λ1 + ρ∗heαh/λ2

)
c21
] . (3.41)

System (3.1a)–(3.1c) with w(t) ≡ 0 is finite-time stable with respect to (c21, c
2
2, Tf , R, σ(t)).



14 Mathematical Problems in Engineering

3.2. H∞ Performance Analysis

In this subsection, H∞ performance of the following system is investigated:

ẋ(t) = Aσ(t)x(t) +Adσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.42a)

Δx = Eσ(t)x(t), t = tk, k = 1, 2, 3, . . . (3.42b)

z(t) = Cσ(t)x(t), (3.42c)

x(t) = ϕ(t), t ∈ [t0 − h, t0] (3.42d)

Theorem 3.6. R is a positive definite matrix. Let P̃i = R−1/2PiR
−1/2, Q̃i = R−1/2QiR

−1/2 for all i ∈
N. Suppose that there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈ N}, α, γ, ε and symmetric
positive matrices Pi, Pj , Qi for all i, j ∈ N such that

1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.43)

⎡

⎢⎢⎢⎢⎢⎢
⎣

P̃iA
T
i +AiP̃i − αP̃i + I AdiQ̃i B2i P̃i P̃iC

T
i

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, ∀i, j ∈ N (3.44)

⎡

⎢⎢
⎣

−eαhρ∗P̃j P̃j

(
I + ET

j

)
P̃jE

T
j

∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤

⎥⎥
⎦ < 0, ∀i, j ∈ N (3.45)

P̃i < R−1, ∀i ∈ N (3.46)

−c22 + eαTf γ2d2 < 0 (3.47)

hold with average dwell time

τa > τ∗a = max

{
Tf
(
αh + ln ρ∗

)

ln
(
c22
) − ln

(
eαTf γ2d2

) ,
h

ε

}

. (3.48)

Then, system (3.42a)–(3.42d) is finite-time bounded and has H∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)), where γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

Proof. When t ∈ (tk, tk+1], σ(t) = ik, ik ∈ N, k = 0, 1, 2, 3, . . .. Choose the following Lyapunov
functional candidate for system (3.42a)–(3.42d)

V (t) = xT (t)P̃−1
σ(t)x(t) +

∫ t

t−h
v(s)xT (s)eα(t−s)Q̃−1

σ(s)x(s)ds. (3.49)
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When t ∈ (tk, tk+1],

V̇ (x(t)) − αV (x(t)) + zT (t)z(t) − γ2wT (t)w(t) ≤ XT (t)ΨkX(t), (3.50)

where XT (t) = (xT (t) xT (t − h) wT(t)),

Ψk =

⎡

⎢
⎣
Δk P̃−1

ik
Adik P̃−1

ik
B2ik

∗ −eαhQ̃−1
ik−m

0
∗ ∗ −γ2I

⎤

⎥
⎦,

Δk = AT
ik
P̃−1
ik

+ P̃−1
ik
Aik + ρ∗Q̃−1

ik
− αP̃−1

ik
+UT

ik
Uik + P̃−1

ik
P̃−1
ik

+ CT
ik
Cik .

(3.51)

Using Schur complement, we obtain from (3.44) that

⎡

⎢
⎣
Ei P̃−1

i Adi P̃−1
i B2i

∗ −eαhQ̃−1
j 0

∗ ∗ −γ2I

⎤

⎥
⎦ < 0, (3.52)

where Ei = AT
i P̃

−1
i + P̃−1

i Ai + ρ∗Q̃−1
i − αP̃−1

i +UT
i Ui + P̃−1

i P̃−1
i + CT

i Ci.
Noticing that the above inequality holds for all i, j ∈ N, then we have Ψk < 0, for

ik, ik−m ∈ N.
Thus,

V̇ (x(t)) − αV (x(t)) + zT (t)z(t) − γ2wT (t)w(t) < 0, (3.53)

Let γ2wT (s)w(s) − zT (s)z(s) = Δ(s), from (3.32), we have

V (t) < eα(t−t0)
(
eαhρ∗

)Nσ(t0,t)
V (t0) +

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
Δ(s)ds. (3.54)

Under zero initial condition, we have

0 <

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
Δ(s)ds, (3.55)

that is,

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
zT (s)z(s)ds <

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
γ2wT (s)w(s)ds. (3.56)

Noticing that

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
zT (s)z(s)ds >

∫ t

t0

zT (s)z(s)ds. (3.57)
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Then, we have

∫ t

t0

eα(t−s)
(
eαhρ∗

)Nσ(s,t)
γ2wT (s)w(s)ds < eαt

(
eαhρ∗

)Nσ(t0,t)
∫ t

t0

γ2wT (s)w(s)ds. (3.58)

Let t = Tf , because τa > h/ε, we have

∫Tf

t0

zT (s)z(s)ds < e(1+ε)αTf
(
ρ∗)εTf/hγ2

∫Tf

t0

wT (s)w(s)ds, (3.59)

then

∫Tf

t0

zT (s)z(s)ds < γ2
∫Tf

t0

wT (s)w(s)ds. (3.60)

Thus, system (3.42a)–(3.42d) is finite-time bounded and hasH∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)), where γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.
The proof is completed.

Remark 3.7. When ρ∗ = 1, Theorem 3.6 degenerates to the result of [41], which cannot
guarantee the finite-time boundedness of the addressed system if ρ∗ > 1.

3.3. Robust Finite-Time H∞ Control

Consider system (2.1a)–(2.1d), under the switching controller u1(t) = Kσ(t)x(t), t /= tk and
impulsive controller u2(tk) = Kσ(t)x(tk), t = tk, the corresponding closed-loop system is
given by

ẋ(t) =
(
Âσ(t) + B̂1σ(t)Kσ(t)

)
x(t) + Âdσ(t)x(t − h) + fσ(t)(x(t)) + B2σ(t)w(t), t /= tk (3.61a)

Δx =
(
Eσ(t) +Kσ(t)

)
x(t), t = tk, k = 1, 2, 3, . . . (3.61b)

z(t) =
(
Cσ(t) +Dσ(t)Kσ(t)

)
x(t), (3.61c)

x(t) = ϕ(t), t ∈ [t0 − h, t0]. (3.61d)

Theorem 3.8. Consider impulsive switched system (2.1a)–(2.1d), let P̃i = R−1/2PiR
−1/2, Q̃i =

R−1/2QiR
−1/2for all i ∈ N. If there exist positive scalars ρi ≥ 1, i ∈ N, ρ∗ = max{ρi, i ∈

N} α, γ, ε, δi and positive definite symmetric matrices Pi,Qi, and matrices Yi, i ∈ N, with
appropriate dimensions, such that the following inequalities hold
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1
ρ∗

(I + Ei)−1Q̃j(I + Ei)−T − Q̃i ≤ 0, ∀i, j ∈ N (3.62)

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

Γi AdiQ̃i B2i P̃i P̃iC
T
i + YT

i D
T
i YT

i E
T
Bi + P̃iE

T
Ai

∗ −eαhQ̃j 0 0 0 Q̃iE
T
Adi

∗ ∗ −γ2 0 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −δi

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

< 0, ∀i, j ∈ N,

(3.63)

where

Γi = P̃iA
T
i + YT

i B
T
1i +AiP̃i + B1iYi − αP̃i + I + δiHiH

T
i ,

⎡

⎣
−eαhρ∗P̃j P̃j

∗ −P̃i

⎤

⎦ < 0, ∀i, j ∈ N
(3.64)

P̃i < R−1, i ∈ N, (3.65)

−c22 + eαTf γ2d2 < 0. (3.66)

Then, under the controller Ki = YiP̃
−1
i , Ki = −Ei, and the following average dwell time scheme

τa > τ∗a = max

{
Tf
(
αh + ln ρ∗

)

ln
(
c22
) − ln

(
eαTf γ2d2

) ,
h

ε

}

, (3.67)

the corresponding closed-loop system is finite-time bounded with H∞ performance with respect to
(0, c22, Tf , d

2, γ , R, σ(t)) and γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

Proof. According to Assumption 2.1, we have

Âi + B̂1iKi = (Ai + B1iKi) +HiFi(EAi + EBiKi), Âdi = Adi +HiFiEAdi. (3.68)

Now replacingAi,Adi, Ci in the left side of (3.44)with Âi+B̂1iKi, Âdi, Ci+DiKi, we can obtain
that

Θij =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ωi (Adi +HiFiEAdi)Q̃i B2i P̃i P̃i(Ci +DiKi)T

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (3.69)
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where

Ωi = [(Ai + B1iKi) +HiFi(EAi + EBiKi)]P̃i + P̃i[(Ai + B1iKi) +HiFi(EAi + EBiKi)]T − αP̃i + I.

(3.70)

From (3.69), we know that

Θij = Π1ij + Π2ij , (3.71)

where

Π1ij =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Υ1i AdiQ̃i B2i P̃i P̃i(Ci +DiKi)T

∗ −eαhQ̃j 0 0 0
∗ ∗ −γ2 0 0
∗ ∗ ∗ −

(
ρ∗−1Q̃i +UT

ik
Uik

)
0

∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Π2ij =

⎡

⎢⎢⎢⎢⎢
⎣

Υ2i HiFiEAdiQ̃i 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥
⎦
,

(3.72)

with

Υ1i = P̃i(Ai + B1iKi)T + (Ai + B1iK)P̃i − αP̃i + I,

Υ2i = P̃i(EAi + EBiKi)TFT
i H

T
i +HiFi(EAi + EBiKi)P̃i,

(3.73)

let Yi = KiP̃i, then

Υ1i = P̃iA
T
i + YT

i B
T
1i +AiP̃i + B1iYi − αP̃i + I,

Υ2i =
(
YT
i E

T
Bi + P̃iE

T
Ai

)
FT
i H

T
i +HiFi

(
EAiP̃i + EBiYi

)
.

(3.74)
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From Lemma 2.11, we can obtain that

Θij = Π1ij +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Hi

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
Fi

[
EAiP̃i + EBiYi EAdiQ̃i 0 0 0

]

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

YT
i E

T
Bi + P̃iE

T
Ai

Q̃iE
T
Adi

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi

[
HT

i 0 0 0 0
]

≤ Π1ij + δi

⎡

⎢⎢⎢⎢⎢
⎣

Hi

0
0
0
0

⎤

⎥⎥⎥⎥⎥
⎦

[
HT

i 0 0 0 0
]

+
1
δi

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

YT
i E

T
Bi + P̃iE

T
Ai

Q̃iE
T
Adi
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

[
EAiP̃i + EBiYi EAdiQ̃i 0 0 0

]
.

(3.75)

Using Schur complement lemma, we get from (3.63) that

Θij < 0. (3.76)

Now we choose Ki = −Ei, and replacing Ei in (3.45) with Ei +Ki, we know that

⎡

⎢
⎣

−eαhρ∗P̃j P̃j 0
∗ −P̃i 0
∗ ∗ −e−αh(ρ∗)−1Q̃i

⎤

⎥
⎦ < 0, (3.77)

by (3.64), we know that the condition(3.45) hold.
Then, system (2.1a)–(2.1d) is robust finite-time bounded with H∞ performance with

respect to (0, c22, Tf , d
2, γ , R, σ(t)), and γ2 = e(1+ε)αTf (ρ∗)εTf/hγ2.

The proof is completed.

Remark 3.9. In order to eliminate the impulsive jump, we design an impulsive feedback
controller Ki = −Ei, t = tk. Then the system becomes a switched system with continuous
states.
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4. Numerical Examples

In this section, we present two examples to illustrate the effectiveness of the proposed
approach.

Example 4.1. Consider system (2.1a)–(2.1d) with the following parameters.

Subsystem 1

A1 =
[−8 1
2 −7

]
, Ad1 =

[−1.3 0.1
0.2 −1

]
, H1 =

[−0.1 0.3
0.2 0.4

]
, EAd1 =

[
0.2 0.1
0.3 −0.2

]
,

E1 =
[
0.43 0
0 0.15

]
, U1 =

[
0.1 0
0 0.1

]
, B11 =

[
3 −3
0 4

]
,

EB1 =
[
0.2 0.1
0 −0.3

]
, B21 =

[
1 −1
2 1

]
,

C1 =
[
1 1
0 2

]
, D1 =

[
0.8 0
0 0.2

]
, EA1 =

[−0.3 −0.1
0.2 −0.1

]
,

(4.1)

f1(x(t)) = 0.1 sinx(t), where ‖f1(x(t))‖ < ‖U1x(t)‖.

Subsystem 2

A2 =
[−7 2
1 −6

]
, Ad2 =

[−1.2 0.1
0.3 −1.1

]
, H2 =

[−0.1 0.2
−0.2 −0.1

]
, EAd2 =

[−0.3 0.1
0.2 −0.3

]
,

E2 =
[
0.15 0
0 0.4

]
, U2 =

[
0.2 0
0 0.18

]
, B12 =

[
4 −1
1 6

]
, EB2 =

[−0.3 0.1
0 0.2

]
,

B22 =
[−1 0
2 0.8

]
, C2 =

[
2 1
0 3

]
, D2 =

[
0.8 0
1 −1

]
, EA2 =

[
0.1 0.3
0.2 −0.2

]
,

(4.2)

f2(x(t)) = 0.18 cosx(t), where ‖f2(x(t))‖ < ‖U2x(t)‖.
Choosing Tf = 12, h = 0.2, d2 = 10, R = I, α = 0.1, C2

2 = 2, ε = 0.1, γ2 = 0.5441, ρ∗ = 1,
solving the LMIs in (3.62)–(3.66) leads to
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Q̃1 =
[
1.3506 −0.1265
−0.1265 0.7891

]
, Q̃2 =

[
0.5042 0.0525
0.0525 0.3221

]
, Y1 =

[
0.0234 −0.3577
0.1631 0.2680

]
,

Y2 =
[−0.0001 −0.5221
0.1109 0.0371

]
, P̃1 =

[
0.9887 0.0011
0.0011 0.9921

]
, P̃2 =

[
0.9995 −0.0001
−0.0001 1.0006

]
,

K1 =
[
0.0241 −0.3605
0.1647 0.2699

]
, K2 =

[−0.0001 −0.5218
0.1109 0.0371

]
,

Q̃−1
1 − (I + E1)T Q̃−1

1 (I + E1) ≤ 0,

Q̃−1
2 − (I + E2)T Q̃−1

1 (I + E2) ≤ 0,

Q̃−1
2 − (I + E2)T Q̃−1

2 (I + E2) ≤ 0,

Q̃−1
1 − (I + E1)T Q̃−1

2 (I + E1) ≤ 0,

(4.3)

τa > τ∗a = 1.2049, we choose τa = 2, γ2 = e(1+ε)αTf (ρ∗)εαTf γ2 = 2.0368, then the system is
finite-time bounded according to [41, Theorem 3].

Example 4.2. Consider system (2.1a)–(2.1d) with the following parameters.

Subsystem 1

A1 =
[−8 1
2 −7

]
, Ad1 =

[−1.3 0.1
0.2 −1

]
, H1 =

[−0.1 0.3
0.2 0.4

]
, EAd1 =

[
0.2 0.1
0.3 −0.2

]
,

E1 =
[−0.1 0

0 −0.1
]
, U1 =

[
0.01 0
0 0.01

]
, B11 =

[
3 −3
0 4

]
, EB1 =

[
0.2 0.1
0 −0.3

]
,

B21 =
[
1 −1
2 1

]
, C1 =

[−3 1
0 −2

]
, D1 =

[
8 0
0 2

]
, EA1 =

[−3 −0.1
0.2 −1

]
,

(4.4)

f1(x(t)) = 0.01 sinx(t).

Subsystem 2

A2 =
[−7 2
1 −6

]
, Ad2 =

[−1.2 0.1
0.3 −1.1

]
, H2 =

[−0.1 0.2
−0.2 −0.1

]
, EAd2 =

[−0.3 0.1
0.2 −0.3

]
,

E2 =
[−0.1 0

0 −0.1
]
, U2 =

[
0.02 0
0 0.08

]
, B12 =

[
4 −1
1 6

]
, EB2 =

[−0.3 0.1
0 0.2

]
,

B22 =
[−1 0
2 0.8

]
, C2 =

[−2 1
0 −3

]
, D2 =

[
8 0
1 8

]
, EA2 =

[−1 0.3
0.2 −2

]
,

(4.5)

f2(x(t)) = 0.02 cosx(t).
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(1) Let h = 0.2, Tf = 12, d2 = 10, R = I, α = 0.001, C2
2 = 21, ρ∗ = 1.3, γ2 = 0.9344. By

solving the LMIs in (3.62)–(3.66), we can get

Q̃1 =
[
0.4252 0.0387
0.0387 1.2272

]
, Q̃2 =

[
0.4352 0.0470
0.0470 1.2369

]
, Y1 =

[
0.0866 −0.4834
−0.0863 0.5554

]
,

Y2 =
[
0.1064 −0.2575
−0.1260 0.2934

]
, P̃1 =

[
0.4606 0.0418
0.0418 0.9965

]
, P̃2 =

[
0.5364 −0.0611
−0.0611 0.9884

]
,

K1 =
[
0.2329 −0.4949
−0.2389 0.5673

]
, K2 =

[
0.1699 −0.2500
−0.2024 0.2844

]
,

(4.6)

and τa > τ∗a = 3.8340. We choose τa = 4, ε = 0.05, γ2 = 0.9464, the initial condition
x(t) = 0, t ∈ [−h, 0], the switching signal is shown in Figure 1, and state trajectories
of the closed-loop system are shown in Figure 2.

We can see from Figure 2 that the states of the system are continuous due to the
feedback Ki in impulsive instants.

(2) Let h = 0.2, Tf = 12, d2 = 10, R = I, and α = 0.001. By solving the LMIs of [41,
Theorem 3], we can get

Q̃1 =
[
0.4015 0.0359
0.0359 1.0563

]
, Q̃2 =

[
0.5224 0.1104
0.1104 1.0717

]
, Y1 =

[
0.1245 −0.6523
−0.0998 0.5952

]
,

Y2 =
[
0.1279 −0.2380
−0.1006 0.2699

]
, P̃1 =

[
0.5577 0.0099
0.0099 0.9992

]
, P̃2 =

[
0.5577 0.0099
0.0099 0.9992

]
,

K1 =
[
0.2349 −0.6552
−0.1896 0.5976

]
, K2 =

[
0.2336 −0.2405
−0.1852 0.2720

]
,

Q̃−1
1 − (I + E1)T Q̃−1

1 (I + E1) > 0,

Q̃−1
2 − (I + E2)T Q̃−1

1 (I + E2) > 0,

Q̃−1
2 − (I + E2)T Q̃−1

2 (I + E2) > 0,

Q̃−1
1 − (I + E1)T Q̃−1

2 (I + E1) > 0.

(4.7)

Obviously, the above inequalities do not satisfy the conditions of [41, Theorem 3]. Thus, we
cannot draw the conclusion that the closed-loop system is finite-time bounded from Theorem
3 in [41].

5. Conclusions

This paper has investigated robust finite-time H∞ control for a class of impulsive switched
nonlinear systems with time-delay. Based on piecewise Lyapunov function, sufficient
conditions which guarantee finite-time boundedness of the impulsive switched system are
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Figure 2: State trajectories of the closed-loop system.

derived. Then, a feedback control scheme consisting of an impulsive feedback controller and
a switching controller is proposed, and the proposed control strategy can guarantee that the
closed-loop system is finite-time bounded withH∞ disturbance attenuation level. Finally, the
results are illustrated by means of two numerical examples.
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