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We study the existence of solutions to the Duffing equation with impulses. By means of the
Poincaré-Birkhoff fixed point theorem under given conditions, we obtain the sufficient condition
of existence of infinitely many solutions. Our results generalize those of T. R. Ding. An example is
presented to demonstrate applications of our main result.

1. Introduction

Many evolution processes are characterized by the fact that at certain moments of time they
experience abrupt changes in the value of the state variable. Theses processes are subject to
short-time perturbations whose duration is negligible in comparison with the duration of the
process. Consequently, it is natural to assume that these perturbations act instantaneously,
that is, in the form of impulses. It is known, for example, that many biological phenomena
involving thresholds, bursting rhythm models in medicine and biology, optimal control
models in economics, pharmacokinetics, and frequency-modulated systems do exhibit
impulsive effects. Thus impulsive differential equations, that is, differential equations
involving impulse effects, appear as a natural description of observed evolution phenomena
of several real world problems [1].
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In its original form, the Duffing equation is a nonlinear second-order ODE which is
used in physics to model oscillators. It is a well known example of a dynamical system
exhibiting chaotic behavior. The equation is given by

x′′ + δx′ + αx + βx3 = γ cos(ωt), (1.1)

where the function x = x(t) is the displacement at time t, and numbers δ, α, β, γ and ω are
constants.

In this paper, we study the following Duffing type model given by Ding in [2]

x′′ + g(x) = f(x, t). (1.2)

Clearly this equation contains the Duffing equation (1.1) without friction (i.e., δ = 0) as a
special case. In [3], Ding considers (1.2) in the case where g ∈ C(R,R) is superlinear at
infinity:

lim
x→∞

g(x)
x

= +∞, (1.3)

and the function f ∈ C(R×R,R) is T -periodic in t. By using the Poincaré-Birkhoff fixed point
theorem, Ding showed that there exist infinitely many periodic solutions to this equation.

By using a similar technique, Ming et al. [4] gave results concerning existence of
infinitely many periodic solutions to the p-Laplace equation

(∣∣x′∣∣p−2x′
)′

+ g(x) = f(t, x), p > 1, (1.4)

where g ∈ C(R,R) is p-sublinear in the sense

lim
|x|→ 0

g(x)

|x|p−2x
= +∞, (1.5)

and f ∈ C(R × R,R) is 1-periodic in t. For this problem, only partial results are known. For
example, the conjecture is true if g is even and superlinear at infinity and f ≡ 0 [5]. For f /= 0,
more restrictions on g are required [6, 7].

In this paper, by developing ideas of [6, 8, 9], we extend this technique to the situation
where x is allowed to have impulses at given points. We consider the periodic solutions to
the Duffing equation with impulses:

x′′ + g(x) = 0, t /= tk,

x
(
t+k
)
= akx(tk), k ∈ Z,

x′(t+k
)
= bkx

′(tk), k ∈ Z,

(1.6)

where ak > 0, akbk = 1, ak+q = ak, tk+q = tk + T, 0 < t1 < t2 < · · · < tq < T, g ∈ C(R,R),
and Z denotes the set of integers, x(t+

k
) and x′(t+

k
) are right limits of x(t) and x′(t) at t = tk,
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respectively. Let PC(R) = {x : R → R; x(t) is continuous everywhere except for tk at which
x(t+

k
) and x(t−

k
) exist and x(t−

k
) = x(tk), k ∈ Z}; PC1(R) = {x ∈ PC(R);x′(t) is continuous

differentiable everywhere except for tk at which x′(t+
k
) and x′(t−

k
) exist and x′(t−

k
) = x′(tk), k ∈

Z}.
The paper is organized as follows. In Section 2, some preliminary results are given.

In Section 3, we construct the twist map which is necessary in order to apply the fixed-
point results. Then, we obtain the main result for the existence of periodic solutions for the
system by using the Poincaré-Birkhoff fixed-point theorem. In Section 4, an example is given
to demonstrate the main result.

2. Preliminaries

The Poincaré-Birkhoff fixed point theorem is a powerful tool in studying periodic solutions
for the planar ODE’s of the second order. There are several versions of this theorem, see
[8, 10–13].

Let (r, θ) be a polar coordinates on R
2 and A = {x ∈ R

2 : r1 ≤ |x| ≤ r2} an annulus on
R

2.

Definition 2.1. A mapping T is called as twist map if

T : (r, θ) −→ (h(r, θ), θ + l(r, θ)), (2.1)

where h(r, θ), l(r, θ) are continuous on A, 2π-periodic in θ, and l(r1, θ)l(r2, θ) < 0.

The proof of ourmain results is based on the following version of the Poincaré-Birkhoff
theorem, due to Ding [2] (see also [10]).

Lemma 2.2 (see [2]). Let R > r > 0. Suppose that T : R
2 → R

2 is an area preserving
homeomorphism, such that T is a twist map in an annulus

A =
{
x ∈ R

2 : r ≤ |x| ≤ R
}
, (2.2)

and 0 ∈ T(D), and D = {x : |x| < r}. Then T has at least two fixed points in A.

For our convenience, we introduce the following condition:

(H1) g(x)x > 0 for x /= 0 and

lim
x→ 0

g(x)
x

= +∞. (2.3)

Lemma 2.3. Assume that g ∈ C(R,R) and (H1) holds. Then for givenM > 0, there exists a constant
δ = δ(M) such that for any ε > 0 there is a continuous function gε such that

(1)

∣∣gε(x) − g(x)
∣∣ ≤ ε, (2.4)
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(2) gε has a form gε(x) = Mx near x = 0, that is, there exists δ > 0 such that

gε(x)
x

≥ M for 0 < |x| ≤ ffi, (2.5)

and gε ∈ C1([−T, T] \ {0}, R), where 0 < T < +∞.

(3) For a fixed λ > 0,

lim
x→ 0

G(λx)
G(x)

= λ2, (2.6)

where G(x) =
∫x
0 gε(s)ds.

Proof. Choose ρ > 0, and suppose G(x) ≥ ν > 0 for |x| ≥ ρ. Then by (2.3), there is a constant
δ = δ(M) such that

g(x)
x

≥ 2M, for 0 < |x| ≤ 2δ. (2.7)

Choose μ > 0 such that μ ≤ ε, and let γ > 1, such that 2γμ2 + μ ≤ ν2. Since g(0) = 0, we can
choose an interval I0 = (−δ0, δ0) with δ0 < δ such that

∣∣g(x) −Mx
∣∣ ≤ μ

2
, ∀x ∈ I0. (2.8)

For x /= 0, we choose an interval Ix ⊂ [−T, T] such that

∣∣g(y) − g(x)
∣∣ ≤ μ

2
, ∀y ∈ Ix, (2.9)

and Ix ⊂ ((1/2)x, 2x) if x > 0, Ix ⊂ (2x, (1/2)x) if x < 0. We claim that there exists a covering
of the interval [−T, T], say I0, Ii ≡ Ixi such that Ii satisfies (2.9) for all i = 0, 1, 2, . . . , n. Here we
only consider the case of [−T,−δ0](δ0 < T). Because g is uniformly continuous on the closed
interval [−T,−δ0], there exists a σ > 0 independent of x, y ∈ [−T,−δ0] such that |g(y)−g(x)| ≤
μ/2 for |x − y| ≤ σ. Define a sequence σn (n ≥ 1) by

σn = sup

{
σ :

∣∣∣∣∣g
(
y
) − g

(
−T +

n−1∑
i=1

σi

)∣∣∣∣∣ ≤
1
2
μ, ∀y ∈

[
−T +

n−1∑
i=1

σi,−T + σ +
n−1∑
i=1

σi

]}
, (2.10)

and σ0 = 0. It is easy to check that σn > 0, n = 1, 2, . . .. Now we assume that
∑∞

i=1 σi ≤ T − δ0.
Since g is continuous on the closed interval [−T, T], we obtain that

∣∣∣∣∣g
(
−T +

N−1∑
i=1

σi +
1

N + 1

)
− g

(
−T +

N−1∑
i=1

σi

)∣∣∣∣∣ ≤
1
2
μ, (2.11)
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where N is a sufficiently large positive integer, which implies σN ≥ (N + 1)−1 for sufficiently
large positive integer N. On the other hands,

∑∞
k=N k−1 = ∞, which implies

∑∞
i=1 σi = ∞, a

contradiction. We also assume that Ii ∩ Ij = ∅ for |i − j| > 1.
Let φ0, φ1, φ2, . . . , φn be resolution of unit that corresponds to Ii (0 ≤ i ≤ n) such that∑n

i=0 φi(x) = 1, for x ∈ (xi, xi+1), and supp φi ⊂ Ii for each i = 0, 1, . . . , n. Then, for x ∈ [−T, T],
we define

gε(x) = φ0(x)Mx +
n∑
i=1

φi(x)g(xi). (2.12)

By (2.9) and (2.12), we have

∣∣gε(x) − g(x)
∣∣ ≤ φ0(x)

∣∣Mx − g(x)
∣∣ +

n∑
i=1

φi(x)
∣∣g(x) − g(xi)

∣∣ ≤ μ ≤ ε, (2.13)

proving the claim (2.4). Furthermore

∣∣gε(x) − g(x)
∣∣ ≤ μ. (2.14)

To see (2.5), we suppose that 0 < |x| < δ and that, for i ≥ 1, we have φi(x)/= 0 and 1/2 ≤
xi/x ≤ 2. It follows that |xi| ≤ 2|x| ≤ 2δ and, by (2.7),

g(xi)
xi

≥ 2M. (2.15)

Then, by the above inequality and (2.12), we have

gε(x)
x

= φ0(x)M +
n∑
i=1

φi(x)
g(xi)xi

xix
≥ φ0(x)M +

n∑
i=1

φi(x)2
M

2
= M. (2.16)

Since gε has the form gε(x) = Mx near x = 0, G(x) has the form G(x) = Mx2/2 near x = 0,
which implies (2.6).

Let g ∈ C(R,R) and satisfies the condition (H1), and let gε be as Lemma 2.3. Consider
the initial value problem for the following system:

x′ = −y,
y′ = gε(x), t /= tk,

x
(
t+k
)
= akx(tk),

y
(
t+k
)
= bky(tk), k = 1, 2, . . . ,

x(0) = x0, y(0) = y0.

(2.17)
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Lemma 2.4. For any sufficiently small (x0, y0) the system (2.17) has a unique solution pair x(t) =
x(t, x0, y0), y(t) = y(t, x0, y0). Moreover, the functions x, y continuously depend on x0, y0.

Proof. Obviously, we only need to prove that the conclusion holds for the system without
impulses

x′ = −y,
y′ = gε(x),

x(0) = x0, y(0) = y0.

(2.18)

Since gε is continuous, the initial value problem (2.18) has a solution by the Peano’s method.
Next, we show that the solution of (2.17) is unique. For γ > 0 is sufficiently small, the

initial value problem:

x′ = −y,
y′ = gε(x), t ≥ γ,

x
(
γ
)
= α, y

(
γ
)
= β,

(2.19)

where α ∈ R, β ∈ R, has a unique solution since gε ∈ C1([γ, d],R). Hence we need only to
show that the solution of (2.18) is unique for 0 ≤ t ≤ γ . If x0 = 0, (2.18) reduces to

x′′ +Mx = 0,

x(0) = 0, x′(0) = −y0,
(2.20)

because gε has the form gε(x) = Mx near x = 0, and thus our claim holds. If x0 /= 0, gε ∈
C1(Ω(x0),R), whereΩ(x0) = {x : |x−x0| ≤ γ}. So the solution of (2.18) is unique for 0 ≤ t ≤ γ .
Continuous dependence on the initial data follows from the uniqueness.

3. Main Result

Our main result is the following theorem. This result generalizes Theorem 2.1 of Ding [3].

Theorem 3.1. Under the assumption (2.3), the Duffing equation (1.6) has an infinite sequence of
solutions {xn} and ‖xn‖PC1[0,T] → 0, as n → ∞, where

‖xn‖PC1[0,T] = max

{
sup
t∈[0,T]

{|xn(t)|}, sup
t∈[0,T]

{∣∣x′
n(t)
∣∣}
}
. (3.1)

In order to prove the main result, we need the following lemmas. First we construct
the twist map. Next we consider the system (2.17), our goal is to control the behavior of the

norms r(t) =
√
x(t)2 + y(t)2 at the points p(t) = (x(t), y(t)) ∈ R

2.
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Lemma 3.2. Suppose that p(t) = (x(t), y(t)), where t ∈ [0, T] is a solution to the system (2.17).
There exists a constant R0 > 0 and functions d1, d2, ε : (0, R0] → R+ such that if ε ≤ ε(R), and
r(0) = R < R0, then

(1) d1(R) ≤ r(t) ≤ d2(R),

(2) limR→ 0d1(R) = limR→ 0d2(R) = 0.

Proof. Define the Liapunov function

F
(
x, y
)
=

1
2
y2 +

∫x

0
gε(s)ds. (3.2)

We compute the differential of F along the curve p(t) = (x(t), y(t)), where t ∈ [0, T]:

dF
(
p(t)
)

dt
= yy′ + gε(x)x′ = ygε(x) + gε(x)

(−y) = 0, (3.3)

for t /= tk.
From Lemma 2.3, we see that for a fixed λ > 0, there exist c1(λ) ≥ 0, c2(λ) ≥ 0 such that

c2(λ)G(x) ≤ G(λx) ≤ c1(λ)G(x), (3.4)

where G(x) =
∫x
0 gε(s)ds, when |x| is sufficiently small. We have

F
(
p
(
t+k
))

=
1
2
y(t+k)

2 +
∫x(t+

k
)

0
gε(s)ds =

1
2
b2ky(tk)

2 +
∫akx(tk)

0
gε(s)ds. (3.5)

From (3.4), we have

min
{
b2k, c2(ak)

}
F
(
p(tk)

) ≤ F
(
p
(
t+k
)) ≤ max

{
b2k, c1(ak)

}(1
2
y(tk)2 +

∫x(tk)

0
gε(s)ds

)

≤ max
{
b2k, c1(ak)

}
F
(
p(tk)

)
.

(3.6)

By using an impulsive integer inequality, we obtain

F
(
p(0)

)∏
0<tk<t

min
{
b2k, c2(ak)

}
≤ F
(
p(tk)

) ≤ F
(
p(0)

)∏
0<tk<t

max
{
b2k, c1(ak)

}
. (3.7)

It follows that

B1F
(
p(0)

) ≤ F
(
p(t)
) ≤ A1F

(
p(0)

)
, ∀t ∈ [0, T], (3.8)
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where A1 =
∏

0<tk<1 max{b2k, c1(ak)}, and B1 =
∏

0<tk<1 min{b2k, c2(ak)}. We also have

B1 min
|p|=R

F
(
p
) ≤ F

(
p(t)
) ≤ A1 max

|p|=R
F
(
p
)
, ∀t ∈ [0, T], (3.9)

and thus there exist positive constants d1(R), d2(R) such that

d1(R) ≤ r(t) ≤ d2(R). (3.10)

Furthermore, we have

lim
R→ 0

d1(R) = lim
R→ 0

d2(R) = 0. (3.11)

Next, we consider the following system:

x′ = −y,
y′ = g(x), t /= tk,

x
(
t+k
)
= akx(tk),

y
(
t+k
)
= bky(tk), k = 1, 2, and so forth.

(3.12)

It follows from Lemma 3.2 that we can obtain a solution of (3.12) which can be
extended to the interval [0, T] if |p0| = |(x0, y0)| ≤ R0. Now we can define the Poincaré map φ:

(
x0, y0

) �−→ (x(T, x0, y0
)
, y
(
T, x0, y0

))
=
(
xT , yT

)
, (3.13)

where (x(t, x0, y0), y(t, x0, y0) is the solution of (3.12) corresponding to the initial data (x0, y0).
Denote by r(t), θ(t) the norm and the polar angle of p(t) = (x(t), y(t)) ∈ R

2, r(t) =√
x(t)2 + y(t)2, respectively. Then

cos θ(t) =
x(t)√

x2(t) + y2(t)
, sin θ(t) =

y(t)√
x2(t) + y2(t)

, t /= tk,

cos θ
(
t+k
)
=

x
(
t+k
)

√
x(t+k)

2 + y(t+k)
2
=

akx(tk)√
a2
kx(tk)

2 + b2ky(tk)
2
,

sin θ
(
t+k
)
=

y
(
t+
k

)
√
x(t+k)

2 + y(t+k)
2
=

bky(tk)√
a2
kx(tk)

2 + b2ky(tk)
2
, k = 1, 2, . . . .

(3.14)
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Write (r0, θ0) = (r(0), θ(0)) and (rT , θT ) = (r(T), θ(T)). Then, the map φ can be expressed in
the polar coordinates as

rT = h(r0, θ0), θT = θ0 + l(r0, θ0), (3.15)

where h and l are continuous and 2π-periodic in θ0. In order to apply the Poincaré-Birkhoff
fixed point theorem, we need to estimate the difference θT − θ0.

Lemma 3.3. For R > 0 there is a constant K(R), and r0 = R, then θT − θ0 = l(R, θ0) ≤ K(R).

Proof. We estimate the differential of the polar angle θ(t) along the solution curve (x(t), y(t))
as follows:

dθ(t)
dt

=
xy′ − yx′

x2 + y2
=

xgε(x) + y2

x2 + y2
, t /= tk. (3.16)

For t = tk, we have

tan θ
(
t+k
)
=

y
(
t+
k

)

x
(
t+
k

) =
bk
ak

tan θ(tk). (3.17)

From (3.17), we obtain

θ
(
t+
k

)

θ(tk)
=

arctan((bk/ak) tan θ(tk))
θ(tk)

. (3.18)

Next we construct the function, for a > 0, by

h(x) =

⎧
⎨
⎩

1
x
arctan(a tanx), if x /= 0,

a, if x = 0.
(3.19)

Then, it is easy to see there exist α(a) and β(a) such that

0 < α(a) ≤ h(x) ≤ β(a) < ∞. (3.20)

From (3.18) and (3.20), we have

0 < α

(
bk
ak

)
θ(tk) ≤ θ

(
t+k
) ≤ β

(
bk
ak

)
θ(tk) < ∞. (3.21)

Furthermore, by Lemma 3.2, we have 0 < d1(R) ≤
√
x2 + y2 ≤ d2(R), and (3.16), hence

dθ(t)
dt

≤ K(R). (3.22)
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From (3.21) and (3.22), we obtain

θ(T) ≤ θ0
∏

0<tk<T

β

(
bk
ak

)
+
∫T

0

∏
s<tk<T

β

(
bk
ak

)
K(R)ds. (3.23)

This implies that there exists an integer m = m(R) such that

θT − θ0 + 2mπ = l(R, θ0) + 2mπ < 0, ∀θ0 ∈ [0, 2π]. (3.24)

Lemma 3.4. There is r < R such that

θT − θ0 + 2mπ = l(r, θ0) + 2mπ > 0, ∀θ0 ∈ [0, 2π]. (3.25)

So the map φ is the twist map in the annular region A = {(x, y) : r ≤
√
x2 + y2 ≤ R}.

Proof. Let M be a large number to be chosen later. Let g be the approximation function
defined in Lemma 2.3. In particular we have

gε(x)
x

≥ M, if 0 < |x| ≤ δ. (3.26)

Choose r such that d2(r) < δ. If the initial data r0 =
√
x2 + y2 = r, then by Lemma 3.2 the

solution (x, y) = (x(t), y(t)) satisfies
√
x2(t) + y2(t) ≤ d2(r) < δ, and hence gε(x) ≥ Mx.

To estimate the difference θT − θ0, it is convenient to introduce another angle variable
Θ, defined by the formulas:

cosΘ(t) =
M1/2x(t)√

Mx2(t) + y2(t)
, sinΘ(t) =

y(t)√
Mx2(t) + y2(t)

, t /= tk. (3.27)

It follows that

tanΘ(tk) =
y(tk)

M1/2x(tk)
, t = tk,

Θ
(
t+k
)
= arctan

(
y
(
t+
k

)

M1/2x
(
t+
k

)
)

= arctan
(

bky(tk)
M1/2akx(tk)

)
= arctan

(
bk
ak

tanΘ(tk)
)
, t = tk.

(3.28)
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Note that by (3.27) and (3.14) cosΘ and cos θ, respectively, sinΘ and sin θ, have the same
sign. Thus the two angles Θ and θ always lie in the same quarter and Θ = θ + α + 2kπ, k ∈
Z, −π/2 ≤ α ≤ π/2, if and only if the polar angle θ is in the same interval. Hence, if |θ −Θ| <
π/2 at the initial time t = 0, this estimate will remain true along a continuous curve not
passing through the origin.

We have

dΘ(t)
dt

=
1

1 +
(
y/M1/2x

)2 × y′M1/2x − yM(1/2)x′

Mx2
=

M1/2(xgε(x) + y2)

Mx2 + y2
≥ M1/2. (3.29)

By (3.20), (3.28), and (3.29)we have

Θ′(tk) ≥ M1/2,

Θ
(
t+k
) ≥ α

(
bk
ak

)
Θ(tk),

(3.30)

and by (3.30), it follows that

Θ(T) ≥ Θ(0)
∏

0<tk<T

α

(
bk
ak

)
+
∫T

0

∏
s<tk<T

α

(
bk
ak

)
M1/2ds. (3.31)

So there exist σ1 ∈ R and σ2 > 0, such that

Θ(T) ≥ σ1 + σ2M
1/2. (3.32)

Recall the relations Θ = θ + α + 2kπ, k ∈ Z, −π/2 ≤ α ≤ π/2. Then, by (3.32), we have

θ(T) − θ(0) + 2mπ = Θ(T) − α − 2kπ − θ(0) + 2mπ

≥ σ1 + σ2M
1/2 − α − 2kπ − θ(0) + 2mπ > 0, ∀θ0 ∈ [0, 2π].

(3.33)

We choose an integer m = m(r) such that

θT − θ0 + 2mπ = l(r, θ0) + 2mπ > 0, ∀θ0 ∈ [0, 2π], (3.34)

provided that M is large enough.
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Proof of Theorem 3.1. Let φ be the map defined (3.13), or equivalently by (3.15). Define the
mappings:

Φ0 :
(
x0, y0

) −→ (x(t1, x0, y0
)
, y
(
t1, x0, y0

))
=
(
x1, y1

)
,

Φ∗
0 :
(
x1, y1

) −→ (a1x
(
t1, x0, y0

)
, b1y

(
t1, x0, y0

))
=
(
x∗
1, y

∗
1

)
,

Φi :
(
x∗
i , y

∗
i

) −→ (x(ti+1, x0, y0
)
, y
(
ti+1, x0, y0

))
=
(
xi+1, yi+1

)
,

Φ∗
i :
(
xi+1, yi+1

) −→ (ai+1xi+1, bi+1yi+1
)
=
(
x∗
i+1, y

∗
i+1

)
, i = 1, . . . , q − 1,

Φq :
(
x∗
q, y

∗
q

)
−→ (x(T, x0, y0

)
, y
(
T, x0, y0

))
.

(3.35)

When akbk = 1, Φi (0 ≤ i ≤ q), Φ∗
j (0 ≤ j ≤ q − 1) are area-preserving mappings. Since

φ = Φq ◦Φ∗
q−1 ◦Φq−1 ◦ · · · ◦Φ∗

0 ◦Φ0, (3.36)

φ is an area-preserving mapping. Obviously, φ(0, 0) = (0, 0) ∈ D = {(x, y) : x2 + y2 < r2}.
Lemmas 3.3, 3.4 imply that φ is a twist map on the annulus A = {(x, y) : r2 ≤ x2 + y2 ≤ R2}
for sufficiently small ε. Now it follows from the result of Ding, Lemma 2.2 given in the
introduction, that φ has at least two fixed points in A. Let (xεi(t), yεi(t)) be one of the
corresponding periodic solutions of (3.12). By Lemma 3.2, we have

d1(r) ≤
√
x2
εi(t) + y2

εi(t) ≤ d2(R). (3.37)

By the Arzela-Ascoli theorem, a sequence of {xεi(t), yεi(t)} converges to (x(t), y(t)) as εi → 0.
Then, (x(t), y(t)) satisfies (3.12), and (x(t), y(t)) is a periodic solution for the system (1.6)

with d1(r) ≤
√
x2(t) + y2(t) ≤ d2(R). Since R is arbitrary, we obtain an infinite sequence of

periodic solutions for system (1.6)with small amplitudes.

4. Discussion

To the best of our knowledge, there are few papers concerned with the existence of periodic
solutions for impulsive equations by means of the Poincaré-Birkhoff fixed point theorem. The
goal of this paper is to fill the gap in this area. Our main result expands the applied scope of
the work of Ding [3] by allowing the equation to have impulses. Application of the result
obtained is illustrated by Example 4.1 given below in which the conclusion does not follow
from earlier result, as it does not allow impulses.

Example 4.1. Consider the equation

x′′(t) + 3
√
x(t) = 0, t /= tk,

x
(
t+k
)
= akx(tk), x′(t+k

)
= bkx

′(tk), k ∈ Z,

(4.1)

where ak > 0, akbk = 1, ak+q = ak,tk+q = tk + T, 0 < t1 < t2 < · · · < tq < T .
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In fact, in (4.1), g(x) = 3
√
x. Then, xg(x) ≥ 0 and limx→ 0x

−1g(x) = +∞. The condition
(H1) is satisfied and by Theorem 3.1, (4.1) has an infinite sequence of periodic solutions.

In addition, this paper is the new application for thework of Ding [10] in the impulsive
differential equations.
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+ f(t, x) = 0 via the Poincaré-Birkhoff theorem,” Journal of

Differential Equations, vol. 20, no. 1, pp. 37–52, 1976.
[13] C. Rebelo and F. Zanolin, “Twist conditions and periodic solutions of differential equations,” in

Proceedings of Dynamic Systems and Applications, vol. 2, pp. 469–476, Dynamic, Atlanta, Ga, USA, 1996.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


