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In this paper we present partial least-squares (PLS), which is a statistical modeling method used extensively in
analytical chemistry for quantitatively analyzing spectroscopic data. Comparisons are made between classical
least-squares (CLS) and PLS to show how PLS can be used in certain engineering signal processing applications.
Moreover, it is shown that in certain situations when there exists a linear relationship between the independent
and dependent variables, PLS can yield better predictive performance than CLS when it is not desirable to use
all of the empirical data to develop a calibration model used for prediction. Specifically, because PLS is a factor
analysis method, optimal selection of the number of PLS factors can result in a calibration model whose
predictive performance is considerably better than CLS. That is, factor analysis (rank reduction) allows only
those features of the data that are associated with information of interest to be retained for development of the
calibration model, and the remaining data associated with noise are discarded. It is shown that PLS can yield
physical insight into the system from which empirical data has been collected. Also, when there exists a
non-linear cause-and-effect relationship between the independent and dependent variables, the PLS calibration
model can yield prediction errors that are much less than those for CLS. Three PLS application examples are
given and the results are compared to CLS. In one example, a method is presented using PLS for parametric
system identification. Using PLS for system identification allows simultaneous estimation of the system
dimension and the system parameter vector associated with a minimal realization of the system.

Kevworps: Partial least-squares; factor analysis; overfitting; noise reduction; estimation; aystem identification;
minimal realization

Notation. Note: All matrices and vectors have real entries.

R, R™™, R™" real numbers, n X m matrices, n X n matrices
Rm>m R R™  m X m matrices, R* < 1, ®R™ <!

I, ( )T, O7! m X m identity matrix, matrix or vector transpose, matrix inverse
b, PLS calibration model (final calibration coefficients)

e, PLS residual vector of y

E, PLS residual matrix of Z

f subscript to denote final

£ sampling frequency, Hz

fJ2 Nyquist sampling frequency, Hz

h PLS factors

h° optimal number of PLS factors

k discrete time index
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PLS score (latent variable) vector

sampling period, sec

scalar PLS regression coefficient (inner relationship)
PLS weight loading vector

dependent variable block

independent variable block

N < N

1. INTRODUCTION

We present in this paper the partial least-squares (PLS) regression method [1-5]. Partial
least-squares is considered as one of several statistical modeling methods used in
analytical chemistry. This group of methods used in analytical chemistry for quantitatively
analyzing spectroscopic data is referred to as chemometrics [6] and [4]. Theoretical issues
are addressed pertaining to PLS applied to engineering problems encountered in signal
processing. Examples are presented which illustrate the applicability, and in some cases
the superior performance, of PLS to selected engineering problems in signal processing,
such as model development from empirical data used for predicting certain key system
parameters, e.g., parametric system identification. Applying PLS regression to the
parametric system identification problem allows simultaneous estimation of the system
dimension, as well as yielding an estimate of the system parameter vector associated with
a minimal realization of the system. It will be shown that under certain conditions PLS is
identical to classical least-squares (CLS) [3], however, in certain cases PLS can out
perform CLS for situations when it is not advantageous to use all of the available data.
That is, in the case of CLS, there does not exist a systematic method to assess the entire
data set to select pertinent features from the data for calibration model development that
will yield optimal performance. However, in the case of PLS, a systematic method does
exist, i.e., factor analysis, which can result in an optimized calibration model.

PLS was originally introduced by Wold [7] and [8], and arose as a practical solution to
data-analytic problems in econometrics and social sciences. The basic problem is to fit a
calibration model to empirical data, and use this model to predict certain quantities given
a set of test data as input to the calibration model after the training phase. PLS is
sometimes referred to in the context of abstract factor analysis, because physically
significant quantities within the physical system can not always be identified directly with
the mathematical modeling process [9]. However, if properly interpreted, the mathemati-
cal basis which constitutes the factor analysis method of PLS can yield very powerful
information relating to certain key features within the physical setting from which the data
were extracted and used in the PLS modeling process. Moreover PLS, which is considered
as a full-spectrum technique, is one of several factor analysis methods that are available
and used extensively in analytical chemistry to quantitatively analyze spectroscopic data.
When the data contains noise, principal component regression (PCR) [2] and [5], another
factor analysis technique based on principal component analysis (PCA), can reduce errors
optimally (in a least-squares sense), however, the resulting data compression does not
yield information specifically related to physical quantities [3]. However, with PLS,
overall reduction in noise is not necessarily optimal, but the PLS basis vectors (data
compression) that are generated can be more easily related to physical quantities [3].
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In the physical setting, when the cause-and-effect relationship is non-linear, i.e., a
non-linear relationship between the independent and dependent variables, CLS in many
cases fails to properly predict certain quantities. However, PLS can fir a piece-wise linear
calibration model to the non-linear data by judiciously selecting the optimal number of
factors [5] and [10], thus, achieving improved prediction performance as compared with
CLS. Moreover, even if a linear relationship does exist between the independent and
dependent variables, there are certain cases when it is not beneficial to use all of the
available data. For this situation, again the PLS method can yield an optimized model
developed from the empirical data, using only the essential features of the data by use of
factor analysis (rank reduction). However, the CLS result using all of the available data
will give sub-optimal performance as compared with PLS.

It is our intention to first present the CLS method (Section 2) which is developed in a
mathematical setting that allows a comparison to PLS, and then present a detailed
explanation of the PLS algorithm (Section 3). Two examples are presented in Section 4
using both CLS and PLS, and their performance results are compared. The third example
in Section 4 uses only PLS applied to a parametric system identification problem. Finally,
conclusions are drawn in Section 5 along with suggestions for future research.

2. CLASSICAL LEAST-SQUARES

The CLS result presented here is formulated in a mathematical setting which allows a
comparison to PLS given in the next section. Assume that there exists a linear relationship,
i.e., a vector h € R", between a set of independent variables given in matrix form as

X (K) x5(k)- - Xyp(k)
X531 (K) X (K)- - Xy (k)
X(k) = 21 2 : 2 o

xnl(k) xnz(k)' " 'Xnm(k)

where X(k) € R"™, k is the time index, and the dependent variable is a vector y(k) € R”™,
such that we can write

y(k) = X"(kh @)

Each column vector in the matrix X(k) consists of a time sequence of a wide-sense
stationary process, and the columns of X(k) are not necessarily linearly independent.
However, the columns of X(k) in (1) are assumed to be corrupted by Gaussian white noise
N(k) € R"*™, i.e., each column of N(k) is a white sequence with zero mean and the
covariance matrix of N(k) is given as Ry = E[N(k)N” (k)], where R, € R">". Therefore,
a measurement of X(k) in (1) is given as

Z(k) = X(k) + N(k) 3

where Z(k) € R"*™. Because the information in the columns of X(k) is not known,
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dependent variable y(k) using Z(k) as

¥k = Z" (g @
where g € R" and $(k) € R™. Therefore, the objective is to find the linear relationship g
in (4) which relates the measured variables Z(k) to an estimate of the dependent variable,

Y(k). To accomplish this we use the classical least squares (CLS) approach by first defining
an error vector given as

e(k) = y(k) — () 5)
where e(k) € R™. Using (5), a quadratic performance measure is defined as

J, = E[e" (k)We(K)] (6)
which is to be minimized with respect to g. However, the positive-definite symmetric

weight matrix in (6), W € R™<™ s equal to the m X m identity matrix, ie., W = 1I,,
because all errors are considered to be equally weighted. Therefore, (6) can be written as

J, = E[e" (Kek)] = E[(y(k) — yK))" (y(k) — y(k))] @)
Substituting (2), (3) and (4) into (7) gives
J, = El(y(k) — yK)" (y(K) — y(k)] =
h" EX(K)XT (k)1h — 2g" E[X®X" (k)1h +
g" EX®X' (k]g + g" EIN(ONK)']g =
h" Ryh — 2g" Ryh + g" Ryg + g" Ryg ®)

where E[X(k)X” (k)] = Ry and Ry € R™™", is the covariance matrix of X(k), and it is
assumed that N(k) and X (k) are uncorrelated, i.e.,

EINK)X" (k)] = E[X(K)N" (k)] =0 ©)

Taking the partial derivative of (8) with respect to g and setting the result equal to zero
gives

aJ, 9
—agg = {h" Ryh — 2g" Ryh + g" Ryg + g" Ryg} = —2R h + 2R,g + 2Rg = 0
(10)

Solving for g from (10) yields

g= Ry + Ry 'Ryh an
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To determine g in (11) we need the known information associated with the measurements,
Z(k), and the dependent variable, y(k). However, the classical least-squares result [5] is
given as

g = ZKZ" k) ' ZK)yk) (12)

which is directly related to (11). This can be shown by first using the measurement data,
Z(k), and forming

EIZ(®Z" (k)] = EXX)X" (k)] + EINKN" (k)] = Ry + Ry (13)

using (3) and the assumption that N(k) and X(k) are uncorrelated. The inverse of (13) gives
the first part of the expression in (11). Next, using the information in the dependent
variable, y(k), along with the measurement data, Z(k), we can write

E[ZM®)y(k)] = EX®X" ()]h = Ryh (14)

using (2) and (3), and the assumption that N(k) and X(k) are uncorrelated. The expression
in (14) gives the second part of (11). Therefore, from the results in (13) and (14), the
relationship between (11) and (12) can be seen.

The CLS result in (12) uses all of the available information from the measurements,
Z(k), and the dependent variable, y(k). However, there are many situations when this is not
desirable, and can result in overfitting of the data [S] and [11]. That is, in the process of
developing the model g in (12), the model parameters could be based on not only the
essential features associated with the empirical data, Z(k) and y(k), but also unwanted
effects in the data. This can result in a model with poor predictive capability. These
unwanted effects could be not only be associated with noise, but other features of the data
associated with additional cause-and-effect phenomenan that is not of any interest to the
analyst. Therefore, in this sense these effects could also be considered as noise because the
nature of the phenomenon may not be known a priori. It will be shown that when taking
the PLS approach to develop a calibration model, and if all of the PLS factors are retained
in the development of the model, the result given in (12) for CLS is identical to the PLS
result.

3. PARTIAL LEAST-SQUARES REGRESSION

When PLS is used in analytical chemistry [5], the objective is to develop a calibration
model from spectroscopic data, A € R™>", (typically infrared absorption spectroscopic
data [12]) and the associated target data, ¢ € R™, which is the reference concentration
information of a particular analyte that is resident in each of the spectroscopically
analyzed measurements in varying concentration. Typically in PLS, the independent
variable block is formulated in terms of a matrix whose rows are associated with the
individual measurements, e.g., in the case of analyzing spectroscopic data each row is a
sequence of spectral frequencies (or wave numbers [12]). That is, the absorption matrix A
discussed above consists of m measurements (or m individual spectra) each with n spectral
frequencies. Now it is possible to simultaneously account for more than one analyte of
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interest in the spectroscopic data, however, we will limit our discussions to the single
component case. The dependent variable block, e.g., ¢ given above, is a column vector, for
the single component case, where each element in the vector is the associated dependent
data for each of the corresponding spectra in the rows of A. Therefore, comparing this
structure to the previous structure of the independent and dependent variable blocks for
CLS, and assuming that the data are now measured spectroscopic data, the time index k
is replaced with frequency (or wave number), and

A=7Z" 15)

and

c=y (16)

Therefore, from (16), the dependent variable block for CLS and PLS directly corresponds
to one another. With these two data blocks, {A,c}, a PLS calibration model (vector) can
be developed that can in turn be used to predict concentrations of the analyte of interest
from spectroscopic data that was not used in the model development phase, i.e., training.
Thus, for spectroscopic data that are collected and the concentrations of the analyte of
interest are not known, the PLS calibration model can be used to predict these unknown
concentrations.

Presented below is a detailed explanation of the PLS algorithm for the single or one
component case as explained above. The corresponding variable blocks are general, in the
sense that the data can be considered in the time-domain or frequency-domain. Therefore,
the independent variable block is a matrix Z” € R™" consisting of measured data, and the
dependent variable block is a column vector, y € R™, consisting of the target data.

The basic PLS algorithm, referred to as PLS1 [3] (also known as PLS regression),
discussed here is for the case where only one component in the data is of interest. This is
equivalent to the single-input/single-output (SISO) case in system theory. The one
component (or SISO) case is addressed because the PLS algorithm is the easiest to
understand, however, an extension to the multi-component case is straightforward and can
be found in Martens and Naes [5]. Unlike the one-component PLS, the multi-component
PLS requires the use of singular value composition (SVD) [5]. An alternate method that
has been used extensively in lieu of SVD is termed NIPALS (Non-linear Iterative Partial
Least Squares) [2]. Typically, PLS is discussed in two parts, PLS1 calibration and PLS1
prediction. The calibration algorithm will be explained first (PLS1 calibration), followed
by an explanation of the development of the calibration model that can be used for
prediction (PLS1 prediction). The PLS1 calibration algorithm will be explained according
to a seven-step process and follows the explanation given by Haaland and Thomas [3].

For this general explanation of the calibration algorithm, the data {Z”,y} are used as
training data, i.e., {Z ;1 wain} for ultimately developing the calibration model, however,
the train and test subscripts are omitted from the PLS1 calibration algorithm explanation
to avoid confusion. After the explanation of the PLS1 calibration algorithm, a method is
given for development of the calibration model.
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PLS1 Calibration Algorithm

Step 1. Mean-centering and variance scaling of the data. The first step typically taken is
pretreatment of the data, i.e., mean centering and variance scaling [2] and [5]. An
exhaustive explanation of the underlying reasons for this type of pretreatment of the data
will not be given, however, typical situations that require pretreatment of the data will be
explained. For example, if the collected data (the measurements), i.e., the rows of Z7, have
a bias associated with the data, then mean-centering of the data would be advisable. This
process would also be carried out for the dependent variables, i.e., y, as well. What this
basically accomplishes is the elimination of the need to fit a non-zero intercept to the data
which often results in a decrease of the complexity of the calibration model. That is, a
reduction in the number of PLS factors by one required to model the data [3]. If the
collected data are measured with different units, variance scaling is then advisable.
Mean-centering involves calculating the mean value of each column of Z” and subtracting
the mean value for the particular column from each of the elements in the respective
columns. If Z” is mean centered, y should also be mean-centered. Variance scaling
involves calculating the standard deviation of each column in Z7, and then dividing each
element in the respective column by the associated standard deviation value. This same
process should be carried out for the dependent variables in y. However, this is usually
only ‘necessary for the multi-component case. There is a continuing debate among
statisticians relating to mean-centering and variance scaling. Many individuals insist that
the data should always be preconditioned, and others maintain that the data should never
be mean-centered and variance scaled [13]. We feel that pretreatment of the data is
necessary for the reasons given above, however, if there is no compelling reason to
mean-center or variance scale the data these processes should not be performed arbitrarily.

First, an index & (number count for the PLS factors) is initially set to 1.

Step 2. Forming the weight loading vector, W, € R". This step is actually a CLS
calibration, and the model used is given as model:

Z'=yw + Epr a7
where the least-squares solution is given as least-squares solution:

w, = Zyly'y (18)

In (18) each vector w,, for each & increment, is the weight vector which is proportional
to a weighted average of the row elements in the matrix Z”, where the weights in the
average are proportional to the elements in y. Each of the weight vectors W, are
normalized and constructed to be mutually orthogonal, therefore, the W, vectors are
orthonormal. This step is quite different than with the PCR method [14, 2, 15] and [5]
because the information in the dependent variable, y, is used in addition to ZT to form the
weight vectors in PLS, in PCR only the information in the matrix Z” is used in this step.
The matrix E;TeiKmX“ in (17) contains the residuals associated with Z7.

Step 3. Generation of the score (latent variable) vector, t, € R™. In this step, Z7 is now
written with respect to the latent variables or the scores as
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model: Z' = tywy + Egr (19)
where the least-squares solution is given as
least-squares solution: §, = ZTvAvh/vAvthvh = ZT\’J\Vh (20)

This step is also CLS, where the least-squares estimate of ¢, f,, is obtained by regressing
Z" on W, as shown in (20). The individual elements of 7, indicate how much of W, is
contained in each row of the matrix Z7. The vector #, represents the intensities (or
amounts) of the first weight loading vector in the row data of Z” for the new PLS
coordinate system. Since W, is a first-order attempt to represent the uncorrupted data, X7,
from the corrupted data contained in Z7, 7, represents a first-order attempt to determine the
amount of the pure component of interest (i.e., the information contained in y) in each of
the associated rows of Z7. Thus, in the PLS method, each fh vector is related to both Z7
and y rather than solely to Z” as in the case of PCR.

Step 4. Relating the score vector, t,, to the elements of y. In this step the score vector,
t,, (or the latent variable associated with key features relating to the pure component of
interest contained in each row of ZT), representing the intensities in the new PLS
coordinate system is related to the elements of the vector y using a linear least-squares
regression. In PLS, as opposed to inverse least-squares (ILS) [16] and [3] and PCR, a
separate relation between the scores, f,, and the elements of the y vector (or the y

residuals) is found after each weight vector is estimated. The relation between #, and y is
modeled as

model: 'y = vhfh + ey (21)

and the least-squares solution is given as

least-squares solution: v, = tiy/tit, (22)

where for each h increment (22) gives an estimate of v, which is the scalar regression
coefficient (inner relationship) relating #, to the elements in y. The vector e, € R” contains
the PLS residuals associated with y. The relation in (22) is similar to an ILS solution in
that the sum of the squared y errors is minimized.

Step 5. Generation of 511 € R", the PLS loading vector for ZT. Orthogonal #,, vectors are
desirable in order to remove collinearities (i.e., linear dependence). Orthogonal #, vectors
can be obtained by forming a new model for Z” based on the latent variable #,. The new
model is given as

model: Z' = i,bf + Ejr (23)
where the least-squares solution is given as

least-squares solution: l;h = Zi, /61, (24)
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The vectors by, for h = 1,2,..., are the PLS loading vectors. This step along with the next
one in the algorithm assures that the #, vectors will be mutually orthogonal. The
least-squares regression is simultaneously performed for all samples in each row of Z” as
mdlcated in (24). Unlike the first PCA loading vector in PCR, the first PLS loading vector,
b determined from (24) does not account for the maximum variance in the rows of Z7.
However it does represent an attempt to account for as much variation in AZT while
simultaneously correlating with ¢, which approximates y. Also unlike PCA, the bk vectors
are not mutually orthogonal. Moreover, since #, is the first-order appr0x1mat10n to the y
vector, column elements in Z” associated with the largest positive elements in b1 tend to
indicate those column elements in Z” which exhibit the greatest dependence on the
elements in y for that particular loading vector. However, the W, vector which is directly
related to y will exhibit this tendency better than 51, and therefore w; will be more useful
than I;, for extracting information from the PLS1 analysis.

Step 6. Calculatzon of the residuals in Z andy. The product of the scores (th) and the
loading vectors (bh) is the PLS approximation to Z”. The residuals, EZT, in the matrix Z”

are computed by subtracting the PLS approximation to the rows of the matrix Z” from the
measurements in the rows of Z7 as given in

Z7 residuals:  Egr = ZT — i,by (25)

y residuals: e, =y — ity (26)

Similarly, the portion of the information in the vector y that has been modeled by PLS can
be removed to obtain the residuals in y, i.e., e, as given in (26). The product Oty in (26)
represents the PLS estimate of y, §, based on the information in the matrix Z”.

Step 7. Increment h, substitute h, EZT for Z" and e, fory in Step 2 and continue for the
desired number of loading vectors (or the optimal number of PLS factors, h°).

PLS1 Prediction Algorithm

The prediction algorithm presented here follows the Method 2 explanation given in
Haaland and Thomas [3]. An alternate method for prediction is presented as Method I in
[3], however, the following procedure is much easier to understand, and is given in two
parts: (i) calibration model development, and (ii) prediction using the calibration model.
One drawback to this method is it does not allow a determination of the residuals of Z7,
therefore, no diagnostic information about the quality of the calibration model fit to the
data is available when predictions are obtained by using the calibration model.

From the above PLSI Calibration Algorithm, a calibration model, b, € R”, can be
t;ormed from the weight loading vectors, W, for & = 1,2,...,q, the loading vectors for Z7,
by, for h = 1,2,...,q, and the inner relationships, ¥, for » = 1,2,...,q. If all of the PLS
factors are generated, then ¢ = m, for m < n, and ¢ = n, for m = n. Ideally, we want to
only use the optimal number of PLS factors, i.e., h = h°. A procedure to determine 4° will
be presented next, however, this procedure requires the use of the calibration model, bf.
To generate the calibration model we first form the matrices



72 F. M. HAM AND IVICA KOSTANIC

WT = [w,, Wy - - - W, @7

and
BT =[b,b,- - -b] (28)

and
V=V - V] (29)

where We K<, Be R7", and 9e R7. From (27), (28) and (29), and g = h°, the optimal
calibration model (final calibration coefficients), b, can be formed as

b, = WIBW") ™% (30)

The calibration model (vector) given in (30), developed from the training data,
{Z% 2> Yrain}> can now be used for prediction. That is, given another set of measurements,
Z};st that was not used in the development of the calibration model and projecting the
matrix Z};st onto bf, an estimate of y can be obtained, i.e.,

9test = Z};stbf (31)

and if the data were mean-centered, where the mean of the dependent reference data is
given as , y..., then

g’test = Z;l;stbf + itrain (32)

To take advantage of the full capabilities of PLS, we need to select the optimal number of
factors, h°.

Selection of the Optimal Number of PLS Factors (Rank Reduction)

The optimal number of PLS factors (h°) can be determined by use of several different
methods [14, 2-4, 17, 13, 18, 5] and [19]. It is rarely desirable to retain all of the PLS
factors, especially when the measurements contain noise. Therefore, the objective is to
retain only those PLS factors that contain the desired information relating to the pure
component of interest, and discard all others that will be associated with noise. The
method that is presented here for selecting 4° is probably the most straightforward, and
thus, the easiest to understand. This method is used in the examples shown in the next
section to select h°.

The method presented here to select k° requires a measure of performance relative to
predictions yielded by the PLS calibration model given a set of test data. Using an
independent set of data, i.e., test data {Z[, Y, }» not used in the development of the PLS
calibration model, the standard error of prediction (SEP) [5] is defined as
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172
mlesl

SEP = 2 (yi test § i test)Z/ Myt (33)

i=1

where y; ..., is the reference (actual) pure component of interest for the test data, J,,,,, is
the PLS prediction (estimate) of y; ,.,, and m,,, is the total number of test measurements.
For the sake of completeness, we also define a similar measure of performance that is
computed for the training data, {Z] .., Yuain} Which will be used later. This is referred to
as the standard error of calibration (SEC), and is defined for the training data
{Zgain’ Ytrain} as

12

Mirgin

SEC =3 2 Oiorain = Yismai) [(Mypgin — h = 1) (34)

i=1

where y; ;... is the reference (actual) pure component of interest for the training data,
¥i train 18 the PLS prediction (estimate) of y; ,4ins Myrair iS the total number of training
measurements, and h is the number of PLS factors. The number of PLS factors (k) is
included in the denominator of (34) because a penalty must be placed on the prediction
performance of the calibration model as additional factors are included for the training
data. Therefore, (34) actually represents a weighted performance measure for the training
data. In other words, by including 4 in the denominator of (34), as more PLS factors are
added to the model, the predictive performance of the model must account for this increase
in performing a fit to the training data, therefore, minimizing overfitting of the training
data [5] and [11].

The SEP performance measure in (33) is used to determine the optimal number of PLS
factors (k%) to retain for the development of the PLS calibration model, i.e., b, given in
(30). That is, first a set of calibration models, b, for h = 1,2,...,q, are generated for a range
of PLS factors using the training data set {Zr., Y.un}. Using the set of ¢ calibration
models, by for h = 1,2,...,q, the test data set {ZL,, Yes} is used to assess the predictive
performance of each calibration model for different numbers of PLS factors. Using the
relationship in (33), the SEP can be calculated for each prediction of y,., that the
calibration models yield, i.e., §,,, for h = 1,2,...,q, using ZtTest. The selection of A° is
determined by observing the SEP values as a function of the number of PLS factors g.
Typically, the number of factors, k, associated with the minimum SEP that is observed will
indicate the optimal number of PLS factors, i.e., h°, given as

W = {h: SEP,,, = min{SEP()} ¥ h = 1,2, - -}’ - ~q} 35)

This method for selecting the optimal number of PLS factors, 4°, will be referred to as
independent validation. However, care must be taken when using (35) because the
absolute minimum may give a result that would allow additional factors to be retained that
are potentially associated with noise [5]. Therefore, each individual case must be assessed
carefully to reconcile what is actually the optimal number of PLS factors to retain. In some
cases, the absolute minimum from (35) is not the best choice, and many times one factor
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less than this absolute minimum will give the best overall performance. Additional
information can be obtained by observing the PLS loading vectors, w,, to facilitate this
selection process for the number of PLS factors to retain. In one of the examples which
follows, it will be shown that by observing the PLS loading vectors, w,,, the proper choice
of the number of PLS factors to retain for the calibration model development using the
independent validation method is confirmed.

Another method that can be used for selecting the number of PLS factors to retain is
called cross-validation [4] and [5]. Cross-validation is sometimes referred to as a
leave-one-out-at-a-time analysis approach because one measurement is left out of the data
set {Z .., Yuain} and the PLS model is developed on the remaining measurements, then the
measurement that was left out is tested to yield a prediction of y,,,;,, i-€., ¥,4in- This
process is repeated until all measurements are left out and used for prediction and the SEP
is computed for the entire m,,,;, measurements according to (33). Cross-validation is often
used when the number of measurements is sparse, i.e., not many measurements are
available. In this case there is not enough data to form a training set and a test set. The
results obtained using this method are not typically as good as the method given above that
uses a training set and a test set. Ideally, it is desirable to have a statistically representative
set of measurements such that separate training and test sets can be formed [14, 17] [15]
and [5]. In one of the examples which follows, the cross-validation method gives the same
result as independent-validation.

Summary

The PLS presentation given above is only one of many approaches that can be taken to
present the underlying principles of the algorithms [1-5,19,12,7] and [8]. As discussed
above, the single-component case was presented in order to allow tractability of the
algorithms, although the single-component case is applicable in many situations [3].
Comparing the PLS and CLS approaches for prediction (or estimation), it is obvious that
PLS has one key feature that CLS does not possess, i.e., the ability to select only certain
key features relative to the empirical data to retain for calibration model development, i.e.,
factor analysis. More specifically, shown in (11), Section 2, if the covariance matrix, Ry,
the covariance matrix, Ry, and the linear relationship, k, were all known quantities, then
the linear relationship, g, could be computed. Where g is the linear relationship between
the measurement data, Z and the estimate of the dependent variable, §, see (4). It was
shown, however, that the CLS solution of g given in (12) is directly related to (11), and
the CLS result in (12) is typically used because the covariance matrices, Ry, Ry, and the
linear relationship, A, are usually not known. However, when g is determined from (12)
all of the data are used, and as previously mentioned, this is not always desirable because
of the problem of overfitting, i.e., fitting the model to not only the desirable data but also
the noise and potentially other unwanted effects in the data.

If, for example, there was a priori knowledge of the noise corrupting the data, i.e., N,
then it is possible to develop methods to determine g, that would give better results than
the direct CLS approach in (12). With this prior knowledge of the corrupting noise, a filter
could be designed to suppress this disturbance. However, one method which does not
require a priori knowledge of the statistical properties of the corrupting noise for example,
but can essentially perform noise reduction by not allowing the noisy data to be included
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in the development of the calibration model by properly performing the factor analysis (or
rank reduction) and can typically yield better predictive performance results than CLS is
PLS. This is shown in Example 2 in the next section. This example also illustrates that the
noise can also be a component feature of the data that is of no interest to the analyst and
must be removed to increase the predictive performance of the PLS calibration model.
Therefore, when the number of factors is properly chosen, PLS can simultaneously
optimize the calibration model, b, and reduce the potential for overfitting by not allowing
the model to be fit to the noise.

4. SIMULATION EXAMPLES

Presented in this section are three examples that illustrate how PLS regression can be used
in selected applications. Applications of PLS are not limited to the classes of problems
addressed in this section, and we believe that this method has very wide applicability to
many other areas in engineering, specifically signal processing problems. All simulations
were run on a Pentium®-90 PC using MATLAB®. The PLS results in Examples 2 and 3
were obtained using the MATLAB® chemometrics toolbox [20]. The results in Example
1 were obtained by implementation of the algorithms given above written as m-files in
MATLAB®. The MATLAB® chemometrics toolbox uses a slightly different algorithm for
both calibration and prediction previously given. The prediction phase in the toolbox
more closely resembles Method 1 given in Haaland and Thomas [3], where the residuals
of the independent variable block are used to predict the dependent variables. Another
capability within the MATLAB® chemometrics toolbox is an option to compute the PLS
calibration model. The method utilized is also slightly different than the algorithm given
above, however, to avoid confusion the same notation used above for the PLS calibration
model will also be used for the MATLAB® PLS calibration model, i.e., b;.

Example 1

In this example, the objective is to determine a calibration model that is best suited for
prediction. Both the CLS and PLS methods are used and give the same results when all
of the factors are used in PLS. The independent data block consists of two straight lines,
ie.,r =wuand r = 2u. For —1 < u =< 1 in Au increments of 10~, the data matrix X in
(1) has two rows of length 200001. The assumed linear relationship is given as h” = [1
2], and the data are corrupted with Gaussian white noise with zero mean and variance
(0.15) for r = u and (0.1)? for r = 2u. Therefore in Figure 1, the two straight lines are
shown with the noisy samples which constituent the measurement matrix Z given in (3).
The data were not mean-centered because a bias does not exist in the data, this can be seen
in Figure 1. The covariance matrix for X was computed as

~ [0.33334 0.66668 ]
=

0.66668 1.33335 (36)

and the covariance matrix for the noise was
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o r=u (with noise)

r=2u (with noise)

] 1 ]
0 025 05 0.75 1
Normalized Sample Number

Figure 1. Data for Example 1, the matrix Z contains the noisy samples, and X contains the samples without
noise. (Note: only 1/1000 of the samples are shown).

0.02245 0.00002
N = (37N

0.00002 0.01001

The non-zero off-diagonal elements in (37) are a result of the noise not being truly white.
The actual (or reference) dependent variable, y, is given as in (2), i.e.,

y = X"h (38)

and is shown in Figure 2 as the solid line. The CLS and PLS models were computed
according the previously derived expressions in (11) and (30), respectively. The number
of factors retained to develop the PLS calibration model was two. The factor analysis
process described above to select the optimal number of PLS factors was not carried out
for this trivial case. It is obvious that two factors are necessary to retain because there are

15
Actual Dependent Variable
37 PLS Prediction
2.5
=
3
§ ]
5 PLS Prediction Error = 2.4 %
(CLS Error The Same)
15 ] T ¥
0 0.25 0.5 0.75 1
Normalized Sample Number

Figure 2. Partial least-squares prediction of the dependent variable, y; 5. (Note: only 1/1000 of the samples are
shown).
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two components of interest, i.e., r = u and r = 2u. The computed CLS calibration model
is given as

g" = [0.49654 2.23494] 39)

and the computed PLS calibration model is

by = [0.49683 2.23511] (40)

From (39) and (40), it can be seen that the two calibration models are essentially the same.
The difference is due to the covariance matrix, Ry, not being exact. In fact, if the CLS
calibration model is computed according to (12) the result is identical to the PLS result in
(40). Therefore, when all of the factors are retained to develop the PLS calibration model,
the results are the same as CLS. In Figure 2 the PLS prediction of y, i.e.,

Yois = Z"by (41)

using the calibration model given in (40), is shown along with the actual (or reference)
dependent variable, y. The PLS prediction error was computed by using (33), where m,,,,
= 200001, and was 2.4% (the SEPp; ¢ was multiplied by 10 to obtain the percent error
because the range of y is from —5 to +5). The CLS prediction error was the same as the
PLS result when the calibration model was developed according to (12) and the estimate
of y is computed using (4).

It is worthy of note that even though the CLS and PLS (retaining all of the factors)
results were the same, there are major differences in the manner that the calibration models
are computed. First, in the case of CLS, a matrix inverse must be computed to develop the
calibration model, and for very large m in X or Z (i.e., when many measurements must be
processed) the computational burden increases, see (12). In the case of PLS (see the PLS1
Calibration and Prediction Algorithms in Section 3), a matrix inverse is never computed.
Therefore, when many measurements must be processed, PLS is more computationally
efficient than CLS. Second, when columns of Z7 are linearly dependent (collinearites [5]),
the matrix inverse required to develop the CLS calibration model can not be computed. In
the previous example, this would have been the case if there was no noise corrupting the
data. In the case of PLS, this is not a problem. Therefore, as noise (which corrupts the data
matrix X) levels diminish, ZZ* becomes ill-conditioned [21].

Example 2

In this example simulated near infrared (NIR) absorption spectroscopic data [12] were
generated, although this data could represent any type of signals that are to be processed.
In Figure 3, a component of interest is shown as the solid line, and an obscuring
component is shown in the figure as the dashed line. Both of the components were
generated as Gaussian functions with two absorption bands each, as shown in Figure 3. In
the simulated NIR spectroscopic data, the component of interest could be the NIR
absorption spectrum of a particular analyte that is to be quantitatively analyzed. The
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Figure 3. Component (signal) of interest and an obscuring component for Example 2. These are used to
simulate 200 NIR spectra.

obscuring component could be the NIR absorption spectrum of water which is typically
orders of magnitude larger in amplitude than the component of interest [12, 22], and [23].
Therefore, the water (obscuring component) is often referred to as an intrinsically high
background absorption component for aqueous solutions that are analyzed by infrared (IR)
spectrophotometric methods.

The obscuring component is one noise contribution to the data (the component of
interest) that are to be quantitatively identified. That is, 200 simulated NIR spectroscopic
measurements were generated by adding the obscuring component to the component of
interest, where the obscuring component amplitudes were three orders of magnitude
larger. In addition, Gaussian white noise, with zero mean and a relative variance of
o” = 9 was added to the component of interest before adding the obscuring component.
In order to simulate the typical nature of spectroscopic data of a particular analyte in an
aqueous solution in varying concentration (in milligrams per deci-liter, mg/dl), the
spectral amplitudes of the component of interest were multiplied by a linear sequence
given in vector from as ¢, which simulates normalized concentration values of the analyte
of interest to form 200 spectra. The linear sequence elements in ¢ are given as {c¢;: ¢; =
¢y + Ac, Vi=12,..200 and Ac = 0.005, c, = 0}. Therefore, the areas under the
curves of the 200 spectra associated with the component of interest are directly
proportional to the elements in ¢. That is, under ideal conditions, there exists a linear
relationship between the amount of absorption and the concentration of the analyte in the
aqueous solution according to the well known Lambert-Beer’s law [12], i.e.,

A = log, (YD) = E cl 42)

molar absorption coefficient, c = concentration of the analyzed substance(s), and [ = path
length of the sample cell. As indicated in (42), the amount of absorption of a particular
substance being analyzed is directly proportional to the concentration of the substance.
The normalized concentration values will be referred to as the reference values. The

where A = absorption, I = absorption light intensity, I, = incident light intensity, & =
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obscuring component was then added to the 200 spectra with a random amplitude to
simulate the non-ideal nature of a spectrophotometer, i.e., baseline variations [24, 25] and
[5]. Therefore, the 200 composite simulated spectra contains 200 spectra of interest, that
are to be identified and correlated to its associated reference value (normalized
concentration), a highly dominant obscuring component, i.e., water absorption, random
noise, and baseline variations. Figure 4 shows 5 of the 200 composite simulated spectra
(measurements). It is apparent from Figure 4 that the component of interest in each of the
five spectra is essentially indistinguishable, mostly due to the obscuring component shown
in Figure 3. In fact, all five of the spectra in Figure 4 have a spectral shape which
resembles only the obscuring component.

The objective in this example is to predict the reference values (concentrations) given
only the spectral measurements. We will use both CLS and PLS methods and compare
their predictive performances. For both CLS and PLS, a calibration model must be
developed. To accomplish this, and also compare their predictive performances, the 200
spectra were divided into a training set and a test set, along with the associated reference
values (normalized concentrations). Beginning with the 200 composite spectra, and
associated reference values in ascending order, every other spectrum (measurement) was
selected, along with the associated reference value for the test set. The remaining 100
spectra were used for the training set, therefore, m,,,;,, = m,,, = 100. The absorption
spectra (measurements) are considered as the independent variable block, see (15), and the
reference values (concentrations) are considered as the dependent variable block, see (16),
[2]. Therefore, {A,, ;A ) are the training and test absorption matrices, both with
dimension 100 X 100 (measurements X spectral components), and {€,,4insC;es;} CONtains
the associated training and test reference normalized concentration values, both of
dimension 100 X 1.

Using the training data, {A,,;,,,€;,4in} the CLS calibration model (vector) was computed
as

— T —1 AT
g= (AtrainAtrain) Atrainctrain (43)
975
1]
%‘ 475 -
w =
25 RN LE T
p1] 50 75 100
Sample Number (Frequency)

Figure 4. Five representative simulated NIR spectra from the set of 200.
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according to the relationship in (12). Figure 5 shows the CLS calibration vector
components as a function of the sample number (these are the spectral components or
simulated frequency). As seen in Figure 5, the calibration model is very erratic, therefore,
it is expected that using this model to predict concentrations of unknown spectra would
result in relatively poor prediction performance. If the test data absorption matrix A,,,,, is
projected onto the CLS calibration model g, the associated test concentrations, c,,,,, can be
predicted, see (4), as

etest—CLS = Axestg (44)

Now using (33), the SEP can be computed which will give a quantitative measure of the
predictive capability of the CLS calibration model. It is interesting to also compute the
SEC from (34), where in the denominator of (34) the “m,,,;,, — h — 1” term is replaced
by m,,,;,, = 100, because CLS is not a factor analysis method. Therefore, the CLS
prediction of ¢,,,;,, i.€., &, 4in-cLs» Was determined from

a

Cirain-cLS = Atraing (45 )

Because the reference concentration values are normalized in (0,1], the SEP and SEC
are computed in terms of percent error by multiplying (33) and (34) by 100. Therefore, for
CLS the %SEC.; ¢ = 0.0012, which indicates that CLS is able to fit the calibration model
extremely well to the training data. However, conclusions should not be drawn from this
result about the overall predictive capability of the CLS approach, e.g., that CLS is thus
able to perform exceptionally well when predicting concentrations from unknown spectra.
In fact, CLS is actually overfitting the data, that is, it is fitting the calibration model to the
noise which is not desirable, however, with CLS this is unavoidable. This can be seen
when the SEP is computed, i.e., BSEP ¢ = 296.5. However, this should not be too
surprising when observing the CLS calibration model in Figure 5. The prediction results

03
CLS calibration model vector
0.2
§ 0.1 4
.§ -0.1
Q
™ 0.2
-0.3
0.4 T T T
25 50 s 100
Sample Number (Frequency)

Figure S. Classical least-squares calibration model.
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for the training and test sets are shown in Figure 6. As seen in Figure 6, the CLS
predictions on the unknown spectra are very poor, even though the predictions on the
training data are very good.

Using the same training data set {A,,,;,,C;rain} Used for CLS, a PLS model was
developed. In this example there are the same number of measurements as spectral
samples (m = n), therefore, as previously stated, if all of the PLS factors were computed
a total of g = 100 exist. However, because of the manner in which the simulated data were
constructed, it is expected that a small number of factors will be necessary to retain for
development of the PLS calibration model. Specifically, there is one pure component of
interest which is corrupted by noise, and one obscuring component. Therefore, intuitively,
it seems plausible that 2 PLS factors would be sufficient to characterize the calibration
model in an optimal sense. Using the independent-validation method described above to
select the optimal number of PLS factors, h’, using the training, {A,,4iCsrain}» to develop
the calibration models and the test data, {A,..c.,}, to assess their predictive
performances, Figure 7 shows the SEP values as a function of the number of PLS factors
(only carried out to 10). The main graph in Figure 7 indicates that 2 PLS factors would
be optimal, and the insert in the figure shows that 2 factors is the absolute minimum
because after 2 the SEP continues to increase monotonically. As previously stated, many
times it is worthwhile observing the PLS weight loading vectors, W, see (18). In Figure
8 the first 3 PLS weight loading vectors are shown. It is obvious that the third PLS weight
loading vector is associated with noise and should not be retained for model development
which confirms the independent-validation selection method result. This is intuitively
pleasing based on the speculative discussion previously given. Even though it is not
necessary in this example to observe the PLS weight loading vectors, it does illustrate that
in some cases it would be necessary if the independent-validation selection method alone
was not definitive. Therefore, when the number of factors is properly chosen, PLS can
simultaneously optimize the calibration model, b, and reduce the potential for overfitting.
An interesting result is obtained when the cross-validation method is used to select the
optimal number of PLS factors. Using only the training data, {A,.;,.Crain}> fOr

10
o o ° °
° o
5 oo ° ° o
S o o
° oo o
g ° Ref
s Oo o ° Lo 03% : . 00 eference
0y oY © °® 0%02 o + CLS Training Prediction
N AR LRI N SRAIN
3 p ° ° ° ° CLS Test Prediction
O o ) o o ° °
° oy °
5 o
BSECcr s = 0.0012
° %SEPy g = 296.5
-10 T T T
0 0.25 0.5 0.75 1
Reference (Actual)

Figure 6. Classical least-squares predictions for the training and test data using the calibration model in (43)
and shown in Figure 5.
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Figure 7. Selection of the optimal number of PLS factors.

cross-validation, the results also showed that 2 PLS factors were optimal. That is, when
the SEP was observed as a function of the first 10 PLS factors, i.e., h = 1, 2,...10, the
absolute minimum occurred at 2.

To illustrate that very powerful physical insight can be obtained from PLS, in Figure 9
only the first 2 PLS weight loading vectors are shown that were used to develop the
calibration model (i.e., h = h° = 2), along with the original pure component of interest,
the obscuring component, and the PLS calibration model vector, bf. All five of the
components shown in Figure 9 have been normalized with respect to their maximum value
in order to compare their relative shapes. This was done because the PLS calibration
model vector has absolute amplitudes which are three orders of magnitude less than the
four other components shown. From Figure 9 it is obvious that the first PLS weight
loading vector, w;, is almost identical to the obscuring component. This is not
coincidental, in fact it is typical of PLS to extract this information from the data because
W, is the first-order approximation to the obscuring component. After the first iteration
through the PLS1 Calibration Algocithm discussed above, the score (or latent variable)
vector, #;, and the loading vector, b;, that are associated with the first weight loading

04

a: st PLS weight loading vector

= b 2nd PLS weight loading vector

.......... c: 3rd PLS weight loading vector

c\f
0.4 T L —T
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Figure 8. First three PLS weight loading vectors.
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vector, W, are used in Step 6 of the algorithm to generate the first spectral residue matrix,
see (25). Thus, an approximation to the obscuring component is removed from the spectral
data and the process repeats. The second, and final PLS weight loading vector retained, w,,
shown in Figure 9, is seen to be very similar to the PLS calibration model vector, b Also,
comparing both %, and b, to the component of interest in the Figure 9, it can be seen that
there exists spectral features similar to the component of interest. Therefore, this is also
not coincidental that W, and b, appear to be similar because, as stated above, the
calibration model vector contains the final calibration coefficients which are used for
prediction of the dependent reference variable from unknown spectra. However, w, and by
are not identical in shape to the component of interest because the obscuring component
(which is highly dominant, see Figure 4) must be suppressed in order for PLS to achieve
relatively high predictive performance relative to the component of interest. Therefore, the
dominating effects of the obscuring component must be quelled, which is the case in this
example, and can be seen by again observing Figure 9. Comparing w; and Ww,, which are
orthonormal, where the obscuring component has dominant spectral bands, the second
PLS weight loading vector, Ww,, has a mitigating effect to suppress this dominance.
Using the PLS calibration model, b, developed from the training data, {A,,;n:Csrain}>

for two PLS factors, a prediction of ¢,,, i.e., &,..prs, Was obtained using the test data,
Atest’ as

etest—PLS = Atestbf (46)
From (46) the SEP can be computed using (33). As with the CLS results shown above, it

is also interesting to compute the SEC using (34), therefore, the PLS prediction of c,,;,,
i.e., €,4in.pLs» Was determined from

Curain-pLs = AvrainDs “én

Therefore, for PLS, the %SECp; s = 0.7 and %SEPp; s = 0.64. Comparing the respective
SECs for CLS and PLS, it can be seen that CLS shows much better performance than PLS,

a: Ob: i Ci

e b: Component of Interest
---------- c: 1st PLS weight loading vector
-==-——--- d: 2nd PLS weight loading vector

------- e: PLS calibration model vector

Sample Number (Freguency)

Figure 9. Comparison of the a: obscuring component, b: component of interest, c: 1st PLS weight loading
vector, d: 2nd PLS weight loading vector, and e: PLS calibration model vector.
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however, as explained above this is due to overfitting of the training data (i.e., CLS is
using all 100 factors for the development of the calibration model, g). In the case of PLS,
overfitting of the training data does not occur because only 2 PLS factors were retained
to develop the calibration model, b, thus not allowing the noisy data to participate in the
development of the model. Comparing the respective SEPs for CLS and PLS, it is seen
that PLS has three orders of magnitude better predictive performance than CLS. Again,
this is a result of not allowing the noisy data to be used for the development of the PLS
calibration model as was the case with CLS, because all of the data was used to develop
g. Figure 10 shows the PLS predictions of c,,,;, and c,.,,. Comparing the PLS prediction
of ¢, in Figure 10 to the CLS result in Figure 6, the difference is startling.

Example 3

In this final example, PLS is applied to a parametric system identification problem using
the auto-regressive moving average (ARMA) approach [26] and [27]. The objective is to
estimate (or predict) the parameters of a system given only the collected input/output data
of the system, without prior knowledge of the system characteristics. There is no intention
to give an exhaustive explanation of system identification using the ARMA approach, but
to show how the system parameter vector and the system dimension can be simultaneously
estimated. Although, a brief introduction to system identification will be given in order to
facilitate an understanding of how PLS can be applied.

Applying PLS to the identification of the parameters of a single input/single output
(SISO) discrete-time noise-free system, i.e., the coefficients of the numerator and
denominator polynomials of a strictly proper rational system z-transfer function or the
matrix elements of a canonical state-space model of the system, we use the ARMA matrix
approach. Specifically, given an appropriate input u(k) along with the system output
(response) vector y(k) for k = 0, 1, 2,..., the ARMA matrix can be formed for a selected
number of data samples, N, and an assumed system dimension, n. The appropriate input
to the system is always taken to be a stimulus that is “persistently exciting of order n” [26]

Reference
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Figure 10. Partial least-squares predictions for the training and test data using the calibration model b, shown
in Figure 9.
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and [27], i.e., one that will excite the system in a manner so enough information will reside
in the output data to properly estimate the system parameters.
The strictly proper [28] rational z-transfer function has the general form

n—1 n—2 n—3
A time-domain difference equation can formed from (48) which can be written as
yk) + ayk — 1) + ayytk —2) + - - -ay(k — n)
— btk — 1) — byu(k —2) — bsutk — 3) - - - — bu(k — n)
= e(k;a;, a5, - -, a, by, by, by - b)) 49)

where e(k; a,, a,,..., a,, b;, b,, bs,..., b,) is an error term which is zero when the parameter
vector 07 = la,, ay,..., a,, b,, by, bs,..., b,] contains the actual or true plant parameters
[26]. Therefore, (49) can be written as

y(k) = $T(K)0 + e(k; 0) (50)

where ¢7(k) = [—ytk — 1) — y(k — 2) ... — y(k — n) utk — 1) utk — 2) u(k — 3)...u(k
— n)]. For the time index taken as k = n, n + 1, n + 2,..., N, where n is the assumed
system dimension and N is the total number of data samples used from the data set {u(k),
y(k)}, the collective set of equations resulting from (50) can be written as

y(N) = ®(N)8 + e(N; 8) (51

where y'(N) = [y(n) y(n + 1) y(n + 2)..y(N)], ®'N) = [d(n) b(n + 1) b(n +
2)...b(N)], €’(N; 0) = [e(n; 0) (n + 1; 0) €(n + 2; 0)...€(N; 0)], and BN) e RV 1<,
y(k) € RV eV; 0) € RV, and 0 € R,

For a specified number of data samples N and as assumed system dimension »n the
ARMA matrix shown in (51) has the form

-yn—1) —yn—=2) - -+ —y(0) un—1) un—-2) - - - w0
—-ym) -—ya—-1) .- -y un) um-1 --- u)
—yo+1) -—ym - -—y@2 un+1) u@m --- u®)
®(N) = d Y (52)
—yn+2) —yn+1) ... -=y@3) un+2) un+1) - - - u@3)
“yN—-1) —-y(N—=2)- - - —y(N—n) uN-1ulN-=-2)--- -ulN-n)

CLS can yield an estimate of the parameter vector, 6CLS € R?", in (51) using (12) [26] and
[27], i.e.,

Bers = @TMN)DN)) ! DTN)y(N) (53)
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The basic problem with the CLS approach, or any other method that requires prior
knowledge of the system dimension, is that the actual system dimension 7 is usually not
known a priori. There exist methods which have been developed to determine the
dimension of the system (or order estimation), however, we have found these to be
unreliable in some situations. For example, methods presented in Ljung [27] include: (i)
examining the spectral analysis estimate of the transfer function, (ii) testing ranks in
sample covariance matrices, (iii) correlating variables, and (iv) examining the information
matrix. Therefore, if a parameter estimate is obtained according to (53) with no prior

knowledge of the actual system dimension, then 6CLS would contain 2n parameter
estimates to yield a system realization that would be either over-specified, if n > 7, or
possibly under-specified if n < ii. In either case, the resulting parameter vector could give
erroneous results when used as a model for the actual system.

Therefore, it is desirable to obtain a simultaneous estimate of the dimension of the

system, 71, and the parameter vector, 0e R2". When using PLS for this purpose, the ARMA
matrix, ®(N), takes the place of the absorption matrix, A, or Z7, in (15), and the
concentration matrix, ¢, or y, is replaced with the vector y(N) in (16). The resulting
estimate of the system dimension using PLS, 7i, will yield the system order for a minimal

realization [28]. Therefore, the parameter estimate is é pLs € R?* where i< n, because in
the development of the ARMA matrix ®(N) in (52) the system is intentionally
over-specified, i.e., it is assumed that n > 7.

An estimate of the system dimension, 7 for the minimal realization is obtained using a
variation of the independent-validation method given above referred to as PRESS
(prediction residual error sum of squares) [14, 2, 4]. This is one of many functions in the
MATLAB® chemometrics toolbox [20]. As with the independent-validation method, a
training set and a test set are required, i.e.,

training data set = {®,; (N), ¥ruin@™) } (&)

and

test data set = {®((N), ¥,.(N)} (55)

where the test data set in (55) is taken from a different portion of the collected data {u(k),
y(k)} than that used for the training data set in (54). It is assumed in generating the two
data sets in (54) and (55) that the system is over-specified, i.e., n > 7i. The PRESS values
are computed as a function of the number of PLS factors. In the system identification
problem, typically there will be many more measurements than the number of parameters
to be estimated for an assumed system dimension, therefore, in PLS the maximum number
of factors will be g = 2n. Therefore, the optimal number of factors will directly indicate
the system dimension, i.e., h° = 21, for a minimal realization. The optimal number of PLS
factors will be twice the estimated system dimension because “2n” parameters must be
determined, see (48).

After the optimal number of factors is determined, which will give an estimate of the
system dimension, 7, the parameter vector can be estimated by forming a new set of data

final data set = {®«N; 1), y(N; i)} (56)
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i.e., the final data set used to estimate 0 from the collected data {u(k), y(k)}. The estimated
system dimension is used to generate the ARMA matrix ®(N;7), and the output vector
YAN;n) which contains the appropriate output samples from y(N). The number of samples
used to generate ®(N;;) and y(N;;) does not necessarily have to be the same as used to
develop {®,,,;,(N), ¥;0in(V)} and {®,,(N), y,.,(N)}, but must be N > 2, [26]. However,
using more samples will typically result in better estimates of the system parameters. An
estimate of the parameter vector can be determined by computing the PLS calibration
model vector. The calibration model vector will contain the 2, estimates of the system
parameters, i.e.,

0, = b; (57)

where 6,5 € R2 or 6,5 € R,

Before presenting the system identification example, a brief explanation of the
relationship between the PLS calibration step and the estimate of the system dimension
will be given. When the system dimension is intentionally chosen as n > i (over-
specification) to generate (54) and (55), superfluous information exists in each row of the
ARMA matrix, ®,,,;,(N). That is, in each row of this matrix there will exist input/output
samples from {u(k), y(k)} that are associated with the system difference equation for the
actual system of dimension 71 < n, or a system of dimension less than 77 which is a minimal
realization of the actual system. However, ®,,,,,(N) for (n > i) also contains redundant

data. In Step 5 of the PLS1 Calibration Algorithm, Section 3, the loading vectors, I;h, are

generated for the data matrix, i.e., ®,,,(N) in this example. Therefore, because the 7,
vectors (for h = 1, 2,..., 2n) from Step 3 are repeated approximations to the elements in
Yerain(NV), the column elements in ®,,,;,(N) associated with the largest positive elements in
the W, vectors (for h = 1, 2,..., 2n) from Step 2 tend to indicate those column elements
in ®,,,,.,(N) which exhibit the largest correlation with the elements in y,,,;,(N). Therefore,
when ®,, ;. (N) is formed for an over-specified system (n > 1), this process will select the
appropriate elements in the rows of ®,,,;,(N) which are more closely associated with the
system of minimal dimension. In the factor analysis process, when the optimal number of
factors (4°) is selected (as explained above), the resultant number of optimal factors will
be 2;. This must be the case because the dimension of the parameter vector, 0, is always
twice the system dimension, therefore,

W =2, (58)

Thus, for a minimal realization, we seek the first minimum, see (35), to select the optimal
number of PLS factors, h°.

The example which follows illustrates how the selection of the system order can be
carried out, and using this estimate of the system dimension the parameter vector can be
estimated. The system analyzed is third order with parameters for the actual discrete
system given as

0" = [—1.005 0.505 —0.0025 0.316 0.158632 0.000316] (59)

with the sampling period T, = 27/10 sec and 7i = 3. The parameters in (59) are related
to the strictly proper rational z-transfer function given in its general form in (48). The
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simulated empirical data {u(k), y(k)} were generated in MATLAB® using (59) and two
different inputs, i.e., a chirp signal and Gaussian white noise with zero mean and unity
variance. Both signals were generated with sequence lengths of 1024, and the chirp signal
start frequency was 0 Hz and the end frequency was f/4 Hz (where f; is the sampling
frequency). Figure 11 shows the chirp signal used in the first simulation, and Figure 12
shows the fast Fourier transform (FFT) magnitude of the chirp signal. First, given the
input u(k) as the chirp signal of length 1024, an equal length output vector y(k) was
generated using a digital simulation process with the parameter vector in (59). Using the
first 300 samples (N = 300) from the input/output data {u(k), y(k)}, and assuming the
system dimension to be n = 6, the training ARMA matrix ®,,,;, was generated along with
the associated vector y,,,;,- Using the next N + 2 samples from the input/output data, the
test ARMA matrix ®,,,, was generated along with the associated vector y,,,, for N = 300
and n = 6. The PRESS was generated using {®;, ;. Yirains Press» Yzese}» and the results are
shown in Figure 13. That is, first using {®,, ;> ¥rain }» the PLS weight loading vectors, w,,,

the PLS score (latent variable) vectors, ?h, the PLS regression coefficients (inner

relationships), ¢,, and the PLS loading vectors, l;n, for h = 1, 2, ..., 12, were generated.
Then the test set, {®,,,,, ¥,..:}> Was then used to compute the PRESS for h = 1,2,..., 12,
and the results are shown in Figure 13. Note that the first minimum in Figure 13 occurs
at 4 and not at 6, which indicates the optimal number of PLS factors, i.e., h° = 4. Because
h° = 2,, from (58), the PLS estimate of the system dimension is ,= 2, which is not the
actual system order, i = 3. Therefore, the minimal PLS realization of the system is a
second-order system.

Carrying out the same procedure, with Gaussian white noise now used as the system
input u(k), results in the PRESS shown in Figure 14. Again the PLS estimate of the system
dimension is shown to be ,= 2, because h° = 4 from Figure 14, i.e., from the first
minimum. Using the first 300 samples from the {u(k), y(k)} simulation data, with the
system input u(k) as the chirp signal and ,= 2, the final ARMA matrix, ®; and the
associated vector y, were generated. From the {®, y,} data, the PLS calibration vector was
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Figure 11. Chirp signal used as the system input, #(k), in Example 3.
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Figure 12. FFT of the chirp signal in Figure 11.

generated, i.e., b, = ép,_s. The PLS estimate of the parameter vector is given as

07, = [—0.999233 0.499353 0.315462 0.161980] (60)

which is the PLS minimal realization of the system in (59). For the purpose of comparison,
when 6 PLS factors were retained to develop the PLS calibration model vector, i.e.,

0,5, the results were identical to (59), the actual system used to simulate the data.

It can be shown in a number of ways that (60) is a minimal realization of the actual
system given in (59). First, if the poles and zeros are plotted in the z-plane for the actual
system given in (59), it can be seen that a pole and zero close to the origin will almost
cancel each other, see Figure 15, which if they were canceled would result in a
second-order system. The poles and zeros for the minimal realization given in (60) are
plotted in the z-plane shown in Figure 16. The poles and zeros for the actual third-order

0.6
3rd-Order Example/Chirp
0.5 Signal Input
0.4 -
w
@034
4
o
0.2 1
ho
0.1 /
0 ) il LI 1 L] L L] L] L] 1
1 2 3 4 5 6 7 8 9 10 11 12
Number of PLS Factors, A

Figure 13. Selection of the optimal number of PLS factors from the PRESS for a third-order system with u(k)
a chirp signal, 4 is selected as 4 (; = 2), for the minimal realization of the system.
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Figure 14. Selection of the optimal number of PLS factors from the PRESS for a third-order system with u(k)
as Gaussian white noise (zero mean and unity variance), K is selected as 4 (, = 2), for the minimal realization
of the system.

system given in (59) are
POless,q order system = 0.5 + j0.5 0.5 — jO.5 0.005] (61)

Z€r0S3,4.order system — [-_05 - 0002] (62)

From (61) and (62), and Figure 15, it can be seen that the pole at 0.005 essentially cancels
the zero at —0.002. The poles and zeros for the PLS minimal realization given in (60) are

POIES 31 order system = [0-499616 + j0.499736 0.499616 — j0.499736] (63)

2870824 order system = [ —0.513468] (64)

04
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Figure 15. Plot of the poles and zeros for the 3rd-order system given in (59) in the z-plane.
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Now, in (61) and (62), if the pole at 0.005 cancels the zero at —0.002, the resulting system
is essentially the minimal realization given in (60), whose poles and zeros are shown in
(63) and (64). This can also be seen by comparing the pole/zero locations for the two
systems in Figures 15 and 16. The fact that the system in (60) is a minimal realization of
the actual system in (59) can also be seen by comparing their unit-step responses. Figure
17 shows the difference between the unit step response for (59) and (60), and indicates
they are essentially the same in both the transient and steady-state regions.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Partial least-squares (PLS) regression has been presented as an alternate method to
classical least-squares (CLS), and direct comparisons of the two methods were made. It
has been shown that in many applications, PLS can out perform CLS, and thus, results in
a calibration model that can yield better predictive performance than CLS. Because PLS
is a factor analysis (rank reduction) method, noise reduction is an inherent feature in the
selection process to determine the optimal number of factors to retain for the development
of the PLS calibration model. The CLS method does not have this capability, therefore,
CLS essentially retains all of the factors, or uses all of the available data to develop the
calibration model. By comparison, PLS can simultaneously optimize the calibration
model, by, and reduce the potential for overfitting by not allowing the model to be fit to
the noise, when the number of PLS factors is properly chosen.

When all of the factors in the PLS method are retained and the calibration model is
developed, the results are identical to CLS. This was illustrated in the first simulation
example that was presented. The second simulation example illustrated the exact nature of
what the factor analysis in PLS can accomplish. Synthetic NIR spectral data were
simulated, i.e., a component of interest was corrupted by Gaussian white noise and a
highly dominant obscuring component was then added to these data. The first two PLS
weight loading vectors, which are orthonormal, were related directly to the various
components in the simulated data, and the resulting calibration model that resulted from

- 8 08 04 02 J 02 04 08 OB 1
Real Adls

Figure 16. Plot of the poles and zeros for the PLS minimal second-order realization of (59) given in (60) in the
z-plane.
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Figure 17. Difference of the unit-step responses for the actual third-order system in (59) and the PLS
second-order minimal realization of (59) given in (60).

retaining 2 PLS factors. The first PLS weight loading vector was shown to be a first-order
approximation to a highly dominant obscuring component in the synthetic data. This is
subsequently removed in the recursive PLS calibration algorithm. Therefore, without any
prior knowledge of the nature of the unwanted component, PLS can approximate it and
remove its effect from the data, and thus, enhance the component of interest. In addition,
it was shown that the third PLS weight loading vector was associated with noise, and thus,
was not retained to develop the calibration model. The PLS calibration model (for 2
factors) resulted in three orders magnitude better predictive performance than CLS (where
all of the data are used to develop the CLS calibration model), when tested on an
independent, i.e., unknown, test data set. In the third example, it was shown how PLS can
be applied to parametric system identification. It was shown that the system dimension and
the system parameter vector can simultaneously be estimated using PLS when using the
auto-regressive moving average (ARMA) method. When applying PLS for this purpose,
the ARMA data matrix is intentionally over-specified. That is, in forming the ARMA data
matrix the assumed system dimension is n > 71, where 7 is the actual system dimension.
It was also shown in this example that the PLS estimate of the system dimension, ;, can
be less than the actual system dimension, i.e., ;< 7i. Therefore, PLS can yield an estimate

of the parameter vector, 0, i.e., 6PLS € R”, which is associated with the minimal realization
of the system.

We believe that PLS is an important and valuable analytical method that has a wide
range of applications in signal processing. Our current research efforts are focused on
developing algorithms for real-time implementation of PLS, development of PLS-based
power spectrum estimation methods, and applications in controls to perform state
estimation, to name a few. Another very important issue that was not discussed above
pertains to the detection of outliers [3], [S], and [11]. An outlier, or abnormal observation,
is a particular measurement than shows some type of departure from the global set of data.
Many times is very important to be able to detect outliers so they can be discarded and not
used for the development of the PLS calibration model. If retained and used in the
development of the calibration model, the predictive performance of the model could be
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diminished. Therefore, there have been numerous methods developed for the detection of
outliers [3], [5], and [11]. However, we feel that improved methods for detecting outliers
is an important area that needs to be addressed, and the results from these efforts could
lead to highly robust PLS calibration models.
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