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The thrust vector control problem for an upper-stage rocket with propellant slosh dynamics is
considered. The control inputs are defined by the gimbal deflection angle of a main engine and a
pitchingmoment about the center of mass of the spacecraft. The rocket acceleration due to themain
engine thrust is assumed to be large enough so that surface tension forces do not significantly affect
the propellant motion duringmain engine burns. Amulti-mass-springmodel of the sloshing fuel is
introduced to represent the prominent sloshingmodes. A nonlinear feedback controller is designed
to control the translational velocity vector and the attitude of the spacecraft, while suppressing the
sloshing modes. The effectiveness of the controller is illustrated through a simulation example.

1. Introduction

In fluid mechanics, liquid slosh refers to the movement of liquid inside an accelerating tank
or container. Important examples include propellant slosh in spacecraft tanks and rockets
(especially upper stages), cargo slosh in ships and trucks transporting liquids, and liquid
slosh in robotically controlled moving containers.

A variety of passive methods have been employed to mitigate the adverse effect of
sloshing, such as introducing baffles or partitions inside the tanks [1, 2]. These techniques do
not completely succeed in canceling the sloshing effects. Thus, active control methods have
been proposed for the suppression of sloshing effectively.

The control approaches developed for robotic systems moving liquid filled containers
[3–11] and for accelerating space vehicles are mostly based on linear control design methods
[12, 13] and adaptive control methods [14]. The linear control laws for the suppression of
the slosh dynamics inevitably lead to excitation of the transverse vehicle motion through
coupling effects. The complete nonlinear dynamics formulation in this paper allows simul-
taneous control of the transverse, pitch, and slosh dynamics.
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Some of the control design methods use command input shaping methods that do
not require sensor measurements of the sloshing liquid [3, 8–11], while others require either
sensor measurements [4, 5] or observer estimates of the slosh states [15]. In most of these
approaches, only the first sloshing mode represented by a single pendulummodel or a single
mass-spring model has been considered and higher slosh modes have been ignored. The lite-
rature that considers more than one sloshing mode in modeling the slosh dynamics includes
[2, 16].

In this paper, a mechanical-analogy model is developed to characterize the propellant
sloshing during a typical thrust vector control maneuver. The spacecraft acceleration due
to the main engine thrust is assumed to be large enough so that surface tension forces do
not significantly affect the propellant motion during main engine burns. This situation
corresponds to a “high-g” (here g refers to spacecraft acceleration) regime that can be charac-
terized by using the Bond number Bo—the ratio of acceleration-related forces to the liquid
propellants surface tension forces, which is given by

Bo =
ρaR2

σ
, (1.1)

where ρ and σ denote the liquid propellants density and surface tension, respectively, a is
the spacecraft acceleration, and R is a characteristic dimension (e.g., propellant tank radius).
During the steady-state high-g situation, the propellant settles at the “bottom” of the tank
with a flat free surface. When the main engine operation for thrust vector control introduces
lateral accelerations, the propellant begins sloshing. As discussed in [17], Bond numbers as
low as 100 would indicate that low-gravity effects may be of some significance. A detailed
discussion of low-gravity fluid mechanics is given in [2].

The previous work in [16] considered a spacecraft with multiple fuel slosh modes
assuming constant physical parameters. In this paper, these results are extended to account
for the time-varying nature of the slosh parameters, which renders stability analysis more
difficult. The control inputs are defined by the gimbal deflection angle of a nonthrottable
thrust engine and a pitching moment about the center of mass of the spacecraft. The control
objective, as is typical in a thrust vector control design for a liquid upper stage spacecraft
during orbital maneuvers, is to control the translational velocity vector and the attitude of the
spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. The
results are applied to the AVUM upper stage—the fourth stage of the European launcher
Vega [18]. The main contributions in this paper are (i) the development of a full nonlinear
mathematical model with time-varying slosh parameters and (ii) the design of a nonlinear
time-varying feedback controller. A simulation example is included to illustrate the effecti-
veness of the controller.

2. Mathematical Model

This section formulates the dynamics of a spacecraft with a single propellant tank including
the prominent fuel slosh modes. The spacecraft is represented as a rigid body (base body)
and the sloshing fuel masses as internal bodies. In this paper, a Newtonian formulation is
employed to express the equations of motion in terms of the spacecraft translational velocity
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vector, the angular velocity, and the internal (shape) coordinates representing the slosh
modes. A multi-mass-spring model is derived for the sloshing fuel, where the oscillation
frequencies of the mass-spring elements represent the prominent sloshing modes [19].

Consider a rigid spacecraft moving on a plane as indicated in Figure 1, where vx, vz

are the axial and transverse components, respectively, of the velocity of the center of the fuel
tank, and θ denotes the attitude angle of the spacecraft with respect to a fixed reference. The
fluid is modeled by moment of inertia I0 assigned to a rigidly attached mass m0 and point
massesmi, i = 1, . . . ,N, whose relative positions along the spacecraft fixed z-axis are denoted
by si. Moments of inertia Ii of these masses are usually negligible. The locations h0 and hi are
referenced to the center of the tank. A restoring force −kisi acts on the mass mi whenever
the mass is displaced from its neutral position si = 0. A thrust F is produced by a gimballed
thrust engine as shown in Figure 1, where δ denotes the gimbal deflection angle, which is
considered as one of the control inputs. A pitching moment M is also available for control
purposes. The constants in the problem are the spacecraft mass m and moment of inertia I,
the distance b between the body z-axis and the spacecraft center of mass location along the
longitudinal axis, and the distance d from the gimbal pivot to the spacecraft center of mass. If
the tank center is in front of the spacecraft center of mass, then b > 0. The parameters m0, mi,
h0, hi, ki, and I0 depend on the shape of the fuel tank, the characteristics of the fuel and the
fill ratio of the fuel tank. Note that these parameters are time-varying, which renders the
Lyapunov-based stability analysis more difficult.

To preserve the static properties of the liquid, the sum of all the masses must be the
same as the fuel mass mf , and the center of mass of the model must be at the same elevation
as that of the fuel, that is,

m0 +
N∑

i=1

mi = mf,

m0h0 +
N∑

i=1

mihi = 0.

(2.1)

Assuming a constant fuel burn rate, we have

mf = mini

(
1 − t

tf

)
, (2.2)

wheremini is the initial fuel mass in the tank and tf is the time at which, at a constant rate, all
the fuel is burned.

To compute the slosh parameters, a simple equivalent cylindrical tank is considered
together with the model described in [2], which can be summarized as follows. Assuming a
constant propellant density, the height of still liquid inside the cylindrical tank is

h =
4mf

πϕ2ρ
, (2.3)
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Figure 1: A multiple-slosh mass-spring model for a spacecraft.

where ϕ and ρ denote the diameter of the tank and the propellant density, respectively. As
shown in [2], every slosh mode is defined by the parameters

mi = mf

[
ϕ tanh

(
2ξih/ϕ

)

ξi
(
ξ2i − 1

)
h

]
, (2.4)

hi =
h

2
− ϕ

2ξi

[
tanh

(
ξih

ϕ

)
− 1 − cosh

(
2ξih/ϕ

)

sinh
(
2ξih/ϕ

)
]
, (2.5)

ki =
mig

ϕ
2ξi tanh

(
2ξih
ϕ

)
, (2.6)

where ξi, for all i, are constant parameters given by

ξ1 = 1.841, ξ2 = 5.329, ξi � ξi−1 + π, (2.7)

and g is the axial acceleration of the spacecraft. For the rigidly attached mass, m0 and h0 are
obtained from (2.1)–(2.5). Assuming that the liquid depth ratio for the cylindrical tank (i.e.,
h/ϕ) is less than two, the following relations apply:

I0 =
(
1 − 0.85

h

ϕ

)
mf

(
3ϕ2

16
+
h2

12

)
−m0h

2
0 −

N∑

i=1

mih
2
i , if

h

ϕ
< 1,

I0 =
(
0.35

h

ϕ
− 0.2

)
mf

(
3ϕ2

16
+
h2

12

)
−m0h

2
0 −

N∑

i=1

mih
2
i , if 1 ≤ h

ϕ
< 2.

(2.8)
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Let î and k̂ be the unit vectors along the spacecraft-fixed longitudinal and transverse
axes, respectively, and denote by (x, z) the inertial position of the center of the fuel tank. The
position vector of the center of mass of the vehicle can then be expressed in the spacecraft-
fixed coordinate frame as

	r = (x − b)̂i + zk̂. (2.9)

The inertial velocity and acceleration of the vehicle can be computed as

	̇r = vxî +
(
vz + bθ̇

)
k̂,

	̈r =
(
ax + bθ̇2

)
î +
(
az + bθ̈

)
k̂,

(2.10)

where we have used the fact that (vx, vz) = (ẋ + zθ̇, ż−xθ̇) and (ax, az) = (v̇x + vzθ̇, v̇z − vxθ̇).
Similarly, the position vectors of the fuel massesm0, mi, for all i, in the spacecraft-fixed

coordinate frame are given, respectively, by

	r0 = (x + h0)̂i + zk̂,

	ri = (x + hi)̂i + (z + si)k̂, ∀i.
(2.11)

The inertial accelerations of the fuel masses can be computed as

	̈r0 =
(
ax − h0θ̇

2 + ḧ0

)
î +
(
az − 2ḣ0θ̇ − h0θ̈

)
k̂,

	̈ri =
(
ax + siθ̈ − hiθ̇

2 + ḧi + 2ṡiθ̇
)
î +
(
az + s̈i − hiθ̈ − siθ̇

2 − 2ḣiθ̇
)
k̂, ∀i.

(2.12)

Now Newton’s second law for the whole system can be written as

	F = m	̈r +
N∑

i=0

mi	̈ri, (2.13)

where

	F = F
(
î cos δ + k̂ sin δ

)
. (2.14)

The total torque with respect to the tank center can be expressed as

	τ =

(
I + I0 +

N∑

i=1

Ii

)
θ̈ĵ + 	ρ ×m	̈r +

N∑

i=0

	ρi ×m	̈ri, (2.15)

where

	τ = τĵ = [M + F(b + d) sin δ]ĵ , (2.16)
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and 	ρ, 	ρ0, and 	ρi are the positions of m,m0, and mi relative to the tank center, respectively,
that is,

	ρ = −bî, 	ρ0 = h0 î, 	ρi = hîi + sik̂, ∀i. (2.17)

The dissipative effects due to fuel slosh are included via damping constants ci. When
the damping is small, it can be represented accurately by equivalent linear viscous damping.
Newton’s second law for the fuel mass mi can be written as

miazi = −ciṡi − kisi, (2.18)

where

azi = s̈i + az − hiθ̈ − siθ̇
2 − 2ḣiθ̇. (2.19)

Using (2.13)–(2.18), the equations of motion can be obtained as

(
m +mf

)
ax +mbθ̇2 +

N∑

i=1

mi

(
siθ̈ + 2ṡiθ̇ + ḧi

)
+m0ḧ0 = F cos δ, (2.20)

(
m +mf

)
az +mbθ̈ +

N∑

i=1

mi

(
s̈i − siθ̇

2 − 2ḣiθ̇
)
− 2m0ḣ0θ̇ = F sin δ, (2.21)

Îθ̈ +
N∑

i=1

mi

(
siax − his̈i + 2

(
siṡi + hiḣi

)
θ̇ + siḧi

)
+ 2m0h0ḣ0θ̇0 +mbaz = τ, (2.22)

mi

(
s̈i + az − hiθ̈ − siθ̇

2 − 2ḣiθ̇
)
+ kisi + ciṡi = 0, ∀i, (2.23)

where p = b + d and

Î = I + I0 +mb2 +m0h
2
0 +

N∑

i=1

[
Ii +mi

(
h2
i + s2i

)]
. (2.24)

The control objective is to design feedback controllers so that the controlled spacecraft
accomplishes a given planar maneuver, that is a change in the translational velocity vector
and the attitude of the spacecraft, while suppressing the fuel slosh modes. Equations (2.20)–
(2.23) model interesting examples of underactuated mechanical systems. The published
literature on the dynamics and control of such systems includes the development of theo-
retical controllability and stabilizability results for a large class of systems using tools from
nonlinear control theory and the development of effective nonlinear control design metho-
dologies [20] that are applied to several practical examples, including underactuated space
vehicles [21, 22] and underactuated manipulators [23].
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3. Nonlinear Feedback Controller

This section presents a detailed development of feedback control laws through the model
obtained via the multi-mass-spring analogy.

Consider the model of a spacecraft with a gimballed thrust engine shown in Figure 1.
If the thrust F during the fuel burn is a positive constant, and if the gimbal deflection angle
and pitching moment are zero, δ = M = 0, then the spacecraft and fuel slosh dynamics have
a relative equilibrium defined by

vz = vz, θ = θ, θ̇ = 0, si = 0, ṡi = 0, ∀i, (3.1)

where vz and θ are arbitrary constants. Without loss of generality, the subsequent analysis
considers the relative equilibrium at the origin, that is, vz = θ = 0. Note that the relative
equilibrium corresponds to the vehicle axial velocity

vx(t) = vx0 + axt, t ≤ tb, (3.2)

where vx0 is the initial axial velocity of the spacecraft, tb is the fuel burn time, and

ax =
F

m +mf
. (3.3)

Now assume the axial acceleration term ax is not significantly affected by small gimbal
deflections, pitch changes, and fuel motion (an assumption verified in simulations). Consequ-
ently, (2.20) becomes

v̇x + θ̇vz = ax. (3.4)

Substituting this approximation leads to the following reduced equations of motion for the
transverse, pitch, and slosh dynamics:

(
m +mf

)
âz +mbθ̈ +

N∑

i=1

mi

(
s̈i − siθ̇

2 − 2ḣiθ̇
)
− 2m0ḣ0θ̇ = F sin δ, (3.5)

Îθ̈ +
N∑

i=1

mi

[
axsi − his̈i + siḧi + 2

(
siṡi + hiḣi

)
θ̇
]
+ 2m0h0ḣ0θ̇0 +mbâz = τ, (3.6)

mi

(
s̈i + âz − hiθ̈ − siθ̇

2 − 2ḣiθ̇
)
+ kisi + ciṡi = 0, ∀i, (3.7)

where âz = v̇z − θ̇vx(t). Here vx(t) is considered as an exogenous input. The subsequent ana-
lysis is based on the above equations of motion for the transverse, pitch, and slosh dynamics
of the vehicle.
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Eliminating s̈i in (3.5) and (3.6) using (3.7) yields

(m +m0)âz + (mb −m0h0)θ̈ − 2m0ḣ0θ̇ −
N∑

i=1

(kisi + ciṡi) = F sin δ,

(mb −m0h0)âz +

(
Î −

N∑

i=1

mih
2
i

)
θ̈ + 2m0h0ḣ0θ̇ +G = M + Fp sin δ,

(3.8)

where

G =
N∑

i=1

[(
miax +miḧi + kihi

)
si + hiciṡi + 2misiṡiθ̇ −mihisiθ̇

2
]
. (3.9)

Note that the expressions (2.1) have been utilized to obtain (3.8) in the form above.
By defining control transformations from (δ,M) to new control inputs (u1, u2):

[
u1

u2

]
=

⎡

⎣
m +m0 mb −m0h0

mb −m0h0 Î −
N∑
i=1
mih

2
i

⎤

⎦

−1⎡

⎣F sin δ + 2m0ḣ0θ̇ +
N∑
i=1
(kisi + ciṡi)

M + Fp sin δ − 2m0h0ḣ0θ̇ −G

⎤

⎦, (3.10)

the system (3.5)–(3.7) can be written as

v̇z = u1 + θ̇vx(t), (3.11)

θ̈ = u2, (3.12)

s̈i = −ω2
i si − 2ζiωiṡi − u1 + hiu2 + siθ̇

2 + 2ḣiθ̇, ∀i, (3.13)

where

ω2
i =

ki
mi

, 2ζiωi =
ci
mi

, ∀i. (3.14)

Hereωi and ζi, for all i, denote the undamped natural frequencies and damping ratios, respec-
tively.

The main idea in the subsequent development is to first design feedback control laws
for (u1, u2) and then use the following equations to obtain the feedback laws for the original
controls (δ,M) for t ≤ tb:

δ = sin−1

⎛
⎜⎝

[
(m +m0)u1 + (mb −m0h0)u2 − 2m0ḣ0θ̇ −∑N

i=1(kisi + ciṡi)
]

F

⎞
⎟⎠, (3.15)

M = (mb −m0h0)u1 +

(
Î −

N∑

i=1

mih
2
i

)
u2 + 2m0h0ḣ0θ̇ +G − Fp sin δ. (3.16)
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Consider the following candidate Lyapunov function to stabilize the subsystem
defined by (3.11) and (3.12):

V =
r1
2
v2
z +

r2
2
θ2 +

r3
2
θ̇2, (3.17)

where r1, r2, and r3 are positive constants so that the function V is positive definite.
The time derivative of V along the trajectories of (3.11) and (3.12) can be computed as

V̇ = r1vzv̇z + r2θθ̇ + r3θ̇θ̈ (3.18)

or rewritten in terms of the new control inputs

V̇ = (r1vz)u1 + (r1vxvz + r2θ + r3u2)θ̇. (3.19)

Clearly, the feedback laws

u1 = −l1vz, (3.20)

u2 = − 1
r3

(
r2θ + l2θ̇

)
, (3.21)

where l1, l2 are positive constants and taking into account that

r1vxvzθ̇ ≤
(

θ̇2

2
+
(r1vxvz)2

2

)
, (3.22)

yield

V̇ = − l1r1v
2
z − l2θ̇

2 + r1vxvzθ̇

≤ − r1

(
l1 −

r1v
2
x

2

)
v2
z −
(
l2 − 1

2

)
θ̇2,

(3.23)

which satisfies V̇ ≤ 0 if l1 > 0.5r1v2
x and l2 > 0.5.

The closed-loop system for (vz, θ)-dynamics can be written as

v̇z = − l1vz + θ̇vx(t), (3.24)

θ̈ = − K1θ −K2θ̇, (3.25)

where K1 = r2/r3 and K2 = l2/r3.
Equation (3.25) can be easily solved in the case of K2

2 > 4K1 as

θ(t) = Ae−λ1t + Be−λ2t, (3.26)
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where A,B are integration constants and −λ1,−λ2 are the eigenvalues of the linear system
(3.25). Therefore, θ(t) and θ̇(t) can be upper bounded as

|θ(t)| ≤ Ce−λt,
∣∣θ̇(t)

∣∣ ≤ De−λt, (3.27)

respectively, whereC,D are positive constants and λ = min(λ1, λ2). Now, assuming that λ/= l1,
(3.24) can be integrated to obtain an upper bound for vz(t) as

|vz(t)| ≤ αe−βt, (3.28)

where α, β are positive constants. Therefore, it can be concluded that the (vz, θ)-dynamics are
exponentially stable under the control laws (3.20) and (3.21).

To analyze the stability of theN equations defined by (3.13), it will be first shown that
the system described by the equation

s̈i + 2ζiωi(t)ṡi +ω2
i (t)si = 0 (3.29)

is exponentially stable.
From (2.4) and (2.6),

ωi(t) =

√
2gξi
ϕ

tanh
(
2ξih(t)

ϕ

)
∈ C1. (3.30)

The following properties can be shown to hold:

ω2
i (t) ≥ ε21, p(t) =

1
2
ω̇i(t)
ωi(t)

+ 2ζiωi(t) ≥ ε22,

|2ζiωi(t)| ≤ 2ζi

√
2gξi
ϕ

= M1,
∣∣∣ω2

i (t)
∣∣∣ ≤ 2gξi

ϕ
= M2,

|2ω̇i(t)ωi(t)| ≤ g

(
2ξi
ϕ

)2

= M3,

(3.31)

where ε1 and ε2 are small positive parameters given the fact that the tank will never be totally
empty, but a small amount of fuel will always remain inside. For this same reason, h(t) > 0,
for all t. Therefore, by Corollary A.2 in the Appendix, the system (3.29) is exponentially stable.

Now write (3.13) as

ẋ = (A1(t) +A2(t))x +H(t), (3.32)
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Table 1: Physical parameters for AVUM stage of Vega.

Parameter Value Parameter Value
T 2.45 kN b −0.6m
m 975 kg d 1.2m
mini 580 kg ϕ 1m
I 400 kg·m2 tb 650 s
I1 10 kg·m2 tf 667 s
I2 1 kg·m2 ρ 1180 kg/m3

where x = [si, ṡi]
T and

A1(t) =
[

0 1
−ω2

i (t) −2ζiωi(t)

]
, A2(t) =

[
0 0

θ̇2(t) 0

]
,

H(t) =
[

0
−âz(t) + hi(t)θ̈(t) + 2ḣi(t)θ̇(t)

]
.

(3.33)

Under the stated assumptions, A1(t) is exponentially stable (see the Appendix) and
there exist positive constants λ0, λ1, and λ2 such that

∫∞

0
‖A2(t)‖dt ≤ λ0, ‖H(t)‖ ≤ λ1e

−λ2t, ∀t ≥ 0. (3.34)

Hence, for any initial condition, the state of the system (3.5)–(3.7) converges exponentially to
zero.

4. Simulation

The feedback control law developed in the previous section is implemented here for the
fourth stage of the European launcher Vega. The first two slosh modes are included to
demonstrate the effectiveness of the controller (3.15), (3.16), (3.20), (3.21) by applying to the
complete nonlinear system (2.20)–(2.23). The physical parameters used in the simulations are
given in Table 1.

We consider stabilization of the spacecraft in orbital transfer, suppressing the
transverse and pitching motion of the spacecraft and sloshing of fuel while the spacecraft
is accelerating. In other words, the control objective is to stabilize the relative equilibrium
corresponding to a specific spacecraft axial acceleration and vz = θ = θ̇ = si = ṡi = 0, i = 1, 2.

Time responses shown in Figures 2, 3, and 4 correspond to the initial conditions vx0 =
3000m/s, vz0 = 100m/s, θ0 = 5◦, θ̇0 = 0, s10 = 0.1m, s20 = −0.1m, and ṡ10 = ṡ20 = 0. We
assume a fuel burn time of 650 seconds. As can be seen, the transverse velocity, attitude angle,
and the slosh states converge to the relative equilibrium at zero while the axial velocity vx

increases and v̇x tends asymptotically to F/(m +mf). Note that there is a trade-off between
good responses for the directly actuated degrees of freedom (the transverse and pitch dyna-
mics) and good responses for the internal degrees of freedom (the slosh dynamics); the
controller given by (3.15), (3.16), (3.20), (3.21) with parameters r1 = 8 × 10−7, r2 = 103, r3 =
500, l1 = 104, and l2 = 4 × 104 represents one example of this balance.
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Figure 2: Time responses of vx, vz, and θ.
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Figure 3: Time responses of s1 and s2.

Figures 5, 6, and 7 show the results of a simulation with no control (M = δ = 0) using
the same initial conditions and physical parameters as above. As expected, the fuel slosh
dynamics destabilize the uncontrolled spacecraft.
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Figure 4: Gimbal deflection angle δ and pitching momentM.
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Figure 5: Time responses of vx, vz and θ (zero control case).

5. Conclusions

A complete nonlinear dynamical model has been developed for a spacecraft with multiple
slosh modes that have time-varying parameters. A feedback controller has been designed to
achieve stabilization of the pitch and transverse dynamics as well as suppression of the slosh
modes, while the spacecraft accelerates in the axial direction. The effectiveness of the feed-
back controller has been illustrated through a simulation example.

Themany avenues considered for future research include problems involvingmultiple
liquid containers and three-dimensional transfers. Future research also includes designing
nonlinear observers to estimate the slosh states as well as nonlinear control laws that achieve
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Figure 7: Gimbal deflection angle δ and pitching moment M (zero control case).

robustness, insensitivity to system and control parameters, and improved disturbance rejec-
tion.

Appendix

Consider the system

s̈ + f(t)ṡ + g(t)s = 0, (A.1)

where g(t) ∈ C1, |f(t)| < M1, |g(t)| < M2, |ġ(t)| < M3.
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Theorem A.1. If g(t) > ε21 and p(t) = (1/2)(ġ(t)/g(t)) + f(t) > ε22, then the origin is globally
uniformly asymptotically stable.

Proof. Given the conditions above, the following bounds can be set:

−M1 < f(t) < M1, α2
1 < g(t) < M2,

−M3 < ġ(t) < M3, ε22 < p(t) <
M3

2ε21
+M1.

(A.2)

Consider the following candidate Lyapunov function:

V (z, t) =
1
2

(
s2 + 2β

sṡ
√
g(t)

+
ṡ2

g(t)

)
, (A.3)

where z = [s ṡ]T is the state vector and β is a positive constant. This function can be rewritten
in a matrix form as

V (z, t) =
1
2
[
s ṡ
]

⎡
⎢⎢⎣

1
β√
g

β√
g

1
g

⎤
⎥⎥⎦

[
s
ṡ

]
, (A.4)

which is positive definite if β < 1.
Recalling that a positive definite quadratic function zTPz satisfies

λmin(P)zTz ≤ zTPz ≤ λmax(P)zTz, (A.5)

where

λmin(P) =
1 + g

2g

⎡

⎣1 −
√√√√1 − 4g

1 − β2

(
1 + g

)2

⎤

⎦,

λmax(P) =
1 + g

2g

⎡

⎣1 +

√√√√1 − 4g
1 − β2

(
1 + g

)2

⎤

⎦,

(A.6)

and thus the following hold:

γ1‖z‖2 ≤ V ≤ γ2‖z‖2, (A.7)

where γ1 and γ2 are positive constants.
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Taking the time derivative of V (z, t) yields

V̇ = − β
√
g(t)

[
g(t)s2 + p(t)sṡ +

(
p(t)

β
√
g(t)

− 1

)
ṡ2
]
, (A.8)

which can be rewritten as

V̇ = − β√
g

[
s ṡ
]
⎡
⎢⎣
g

p

2p

2
p

β
√
g
− 1

⎤
⎥⎦
[
s
ṡ

]
< 0. (A.9)

Clearly, V̇ < 0 if

β <
16ε51ε

2
2

16M2ε
4
1 +
(
M3 + 2ε21M1

)2 . (A.10)

Note that V̇ satisfies

V̇ ≤ − β√
g
λmin(Q)‖z‖2. (A.11)

It can be shown that if

β < min

⎧
⎨

⎩1,
ε22

(1 −M2)
√
M2

,
16ε51ε

2
2

16M2ε
4
1 +
(
M3 + 2ε21M1

)2

⎫
⎬

⎭, (A.12)

then, using Theorem 4.10 of [24], it can be concluded that the origin is exponentially stable.
Hence, the following result can be stated.

Corollary A.2. There exist α, β > 0 such that

|s| < βe−α(t−t0), |ṡ| < βe−α(t−t0), ∀t ≥ t0. (A.13)

The following result is a modified version of that presented in [20].

Lemma A.3. Consider a system that is described by the linear time-varying differential equation

ẋ = (A1(t) +A2(t))x +H(t), x ∈ R
n. (A.14)

If the matrixA1(t) is exponentially stable and there exist positive constants λ0, λ1, and λ2 such
that

(i)
∫∞

0
‖A2(t)‖dt ≤ λ0, (ii) ‖H(t)‖ ≤ λ1e

−λ2t, ∀t ≥ 0, (A.15)

then all the solutions of (A.14) approach zero exponentially as t goes to∞.
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