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In this paper, a periodic finite-span beam subjected to the stochastic acoustic pressure with bounded parameters
is investigated. Uncertainty parameters exist in this acoustic excitation due to the deviation or imperfection. First,
a finite-span beams subjected to the random acoustic pressure field are studied, the exact analytic forms of the
cross-spectral density of both the transverse displacement and the bending moment responses of the structure are
formulated. The combined probabilistic and convex modeling of acoustic excitation appears to be most suitable,
since there is an insufficient information available on the acoustic excitation parameters, to justify the totally
probabilitic analysis. Specifically, we postulate that the uncertainty parameters in the acoustic loading belong to
a bounded, convex set. In the special case when this convex set is an ellipsoid, closed form solutions are obtained
for the most and least favorable mean square responses of both the transverse displacement and bending moment
of the structure. Several finite-span beams are exemplified to gain insight into proposal methodology.

KEevworbps: Probabilistic analysis; convex modeling; multi-span structures

1. INTRODUCTION

The model of a periodic multi-span beam with elastic supports is often utilized in
engineering. For example, such a model is a reasonable approximation for a plate-like
structure with parallel, regularly spaced stiffeners. Other practical examples of such
periodic structures include an airplane fuselage structure consisting of a uniform shell
reinforced with periodically arranged stiffeners, and an oil pipe line or a long bridge lying
on periodic supports, etc.

There are several approaches dealing with the free vibration of multi-span beam [1-5],
but only several studies have been conducted on forced vibration under either
deterministic or random excitation. The usual normal mode formulation does not lead to
practical results in this case, since it is almost impossible to calculate the normal modes
of structures with a large number of spans due to close proximity of natural frequencies
in each frequency band. However, if the structural configuration is spatially periodic, then
the analysis can be greatly simplified. Two alternative methods are available for such a
spatially periodic multi-span beam: the transfer matrix technique [6] and the wave-
propagation approach [5,7-9]. However, numerical difficulty in transfer matrix technique
may still arise when the number of periodic units in a structure is large. In the framework
of wave propagation, non-harmonic waves have to be decomposed into an infinite number
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of harmonic components in order to carry out the analysis of the forced vibration. In the
actual calculation, however, the infinite sum has to be truncated, and a large number of
linear equations has to be solved numerically to determine the unknown coefficients.
Recently, the unavoidable disorders (i.e. diviation from the perfect periodicity) attracted
several investigators. For the review of these works and the effect of mode localization,
readers may consult the extensive review of Li and Benaroya [10]. The mode localization
in eigenvalue problems was dealt inter alia by Ariaratnam and Xie [11], Hodges and
Woodhouse [12], Pierre and Dowell [13], Elishakoff, Li, and Starnes [14], and others.

In this paper, first, a finite-span beams subjected to the random acoustic pressure field
are studied, the exact analytic forms of the cross-spectral density of both the transverse
displacement and the bending moment responses of the structure are formulated by
utilizing the exact normal modes of a finite-span beam proposed in paper [15]. Several
examples are selected for illustration, namely, beams with different span numbers which
typify many structural systems often found in engineering.

In a traditional random vibration analysis, the probabilistic parameters of the random
loading are assumed to be precisely known. This crucial conjecture is then dispensed
within this paper. Specifically, we postulate that the loading probabilistic parameters
belong to a bounded, convex set. A convex model is a set of functions. Each member
function represents a possible realization of an uncertain event. In this paper our convex
models represent uncertain space-wise and time-wise varying excitation vectors. The set
of functions represents the uncertainty in the actual realization. Many different convex
models are available, and one selects among them according to the type of information
which characterizes the uncertainty. In the special case when this convex set is an
ellipsoid, closed form solutions are given for the upper and lower bounds of the
mean-square displacement of the structure. This combined probabilistic and convex-
theoretic approach toward uncertainty in loading statistical parameters was first proposed
and developed by Elishakoff and Columbi [16, 17]. Here we will apply this approach to
establish a convex model for the acoustic pressure and use this convex model to estimate
the least favorable stochastic responses of the multi-span beams.

2. RANDOM VIBRATION OF THE SYSTEM
2.1. Basic Equations

Consider a multi-span beam whose motion is governed by the following differential
equation

o'w (x, + ow (x, 1) *w (x, 1)

c tpA—5 =Pk @

EI
ox* ot

where EI = the bending stiffness of beam, ¢ = viscous damping coefficient, pA = mass
per length of the beam, and p (x, ) = the stochastic acoustic pressure.

We assume that the acoustic pressure field is a weakly stationary random process in
time. The calculation of the cross-spectral density of the response at a given location on
the linear system requires that the cross-spectral density of the excitation field be known.
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The following model of the cross-spectral density @, (p;, p,; w) for acoustic loading was
chosen in the this study

D, (py, Py @) = Py (0) U (Ap, @) e %, Ap=p, —p, )

where §,(w) is the spectral density when p; = p,, a(w) and y(w) are the decay and phase
functions, respectively, which are given by Egs. (B.1), (B.2) and (B.3) in Appendix B.

Let the dynamic behavior of the system be characterized by the frequency response
function H (r; p; w) which will be derived later. Hence, the cross-spectral density of the
response at r; and r, is given:

Py (ry, 7y ) = f f D, (py, p2; w) Hy (ry, py; @) Hy(ry, py @) dp,dp, 3)
R ‘R

where the subscript 0 indicates a certain response (or output) variable, ®,,(p; ,p,; ®) =
cross spectral density of the pressure intensities at p; and p,, respectively. Each integration
in Eq. (3) is over the domain R of the structure. The cross spectral density ®,,(p;, p,, w)
reduces to the spectral density in a single location for p, = p, = p.

2.2 Cross-Spectral Density of Responses

For an N-span beam, it is more convenient to use local coordinates rather than global

coordinate systems. The global and local coordinates are related as follows
n=@&+8-DL p=E+B-DL

ByB=12, - "N, j=12 )

where r; is the response location, p; is the location where the force is imposed, B and B'
are the serial number of beam’s span. Thus, the cross-spectral density of displacement
response in Eq. (3) for N-span beam reduces to the following expression in terms of the
local coordinate system:

N N 1 1
oo B 6B b ) =B L 3 3 [ [0, €&+ 6 -850
1=1B=1% %

X Hp (B, & By, £ ) Hp (Bo, £ Bo, £ o) d, dE, Q)

where B is the width of the beam, an asterisk indicates the complex conjugate.
Similarly, the cross-spectral density of response for bending moment can be obtained
from Eq. (5) with replacement of Hy, by H,, as follows:
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o v N L1 | | |
) 5By £y ) =B L D, (& — - By
mm (B> €15 B, &3 ) B}2=1 s;2=1 _[ [ o &1 — & T By — By w)
X Hy By, & Bl’ g‘l; o) H;w B2 & B'z» §‘2; ) d§'1 d§2 ©

where H), can be obtained from H),

@ Hpy (& B, E B, )
ot?

Hy (¢ B, €, B w) = EIL™ )

In order to derive the functions Hj, and H,,, let us assume that the multi-span beam is
excited by a harmonic point loading imposed at §' on B'th span of the beam, i.e.

P (& 1) = Bppd (£ — £) € @®)

where 355 = Kronecker’s delta and 3 (§ — £') = Dirac’s delta function. The response of
the system at £ on Bth span is sought in the form

WB (ga t) = HD (B’ E; B‘i gl; (.0) eimt (9)
Substitution of Egs. (8) and (9) into Eq. (1) yields
EIL™* HY + (ico — pAw’) Hp = 835 8 (£ — £) (10)

Here, Hy, is expended in series of the mode shapes of multi-span beam
Hp(B,& B, €5 @) = 3 ¢ Wy, ® an
where Wy (§) = mode shape for an N-span beam derived in Ref. [11] as follows:

Wﬁj ® = Aj {Wp & Hj )\j) + Fj W|3 & - H )\j)} (12)

Here, We &, W, )\j) is mode shape of infinite-span beam, Aj and Fj are the constants
determined by boundary conditions at the extreme ends of N-span beam. They are listed
in Appendix A for the completeness. Substituting Eq. (11) into Eq. (10) and applying the
orthogonality conditions of normal mode for N-span beam, we obtain the expressions for
c; as follows

1
4= H O\, \) W, () (13)

where 'y;f' and H(-) are the norm of mode shapes and the frequency response function,
respectively, which are also given in Appendix A. Hence, the cross-spectral densities of
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response for both transverse displacement and bending moment may be rewritten from
Egs. (5) and (6) as follows:

Pop (B, 13 By @) = BL S, 3 Fv;” ;" HOG W) H* 00

x WBujl(g ) W;‘lz Jz(gz) I(I'lll’ i I'llz’ J2’ ; ) (14

BEI'? 202 _
Ppu(B1:£15B2Er0) = (T) Spy(w) jgl jgl 'YJTZ ,yj22 H X, N H* (N, Ny
X WBI 11(g ) Wgz J2 (gz) I(#J]’ Ui’ 'u]z’ ]z ) (15)

where the use has been made of Wy(§) = WE ,(E) due to its reality and the function 1(-)
is defined as

vy L1 ® , Co
(§1 & + B — Byw)
. . PP
L@ N i Njjy @) = B.—laz—l*!‘q[ 5,(@
X Wy (£) Wg ;. (&) dE, d&, (16)

2.3 Derivation of Integral I(-)
Once the integral I() is determined, the cross-spectral densities of response are obtained
by Eqgs. (14) and (15). Taking into account the fact that the mode shape of N-span beam

formulated in terms of the mode shapes of the infinite-span beam, see Eq. (12), and CIJPP(-)
is real function, the expression for I(-) can be rewritten by

Ty, Nj; gy Mgy @) = Ay Ay [Ty, Ny i, Mgy @) + T Ty T* (g, My iy, N5 )

+ F[ J(—[.ll, )\1; Mo, )\2; w) + Fz J* (—py, )\1; 128 )\2; )] an

where J(-) is given as

J (uy, Ny g, Ny 0) = Bz‘l le Rg, g,

1 1 s , ' \
D& — &+ B — By w) . : Co
Rg,.g, = _!‘ ! 2= gp(m)l : Wa, €1 s M) Wy, (65, iy, Ny) dE dE, (1)

Note that the span number B and the local coordinate § in mode shape Wj() can be
separated. Thus the integration for J(-) can then be reduced to the combination of
summations with respect to span number with a double integration in the local coordinate
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system. The double summation in J(-) is separable into three sub-summations, symboli-

cally indicated as follows

N N
> Rya = R, o + Ry o + R
2 B1 B, % ;B:Z B1 B, '32‘ <232 Bi B, BEI =2l3: B1 B,

Bi=1B,=1

The first two terms on the right side of Eq. (19) are evaluated to be

SE >El3z Rpl B, — Sy A, py, 1) K (A, py, i) + Syy (A%, py, ) K (A*, py, 1)
1

‘32 <2|3 RB] Bz = SNN (A*, ”2a “1) K (A*y I-l2, IJ}) + SNN (Aa y2’ ”1) K (A7 “29 ”1)
1 2

where

A = a(w) + iy(w)

and an asterisk indicates the complex conjugate. The function Sy,(:) reads

N-1 N
Swn (A, 1y, ) = B;E=l BE%H exp[—B;(B; — 1) +B,(B, — 1]

e Bl — e+ BBV — By — BN (1 - PRy
(1—-e®ya—-eHa - ’

B, # B,

Ne2—¢®4+1-N
Q-eBHa-é6y °

B,=B,=B
where

B, =A+ip;B,=A—im
and the function K(-) is defined as

K@, 1) = [a@y\) F(—AN) +b @, \)F@A,N) e

X [a (U N\) F (A, N) + b (uy \y) F(— A\ €]

a9

(20)

21

(22)

(23)

(24

(25)

where the coefficients of a(-) and b(-) are given in Appendix A and the function F(-) is

obtained as

1

Fan= [ &h @ d

0
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11 AT L Sim\ fr-1 L 26
21’ A= in A+ iN sinh\ | A -\ A+

The last term on the right side of Eq. (19) is derived as follows:

1
23 Rop, = 5 Sn ) (Ko (A o ) + Ko (A%, po, )] @7

where Sy (1, + W) is given by

N 1—e ™V £
- — B # 2mm
LCRP X @8)
N u=2mm

and the function K(-) is given by

1 1
Ko o) = [ [emi-a@it - 61— iy @ @& - &)
0 0
X Wy € pp M) Wy (&, 1y, Ny) dE(dE,
=R (A, py, ) + R(A*, py, 1y) (29)
where
1 3]
R ) = [ dty [ deyemp (-A & =€) Wi @ ) W, i)
0 0

=a;a,00 (@A) +bya,0,0(A) +a,b,0y, (A) + b, b,0,,(A) (30)

Here, a; = a (y;, \j) and b; = b (;, \;) and the function Q is defined as

1 13
Qs @ = [ dt, [ dty expl- A6 - 1A K — €D, (o — &)
0 0

sin\,

=T, AN, N) +I —
kl,kz( 1A lsinh)\l

Ti s, A, iNp, Ny

. Sink, T. . (AN, i) sin\, sin\,
lsinh)\z ok 0 A H sinh\; sinh\,

Ty 1, A, Ny, M) 31)
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where the function 7(-) is given as

1 £
Tkl,kz (A, )\1, XZ) = f dgl f dgz e_A§l+A§Z Sin)\l (kl - gl) sinX2 (k2 - §2)
0 0

=U@A NN FU@A, — N, — Ny 32)
with
U@, N, N) = ei)\zkz —iNk, _ei()\l‘)\z) -1 a N )+ 5 N e—(A—i)\l) -1
TV 44— iNy) € T MAg AN Y
o [e ™t gm@rin) _ g
+ el)\,kz . _ : (33)
LGRS A+ iN

where 8 is the Kronecker’s delta.

2.4. Numerical Results

Once the integral of I(-) defined in Eq. (16) is determined, then the cross-spectral density
of response for both the displacement ®,,;, and the bending moment ®,,,, can be obtained
by Eqgs. (14) and (15), respectively. The covariance functions of displacement and bending

moment can be directly obtained by integrating the cross-spectral density with respect to
, i.e.

+o0

R, (x;, %) = f D, (x4, X3 ©) do

+0o0

Ry (x1, x5) = f D, (x4, X5 @) dw (34)

When x; = x, = x, the mean-square values of responses at x are obtained from above Eq.
(34).

Three numerical examples, namely two-, four- and six-span beam were selected. All the
three beams were taken to have the same material properties; beam’s width B = 1.1 (in);
bending stiffness EI = 7.41 X 10° (Ibsin®), pA = 0.0747 (ib,/in); span length L = 53.28
(in). Figs. 1(a), 1(b) and 1(c) portray the spectral density of displacement at mid-point of
second span for various multi-span beams. It is seen that the number of peaks in the first
propagation band equals to the number of spans. The peaks can only occur in each
frequency passing band. The numerical results show that the effects of the mode shapes
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Figure 1 (a). Spectral density of displacement for a two-span beam (B, = B, = 2; §, = &, = 0.5).
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Figure 1 (b). Spectral density of displacement of a four-span beam (B, = B, = 2; §, = &, = 0.5).
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Figure 1 (c). Spectral density of displacement for a six-span beam (B, = B, = 2; §, = & = 0.5).
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associated with the higher frequency-passing band are negligible for the cross-spectral
densities of response at the low frequencies.

3. CONVEX MODELING OF ACOUSTIC LOADING AND ITS APPLICATION

The model of cross-spectral density for acoustic loading in the launch site is composed of
three functions, namely spectral density S,(w), decay function a(w), and phase function
v(w) which best fit the measurements (see Appendix B). However, these three functions
exhibit uncertainties due to the scatter of the measurement data. This uncertainty in the
functions can be characterized by a set of uncertain parameters, namely u,, u,, and u; in
above functions. These parameters are assumed to belong to a bounded, convex set. To
find such a convex set, the ellipsoidal set, let us first establish a minimum-volume
three-dimensional box (Fig. 2(a))

| ul<e,(Gi=1,2,3) 35)

to which the data belong. Then we enclose this box by an ellipsoid

2 8 i
+5+==1 (36)
81 82 83

where g; are the semi-axes of the ellipsoid (Fig. 2(b)). There are infinite number of
ellipsoids which contain the box Eq. (35). Clearly, the best choice is the one with the
minimum volume. The volume of a three-dimensional ellipsoid is given by

|
|

/
/

L/

u,

Figure 2 (a). Uncertainty box.
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4
V=§'ngl 883 37

The surface of the ellipsoid should pass through the corner points of the box (35).
Therefore,

2 2

e e e

S+ 2 +3=1 (38)
81 43 83

We are interested in minimizing the volume V of the ellipsoid, subject to constraint (38).
By using the Lagrange multiplier technique. The Lagrangian reads

=2 +>\(‘3%+"§+"§ 1) (39)
=178 88 S+ 5+ 5 -
3 orees & & &
By requiring
oE .
= 0, (l = 1, 29 3) (40)
9g;
One obtains
4 2\e] 0 @D
3 ™82 83 8?
4 2\e3
- - — =0 42
3 ™81 83 gg 42)

Figure 2 (b). Uncertainty ellipsoid.
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4 2\e; 0 @)
3 8182 P

Multiplying Eq.(41) by g, Eq.(42) by g,, Eq.(43) by g5, and summing up the results,
we obtain
6. 8. 4
3V-2A|l5+ 5+ 5) =0 (44)
81 82 83

Combining Eqs.(38) and (44), we have

A==V (45)

v ef
— =35 V= (46)
81 81

Since V is non-zero, we get

& =\3e @47

In full analogy

&= \/5 €, &= \/5 e (48)

Thus, once the size of the box (35) is known, the semi-axes of the minimum-volume
ellipsoid enclosing the box of the experimental data is readily determined utilizing Eqs.
(47) and (48). The results can be extended to a more general N-dimensional case. Assume
the size of this N-dimensional box is given

lul<e, (i=1,2,..,N) (49)

By using the same procedure, the semi-axes of the minimum-volume ellipsoid enclosing
the given N-dimensional box can be obtained as

g=\/Ne, (i=12,...,,N) (50)

Figures 3, 4(a)-4(c), and 5(a)-5(c) portray the fitted statistical characteristics of the
acoustic excitation using the recorded data. Figure 3 is obtained for the spectral density,
Figures 4(a)—4(c) for the coherence function, and Figures 5(a)-5(c) for the phase function.
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Figure 3. Spectral density of excitation.

The half lengths of the sides of the uncertainty box given by (B.5) are
e, =05 =03 =1 (51)

Note that Egs. (B1), (B2), and (B3), modeling the statistical characteristics of the loading,
have been constructed in such a manner that the nominal values u? are zero.

In Figure 3 the Curve 1 is associated with the nominal value u? = 0, curve 2 with the
maximum value u; = 0.5, and curve 3 associated with the minimum value u; =

— 0.5. Analogously, Figures 4(a)-4(c) portray the coherence function at a spatial
separation distances, namely x,—x, = 10.4 ft, x,—x, = 20.75 ft and x,—x, = 31.17 ft, along
with the upper (curve 2) and lower (curve 3) envelopes. Curve 1 is associated with the
nominal value u) = 0. Figures 5(a)-5(c) portray, respectively, the phase coefficient function
at the same three separation distances.

In Figures 4(a)-4(c) and 5(a)-5(c) some representative experimental data are also
included. They are indicated by small squares. Numerical calculations have been carried
out for a single-span beam and a ten-span beams, both of which are simply supported at
the ends. The two beams have the same flexural stiffness EI = 7.41 X 10° (lbf.inz), mass
per unit length pA = 0.0747(Ib/in), width B = 1.1(in), and individual span length L =
53.28(in).

The analysis for single-span and multi-span beams proceeds in exactly the same manner
as the case of the single-degree-of-freedom system investigated by Elishakoff and
Colombi [16]. Here, as in [16] it is postulated that the uncertain parameters, u,, u, and u,
belong to the ellipsoid

3y r=1 (52)
where

(8 = (uy, uy, uy) (53)
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L(0))

Figure 4 (a). Coherence function y(£,0) = e~ ¢! at separation distance £ = 10.4 ft.

and () is a positive-definite symmetric matrix which provides an information on the size
as well as the shape of the ellipsoid. The matrix (), for example, in Eq. (52) becomes, after
the fit is performed to the experimental data:

ma T
3
100
= 0o — o
Q > (54)
0o 0 -
_ 3 _

\_avith ij = gj'z, where g;’s are defined in Eqs. (47) and (48). In addition, vector grad
f contains three elements

0.7 -r

lower bound — 1
measurement ¢

WE.w)

100

Figure 4 (b). Coherence function Y(£,0) = e~ **' at separation distance £ = 20.8 ft.
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Figure 4 (c). Coherence function yi(§,0) = e~ *™'¢' at separation distance £ = 31.2 ft.

- _|¥ ¥ o
grad {f(ub Uy, u3)} - [au11 auz, au3:| (55)
where f is defined as
2
}.(ul’ u2, u3) — E [W (uh u21 u3)] (56)

E [W(u), 13, ud)]

where the mean-square values of response for the multi-span beams can be evaluated by
Eq. (34) in previous section, which are also the function of the uncertain parameters u;.
The expressions both for the maximum and minimum responses read [16]:

120

Y(0)§ [Degree]

-20

8t
2l
3

o 20 100

w/25

Figure 5 (a). Phase function at separation distance § = 10.4 ft.
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Figure 5 (b). Phase function at separation distance § = 20.8 ft.

E [w? (uy, Uy, U)o = E w? (u(l), ug, ug)] {1+ \/(grad f )g Q! (grad f),}

E [W* (uy, g, U3)lin = E W @, 43, ud] {1 — \/(gradf)s Q" (gradf),} (57

where 4, 4 and ] are the nominal values of the uncertain parameters u,, u,, and us,
respectively, and the subscript 0 means that the derivatives are evaluated at the nominal
values,u? (i=1273).

The least favorable responses may be evaluated either by utilizing an uncertainty box or
an uncertainty ellipsoid. When the uncertain parameters are confined to an uncertainty
box, the response must be calculated at the center of the box, yielding the nominal
response, as well as the four corners, the twelve mid-points of the sides, and the six
mid-points on the surface planes of the box, and inside the box. For the single-span beam,
the results are obtained as follows [17]:

350 T —
300 upper bound —
nominal —
lower bound —
250 measurement ¢ 1

Y(w)E [Degree]

Figure 5 (c). Phase function at separation distance § = 31.2 ft.
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E [W? (0.5)],,,, = 0.131 (in%)
E [w? (0.5)], = 0.086 (in)
E W} (0.5)],.,, = 0.043 (in%) (58)

It is remarkable that the least favorable mean-square displacement. E [w?],,,, occurs at the
following values of uncertain parameters u;:

ul = 0.5, u2 = _03, u3 = _1 (59)
In other words the maximum response does not necessarily correspond to the maximum
values of the uncertain parameters which could be the case with monotonically increasing
function. The mean-square value of the response E [w?] obtained with u, = 0.5, u, = 0.3

and u; = 1 is 0.12 in?, which is 2.44% lower than the maximum value 0.131 in” in Eq.
(58). For the ten-span beams at the mid-point of the first span beam, the results are

E [w? (0.5)),,0, = 0.247 in®
E [w} (0.5)], = 0.147 in’
E [w? (0.5)],;, = 0.064 in® (60)
In this case, the maximum response is obtained when the uncertain parameters u; take on
their maximum values.
Calculation using formula Eq. (57) for the uncertainty ellipsoid yields, for the
single-span beam
E [W? (0.5)],0 = 0.161 in?
E W} (0.5)],,;, = 0.011 i’ 61)
Maximum response occurs at the following values of uncertainty parameters
u; =0.866, u,=—0.011, wu;=0. (62)
For the ten-span beams, the ellipsoidal modeling of excitation yields
E W} (0.5)],0 = 0.277 in?
E [w? (0.5)],, = 0.016 in? (63)

with the maximum response occurring at

u, = 0.147, u, = —0.058, u, = —0.030 (64)
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For the single-span beam the gradient of the response reads
(grad})g = [0.086, —0.003, 0] (65)

This implies that the variation of the uncertain parameters u; does not contribute to the
response variability. Analogous conclusion holds also for the ten-span beams, for which

(grad f)T = [0.147, 0.058, 0.001] (66)

The maximum value predicted by the ellipsoidal model of uncertainty is about 23% higher
than the value predicted by the uncertainty box, for the single-span beam. This can be
explained by the fact that the uncertainty ellipsoid contains the uncertainty box. For the
ten-span beams the least favorable response obtained from the ellipsoidal modeling
exceeds its counterpart from the uncertainty box by about 12%. Some conservatism,
associated with the ellipsoidal modeling, is justified since the ellipsoidal modeling is
computational very inexpensive.
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APPENDIX A

The mode shapes of multi-span beam were obtained in [10]. For an infinite-span beam, the
deflection functions may be written as follows:

WalE N = [a@Nf(E) + bNi( — Hle *®Y,
B =012, - -*) (A1)
where subscript B is the serial number of span. f, (+), a(-) and b(-) are, respectively, defined
as

= sinkg — SN R A2
AE) = sin\E el £ (A2)

fLrDe™ = £10), p#mw
a(u\) = (A3)
1, H=mm

HOe ™ —fL1), p#mm
b(u\) = (A4)
(-1 p=mm

Here, s = the integer of [A/m] coincides the number of propagation band in which \ is
located.

For a finitely long multi-span beam, the angular displacement function ®g may be
expressed in terms of complex form as

B = AP + Te ™P) (A5)

Hence, the mode shape can be expressed in terms of that of infinitely long multi-span
beam as follows:
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Wg‘,(g) = Aj[wa(gyl-‘j,)\j) + Fjwp(gsﬂj,)\j)],
B =12, - -N) (A.6)

where the coefficients A; and T; are defined as

1
A= > ;Ti=1, for pyi=mmw or Oy = cosuf;
1 .
Aj=53T=—1, for @ =sinuB and p;# mm. (A7)

The wave constant p and angular displacement function ®, with various boundary
conditions at the ends of beam structures are listed in following Table I:

APPENDIX B

The model of cross-spectral density for acoustic loading is given by Eq. (2), in which the
three parameter functions, namely spectral density S,(w), decay function a(w), and phase
function y(w) are introduced to fit best the experiment data. The spectral density is
approximated analytically as follows

3 ® D,
Syw) =1+ uy) 1221 a,.((—o—i) exp (—-2—6_—0‘—))
(5-e) a-er
D; = ; —¢ | —(A—¢), 0= 2w, 8.1

where the parameters a;, b; and c; are listed in Table II.

TABLE I. Angular Displacement and Wave Constant of N-Span Beam with Various Boundary Conditions

Boundary Conditions 0, Equation for p His—1)N+r
(1 # mm) E—
Simple-Simple cosuf sing = 0 1 s r—1
s = (=1 + (- 1)—
2 N
Clamped—Clamped sinpf sinp = 0 1 B LT
- - (=D1+(=-1y=
2 N
Simple—-Clamped cospf cosp = 0 1 2r—1
SI= (= D1+ (- ——
2 2N
Clamped-Simple sinpf cosp = 0 1 -1

o+ (-2t
(=D + (=1 N

1
—
fu
|
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Table II.  Parameters Decribing the Spectral density S,(w)

i 1 2 3
a, [(psi)?/(1/s)] 1.1x102 4.5x10°3 1.9x1072
b;[Hz] 105 290 585
¢ 0.8 -1.0 0.995

The decay formula is modeled as

(@) = (1 + 1) (0.03 + 5,107 - | = — 22]) (B2)
2w ! 2m
and has a dimension ft~'. The phase function is defined as
) ® ®
V() =0.77sin | 0.14 — ) + 0.045 (1 + u3) — (B.3)
2w 2w

and has a dimension of degree/ft. The uncertain parameters u; (i = 1,2,3) in Eqs (B.1),
(B.2) and (B.3) are assumed to vary in a box

;| =< e, (i = 1,2,3) (B.4)
The bounds of the box are
e, =05 6=03 =1 B.5)

when u; = 0 correspond to the nominal values of three coefficient functions.



