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Projective synchronization between two different fractional-order chaotic systems with fully
unknown parameters for drive and response systems is investigated. On the basis of the stability
theory of fractional-order differential equations, a suitable and effective adaptive control law and a
parameter update rule for unknown parameters are designed, such that projective synchronization
between the fractional-order chaotic Chen system and the fractional-order chaotic Lii system with
unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to
demonstrate the validity and feasibility of the proposed method.

1. Introduction

In the past three decades, the control and synchronization of chaotic systems have gained
a lot of attention for their potential applications in some engineering application, such
as image processing, chemical and biological systems and information science, and in
particular in secure communication [1-5]. Since Pecora and Carroll introduced a method to
realize complete synchronize between two identical chaotic with different initial conditions,
several types of synchronization have been proposed, such as complete synchronization
[6], lag synchronization [7], phase synchronization [8], antisynchronization [9], partial
synchronization [10], generalization synchronization [11], impulsive synchronization [12],
and so on. Among all kinds of chaos synchronization, projective synchronization phe-
nomenon was first reported and discussed by Gonzdlez-Miranda [13]. In 1999, Mainieri
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and Rehacek first proposed the concept of projective synchronization in which drive
and response systems could be synchronized up to a scaling factor [14]. It has been
proven that projective synchronization is not in the category of generalized synchronization
because the response system of projective synchronization is not asymptotically stable [15].
Recently, some scholars extended the concept of projective synchronization and proposed
modified projective synchronization [16], function projective synchronization [17], and
modified function projective synchronization [18]. Because of the proportionality between
its synchronized dynamical states, the feature can be used to M-nary digital communication
for achieving fast communication [19]. Projective synchronization has attracted increasing
attention during recent years, and some necessary conditions for projective synchronization
have been obtained, see references [20-23].

In the investigation of dynamical systems, many physical models could be properly
described by the fractional order systems, see, for example, dielectric polarization, electrode-
electrolyte polarization, electromagnetic waves, viscoelastic systems, quantitative finance
and diffusion wave [24-26]. Compared with the classical integer-order models, fractional
order derivatives provide an excellent instrument for the description of memory and
hereditary properties of various materials and processes. With the introduction of fractional
derivatives, it was proved that many fractional-order differential systems behave chaotically
with order less than 3, such as fractional-order Chua’s circuit system [27], fractional-
order Rossler system [28], fractional-order Chen system [29], fractional-order Lii system
[30] and fractional-order modified Duffing system [31]. In recent years, the control
and synchronization of fractional-order chaotic systems have caught much attention, see
references [32-34]. However, there exists a substantial difference between fractional-order
differential systems and integer-order differential ones. Most of the properties, conclusions,
and methods for dealing with the integer-order systems cannot be simply extended to the
case of the fractional-order ones, such as Lyapunovs direct method. Therefore, results bout the
synchronization of fractional-order chaotic systems are much less rich than those of integer-
order systems. It is still a challenging problem.

On the other hand, at present, most of the theoretical results concerning synchroniza-
tion of the fractional-order systems mainly focus on systems whose models are identical
or similar, and parameters are exactly known in advance. But in many practical situation,
the parameters of many systems cannot be known entirely, the synchronization will be
greatly affected by these uncertainties. How to effectively synchronize two fractional-order
chaotic systems with unknown parameters is an important problem for the theoretical
and practical applications. As we know, we usually take adaptive control methods to deal
with such problems. However, to our best knowledge, much of the literature on projective
synchronization of fractional-order chaotic systems all focused on the case of parameter
determination, for instances [35-38]. There are few results about synchronization of different
fractional-order chaotic systems with fully unknown parameters [39], not to mention
projective synchronization. Motivated by the above discussions, in this paper, we study
projective synchronization between fractional-order chaotic Chen system and fractional-
order chaotic Lii system with fully unknown parameters in the derive system and the
response one, which is more general and practical than the one discussed in paper [39], where
only master systems are assumed to be uncertainty and a novel parameter identification
and an adaptive control law are derived based on the stability theory of fractional-order
differential equations. Corresponding theoretical analysis and numerical simulations are
presented to verify the validity and feasibility of the proposed method.
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The remainder of this paper is organized as follows. In Section 2, preliminary results
are presented and fractional-order chaotic Chen system and fractional-order chaotic Lii
system are described. In Section 3, adaptive synchronization scheme with a parameter update
law is presented. In Section 4, numerical simulations are given to illustrate the effectiveness
of the main results. Finally, conclusions are drawn in Section 5.

2. Preliminaries and System Description

The fractional-order integrodifferential operator is the extending concept of integer-order
integrodifferential operator, which can be denoted by a general fundamental operator as
follows:

q
a R@>0,
Df =11 R(q) =0, (2.1)

ft (dr)™, R(q) <0,

a

where g is the fractional-order, which can be a complex number and a and t are the
limits of the operation. There are some definitions for fractional derivatives. The commonly
used definitions are Grunwald-Letnikov (GL), Riemann-Liouville (RL), and Caputo (C)
definitions.

The Grunwald-Letnikov (GL) derivative with fractional-order g is given by

[t—g/h]
SDIf (B = lim 7 (¢) = limh™ 3 (1) f(E—ih), (22)

i=0

where [-] means the integer part.
The Riemann-Liouvill (RL) fractional derivatives are defined by

n t
a1 o
at"T(n—-q) Ja (t - 7)™

aDlf(t) = n-1<g<mn, (2.3)

where I'(-) is the gamma function and I'(7) = [ t"'e""dt.
The Caputo (C) fractional derivative is defined as follows:

‘r(nl— q) f (=) gr ﬁ f (- ) 0 () (24)

It should be noted that the advantage of Caputo approach is that the initial conditions
for fractional differential equations with Caputo derivatives take on the same form as for
integer-order differential, which have well understood physical meanings. Comparing these
two formulas, one easily arrives at a fact that Caputo derivative of a constant is equal to zero,
which is not the case for the Riemann-Liouville derivative. Therefore, in the rest of this paper,
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the notation D/ is chosen as the Caputo fractional derivative operator $D. For more about
knowledge of fractional definitions and fractional calculus, see references [40, 41].

In the following section, an improved predictor-corrector algorithm [42] for fractional-
order differential equations is presented in brief, which will be used in numerical simulation
section. In comparison with the classical one-step Adams-Bashforth-Moulton algorithm, the
numerical approximation of the improved algorithm is more accurate and the computational
cost is more lower. Predictor-corrector algorithm for fractional differential equations is the
generalization of Adams-Bashforth-Moultono one; the similarities, differences, merits, and
demerits between them are shown in [42, 43].

Consider the following differential equation:

Dix(t) = f(t,x), 0<t<T,

(2.5)
x®0) =x¥, k=012..., [q]-1,
equivalent to the Volterra integral equation [44]
[q]-1 t
tk 1 )
x(t)= P+ f ’?_ dr. 2.6)
k=0 kU T(q) Jo (t-7)"

Seth=T/N, t,=nh (n=0,1,2,...,N). Then (2.6) can be discretized as follows:

k
xp(tne1) = Z xok) i L_f(tnﬂ/ xZ(th)) Za] n+1f(t]/ xh(t ))/ (2.7)

k! T(g+2) I'(q +2)
where
nl - (n-q)(n+1)7, ji=0,
AGn1 = (n-j+2)" + (n-)" —2(m-j+1)", 1<j<n,
1, j=n+1, (2.8)
[q]- k
P (tusn) = kz x® n+!1 xe )melf(t,,xh(t i)

in which bj 1 = (h7/q)((n—j+1)7 = (n - j)7).

The error estimate e is Max|x(t;) — x(t;)] = O(h?) (j = 0,1,...,N), where p =
Min(2,1 + q).

In 2004, Li and Peng [29] and Li and Chen [45] studied the chaotic behaviors of chaotic
Chen system with fractional-order, which is described as follows:

Dlxi(t) = a(x; - x1),
Dixy(t) = (c = a)x; — x1%3 + cx2,

2(t) = ( )X1 — X1X3 2 (2.9)
DZX3(t) = X1Xp —b.X'3,

where g is the fractional order, 0 < g < 1, x1, x» and x3 are state variables, a, b and ¢ are
unknown parameters to be identified. When a = 35, b = 3, ¢ = 28 and g = 0.9, system (2.9)
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Figure 1: Chaotic attractors of fractional-order chaotic Chen system with order g = 0.9.

exhibits chaotic behaviors as shown in Figure 1. References [46, 47] considered the
synchronization of fractional-order chaotic Chen systems with determined parameters.

Meanwhile, Deng and Li [30] and Lu [48] numerically investigated the chaotic
behaviors of the fractional-order Lii system, respectively. Fractional-order chaotic Lii system
is given by

Dlyi(t) = a(y2 - 1),
Dy (t) = —y1ys + P2, (2.10)
Dlys(t) = y1y2 - Oys,

where g is the fractional order; 0 < g < 1; y1, y», and y3 are state variables; a, , and 6
are unknown parameters to be estimated. System (2.10) exhibits a chaotic attractor for a =
36, B =20,and 0 = 3. Figure 2 displays the chaotic attractor of the fractional-order Lii chaotic
system with the order g = 0.9.

To obtain our results, the following Lemma is presented. For a given autonomous
linear system of fractional order

Dix = Ax, (2.11)

with x(0) = xg, where x € R" is the state vector, one has the following Lemma.
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Figure 2: Chaotic attractors of fractional-order chaotic Lii system with order g = 0.9.

Lemma 2.1 (see [49]). System (2.11) is

(i) asymptotically stable if and only if |arg(Ai(A))| > amr/2,i = 1,2,3,..., where
arg(A;(A)) denotes the arqument of the eigenvalue \; of A. In this case, the component
of the state decays towards 0 like t™%;

(ii) stable if and only if either it is asymptotically stable or those critical eigenvalues that satisfy
|arg(1i(A))| = amr/2 have geometric multiplicity one. Figure 3 illustrates the stability
region of the fractional-order system.

3. Adaptive Projective Synchronization

In the section, we will discuss adaptive projective synchronization behavior between
fractional-order chaotic Chen system and fractional-order chaotic Lii system with fully
unknown parameters. Assume that fractional-order chaotic Chen system with three
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Figure 3: Stability region of the fractional-order system.

unknown parameters is the drive system and the response system is fractional-order chaotic
L system, which are given as follows, respectively,

Dlxi(t) = a(x; — x1),

Dlxy(t) = (c - a)x1 — x1X3 + cx3, (3.1)
Dix3(t) = x1x, — bxs,

Dlyi(t) = a(y2 —y1) +u,

Dlys(t) = —y1ys + Py2 + uz, (3.2)
Dlys(t) = yiy2 — Oys + us,

where x; and y; (i = 1,2,3) stand for state variables of the master system and the slave one,
respectively; a, b, c,a, f, and 0 are unknown parameters, which need to be estimated; u1, u,,
and u3 are nonlinear controllers to be designed later.

Definition 3.1. Systems (3.1) and (3.2) are adaptive projective synchronization if there exists a
scaling matrix o such that

tlim lle(®)] = tlim ||y —ox|| =0, (3.3)
where || - || is the Euclidean norm and o = diag(oy, 02, 03).

It follows from (3.1)—(3.3) that we have the following error dynamical system:

Dlei(t) = a(y, — 1) —o1a(x2 — x1) +uy,
Dilex(t) = —y1ys + Py2 — 02(c — a)x1 + 02x1X3 — 020X + Uz, (34)

Dles(t) = yiya — 0ys — 031%2 + 03bx3 + 13,

where e; = y1 — 01x1, €2 = Y — O2x2, and ez = y3 — 03x3. Our aim is to find suitable control
laws u; (i = 1,2,3) with a parameter estimation update law such that the response system
(3.2) synchronizes the drive system (3.1) up to a scaling factor o.
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To this end, the following criterion is proposed to ensure that the response system (3.2)
effectively synchronizes the drive system (3.1) up to a scaling factor o.

Theorem 3.2. For a given constant scaling matrix o = diag(o1, 02, 03) and any initial conditions,
projective synchronization between systems (3.1) and (3.2) will occur by the following adaptive
controllers:

u = (& - 1)61 + (y3 - &)62 —lhe3 + &(O'lxl - ()'2.7C2) + ﬁO’l (x2 - xl),
Up = —<ﬁ+ 1)(:‘2 + (()'10'3 - 0'2)X1X3 — 02X7 <,E_ E) + 02X (E— ﬁ), (35)

Uz = (5— 1>e3 + (03 — 0102) X1X2 + 03X3 <6~)— E),

and the parameter update rules for six unknown parameters a, b, c, a, p, and 0

Dfﬁ = (0'1x1 - O'1xz)e1 + O2Xx1€2,
DIb = o3x3e3,

Dg = —(0yx1 + 02x2) e,

~ (3.6)
Dla = (y2-wy)es,
DIB = yre,,
D10 = —yse,

wheree, =a—a, ep=b-b,ec=c-c,ea=a-a, eg=p-p, eg=0-06,a, b,c,a,p and0
are the parameter estimations of a,b,c, a, p, and 0, respectively, and e, ey, e, €q, €p, and eg are the
corresponding parameter errors.

Proof. Substituting (3.5) into (3.4) leads to the following error system:

Dlei(t) = —e1 + yse2 — yaes + (0132 — o1x1)eq + (Y1 — Y2)€a,
Dles(t) = —yse1 — e2 — o1x1€3 — O2x1€4 + (021 + O2X2) e — V2ep, (3.7)

Dfel (t) = Yoe1 + 01X182 — €3 — 03X3€p + Y3€p.
Combining (3.6) with (3.7), one has

T
[Dzelr Dze2/ Dfe3/ Dzea/ Dzeb/ Dfecr Dzear Dzeﬁ/ Dzee] (3 8)

T
= A [61/ 62/ 63/ ea/ eb/ ec, ea/ eﬂ/ e@] 7



Mathematical Problems in Engineering

where
[ -1 Y3 Y2 M 0
—Y3 -1 —01X1 —02X1 0
Y2 01X -1 0 —03X3
-M O2X1 0 0 0
A= 0 0 03X3 0 0
0 -N 0 0 0
Y- 0 0 0 0
0 ¥ 0 0 0
| 0 0 -y3 0 0

coocococooZ

M =o01x, —o1x1, N = 02x1 + 02%5.

o

S O O O O oo

0 yi—w

, (3.9)

Suppose 1 is one of the eigenvalues of matrix A and the corresponding noneigenvector

. T .
1sSe= (81/ €2,€3,€4,€5,€6,€7,E8, 59) 7 that 1s,

Ae = Le.

Take conjugate transpose (H) on both sides of (3.10); one obtains

(Ae)T = el

(3.10)

(3.11)

Using (3.10) multiplied left by (1/2)ef plus (3.11) multiplied right by (1/2)e, we derive

1 1 1 —
H HY,._ ! H
£ <§A+—A >€—2<.)L+./\>8 E.

2

From (3.12), we have

19)-

By substituting A into the right of (3.13), we can obtain

eHe

1 0 0 0
0 -1 0 0
0 0 -1 0

IR

— + = —E€

2 e 1o 0 0 0
0 0 0 0
0 0 0 0
0 0 0 o0

OO OO OO o oo

O O OO OO o oo

OO OO OO o oo

eH((1/2)A + (1/2)AH)e

O O OO OO o oo

o
1

OO O OO o oo

(3.12)

(3.13)

(3.14)
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From (3.14), we have A + A <0, that is, any eigenvalue of matrix A satisfies
|arg(1)] > % > %(a <1). (3.15)

Based on the stability theory of fractional-order systems (Lemma 2.1), the equilibrium point
in error system (3.8) is asymptotically stable, that is,

tlirn lle(®)|| = tlim |y —ox|| =0, (3.16)

which implies that the adaptive projective synchronization between systems (3.1) and (3.2)
can be achieved.

If we choose the scaling matrix ¢ as I and —I (I is an n x n identity matrix), then we
have the following Corollaries 3.3 and 3.4 to guarantee system (3.1) synchronizes system (3.2)
in complete and inverse manner, respectively. O

Corollary 3.3. If the adaptive controllers are chosen as

u = (@—-1)e; + (y3 - &)62 — ezt (x1 = x2)(ax—a),
= ~(B+1)er-x(-) +x1(E- ), (3.17)
Uz = <§—1>€3+X3<é—?}>,

and update laws of parameters are chosen as

Dfﬁ = (x1 - x2)61 + X167,
D:’b = X3€3,

DIz = —(x1 + x2)ea,

_ (3.18)
Dla= (y2—w1)er,
Dfﬁ = 11hey,
D0 = -yses,

then complete synchronization between systems (3.1) and (3.2) will be achieved for any initial values,
wheree, =G—a, ey =b-b, ec=C~c, ea=d—-a, es=p-p, eg=0-6, 4,b,a&p and 0
are the parameter estimations of a,b,c, a, 5, and 0, respectively, and e,, ey, e, eq, ep, and ey are the
corresponding parameter errors.

Corollary 3.4. If the adaptive controllers are chosen as
U = (& - 1)61 + (y3 - &)62 —le3 — (X1 - XQ)(& - ﬁ),
Up = —<ﬁ+ 1)ez+2x1x3 +x2<ﬁ—5> -x1(¢ - a), (3.19)
Uz = (é— 1>€3 - 2X1X2 - X3<é— E),
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Figure 4: Error states of the drive system (3.1) and the response system (3.2).

and update laws of parameters are chosen as

q~
D;a = (x2 - x1)e1 — x1e,
Dzb = —X3€3,

D,IZE = (x1 + XQ)EQ,

_ (3.20)
Dla= (2 —y1)er,
DIB = yres,
Dzé = _y3e3/

then inverse synchronization between systems (3.1) and (3.2) will be obtained for any initial values,
wheree, = a—a, ey =b-b, ec=C—¢C, e, =0a—a, eg :ﬁ—ﬁ, ey =0-9, ﬁ,I;,E,&,ﬁ,undé
are the parameter estimations of a,b,c, a, p, and 0, respectively, and eg, ey, e, eq, ep, and eg are the
corresponding parameter errors.

4. Numerical Simulations

In this section, numerical simulations will be given to verify theoretical results obtained in
the previous section. The true values of the “unknown” parameters of two uncertain systems
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Figure 5: Signals x; (t) versus y1(t), x2(t) versus y»(t), and x3(t) versus y3(t) after synchronization.

are takenasa =35, b =3, c =28 and a = 36, f = 20, 6 = 3. For this numerical simulation,
the initial values of the drive and the response systems are chosen as (x1(0), x2(0), x3(0)) =
(0.3,0.4,0.5) and (y1(0),y2(0),y5(0)) = (0.4,0.5,0.6), respectively. Hence the initial values
of the error system are (e;(0),e2(0),e3(0)) = (0.1,0.1,0.1), the initial estimated parameters
(71(0),E(O),E(O),&(O),ﬁ(O),é(O)) = (32,2,25,33,22,5). Without loss of generality, the scaling
matrix o is chosen as diag(2,-3,4) and q = 0.9. Figure 4 displays the synchronization
error states between systems (3.1) and (3.2), respectively. Figure 5 shows the signals after
synchronization. Figures 6 and 7 show that the parameter errors e,, ey, e, €q, ep, eg converge

to 0, which means the estimated values of unknown parameters a,b,c, «, 3,0 converge to
a=25b=3 ¢c=28 a=36, f=20, and 8 =3 ast — oo, respectively. Figure 8 illustrates
the projective chaotic attractors of drive system (3.1) and response system (3.2).

5. Conclusion

In this paper, adaptive projective synchronization of different chaotic systems with fully
unknown parameters is presented. Based on the stability theory of fractional-order
differential equations, a suitable adaptive controller and parameter update laws are designed
to ensure fractional-order Chen system synchronize with fractional-order Lii system up
to a scaling factor o. Also the corresponding results are obtained to judge complete
synchronization and inverse synchronization between fractional-order Chen system and
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fractional-order Lii system, respectively. Meanwhile, results could be extended to other
fractional-order chaotic or hyperchaotic systems, such as fractional-order Lorenz system and
fractional-order Rossler system, fractional-order hyperchaotic Chen system, and fractional-
order hyperchaotic Lii system.
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