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In Part I of this paper we reported a self-consistent Boltzmann-Schrédinger-Poisson simulator for HEMT in
which only electrons in the first subband were assumed to be quantized with their motion restricted to 2
dimensions. In that model, the electrons in the second and higher subbands were treated as bulk system behaving
as a 3 dimensional electron gas. In Part II of this paper, we extend our simulator to a self-consistent full-quantum
model in which the electrons in the second subband are also treated as quantized 2 dimensional gas. In this
model, we consider the electrons in the lowest two subbands to be in the quantum well forming the
2-dimensional electron gas, and the electrons in the third and higher subbands to behave as bulk electrons with
no restrictions in their motion. We have further incorporated an additional self-consistency by calculating the
field-dependent, energy-dependent scattering rates due to ionized impurities and polar optical phonons. The two
higher moments of Boltzmann transport equation are numerically solved for the two lowest subbands and the
bulk system; six transport equations, four for the two subbands and two for the bulk system. The Schrédinger
and Poisson equations are also solved self-consistently. The wavefunctions obtained are used to calculate the
ionized impurity scattering and the polar optical phonon scattering rates. The rates of transfer of electrons and
their energies to and from each subband are calculated from these intersubband and intrasubband scattering rates.
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1. INTRODUCTION

At 77°K, 98 percent of electrons in the quantum well of a HEMT device reside in the
lowest subband whereas at 300°K, the population of electrons residing in the lowest
subband reduces to 68 percent [1]. In fact, at 300°K close to 20 percent of electrons in the
quantum well reside in the second subband with their motion restricted to two dimensions.
In Part I of this paper, we presented a self-consistent Boltzmann-Schrddinger-Poisson
simulator for HEMT [2], in which the quantization of electrons in the quantum well was
taken into account. In that model, however, we assumed that only the electrons in the first
subband were quantized, and that the electrons in the second and higher subbands behave
as bulk electrons with no dimensional restriction in their motion. This assumption,
particularly at 300°K, in light of the fact that only 68 percent of electrons reside in the first
subband, becomes questionable.

In Part II of this paper, we extend our One Subband Boltzmann-Poisson-Schrodinger
(OS-BPS) simulator to a Full Quantum Boltzmann-Poisson-Schrédinger (FQ-BPS)
model. In this model, we consider the electrons in the lowest two subbands to be in the
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quantum well forming the 2-dimensional electron gas, and the electrons in the third and
higher subbands to behave as bulk electrons with no restrictions in their motion. Taking
the quantization of electrons in the third subband into consideration, as the notion of “Full
Quantum” implies, would not significantly improve the accuracy of the model, because of
relatively small population of electrons in that subband, or at least, the computational
effort required is not justified for the added accuracy of the results.

In our FQ-BPS model, we solve Boltzmann, Poisson, and Schrédinger equations for the
first subband, second subband, and the bulk system. An additional self-consistency has
been added by calculating the intersubband and intrasubband scattering due to polar
optical phonon and ionized impurity scattering mechanisms [3]. The rates of transfer of
electrons and their energies to and from each subband are calculated from the intersubband
and intrasubband scattering rates, and are used in the in a self-consistent manner in the
Boltzmann-Poisson-Schrodinger simulator.

2. FULL QUANTUM TRANSPORT
2.1. Boltzmann-Poisson-Schrédinger System

In the full quantum transport model the Poisson and Schrédinger equations are written as
before [2]:
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where g is the electronic charge, € the dielectric constant, n the total electron
concentration, N, the doping level, m* is the electron effective mass, V(x, y) the
electrostatic potential, and {s; the wavefunction corresponding to the eigenenergy E; for the
i-th subband.

For FQ-BPS model, the two higher moments of Boltzmann transport equation require
considerable modifications. The particle conservation, Eq. (3), and the energy conserva-
tion Eq. (4) for the first two subbands of the quantum well are written as:
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In the above equations i = 1, 2 refers to the first and second subbands, respectively. n
is the electron concentration, J is the electron current density, g is the electronic charge,
Y; is the mobility, D; is diffusivity, p.; is flux mobility, Dy ; is the flux diffusivity, E is the
average electron energy, 7; is particle relaxation time, T ; is energy relaxation time for
particles moving from subband i to subband j, and %y is the polar optical phonon energy.
V represents 8/dy in the one-dimensional quantum well. The first summation term
(E#i (n; — ny / 7;;)) in Eq. (3), accounts for the particles moving from subband j to
subband i, and the second summation term ( — EJ-#,- (n; — ny, / 7;)) in Eq. (3), accounts for
the particles moving from subband i to subband j. The first summation term
(E#i (nE; — niE, / Tg,;i)) in Eq. (4) accounts for the energy gained due to the movement
of particles from subband j to subband i, and the second summation term ( — 2j¢,
nE;, — n,E, / 7)) in Eq. (4), accounts for the energy loss due to the movement of
particles from subband i to subband j. Finally, the last summation term ( — 2,¢,

Ny / Ry, in Eq. (4) includes the effect of the loss of energy by the electron to
the polar opt1ca1 phonons.

In the bulk (electrons in the third and higher subbands), particle conservation, and
energy conservation equations are:

a
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where B is the energy dissipation factor, o is a constant relating p to pg and D to Dg. V
represents (9/dx, 8/dy) in the two-dimensional bulk. The term G; is the generation-like term
that takes into account the transfer of electrons between the bulk and the first (i = 1) and
second (i = 2) subbands. The term F; is a similar term that takes the rate of energy transfer
between the bulk and the two subbands into consideration [4].

2.2, Self-consistent Scattering Rates

The eigenfunctions obtained from the Boltzmann-Poisson-Schrédinger simulator are used
to calculate the ionized impurity scattering and the polar optical phonon scattering rates
for the two lowest subbands in the quantum well. The rates of transfer of electrons and
their energies to and from each subband are calculated from these intersubband and
intrasubband scattering rates. For independent scattering mechanisms, the total scattering
rate (the total scattering rate represents the probability per unit time that an electron with
a state wave vector K, is scattered into a state with a wave vector K,) is defined by [5]:
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where the superscript / denotes the impurity scattering, and pop denotes the polar optical
phonon scattering, 7 is the relaxation time, and S(K;, K,) is the probability of an electron
being scattered. The polar optical phonon scattering rate is given by [1]:

. o1 1 1 1 H,,.(Q)
§PoP = Be, [; - e_s] N, +5 %)X f 0 d(E(ky) — E(ky) * firg)dk;,

®

where, €. and €, are the optical and static dielectric constant, %, is the polar optical
phonon energy, Q is the phonon wave-vector component parallel to the interface, k; and
k, denote the initial and final state wave vectors. N, is the phonon occupation number, and
E(k,) and E(k,) are the initial and final state energies. H,,,(Q)’s are the multisubband

coupling coefficients and are given by [2]:

Hmn(Q) = f f ll’mn(z1)"'"mn(22)e‘xp(_'Q|Zl - ZZI)dzldz2 (9)

where U,,,,,(2) = ¥,,(2)¥,,(2) are obtained from the eigenfunctions of Schrodinger equation.
The ionized impurity scattering rate is given by [1]:

imp 1 2 _
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The matrix elements M, (Q) account for the electron-impurity interactions. For more
details of the modeling of scattering rates see [3].

2.3. Numerical Methods

As shown in the flow chart of Fig. 1, we begin the numerical simulation with an initial
guess for the electron densities in the bulk and in the quantum well. Then, we start the
iterative process by solving the Poisson and Schrédinger equations self-consistently, from
which we obtain the electrostatic potential V, the eigenvalues E;, and the wavefunctions
y;. The scattering rates are calculated next, using the eigenvalues and wavefunctions
obtained. The mobilities and the coupling terms in the Boltzmann equations are derived
from these scattering rates. Finally we solve the two moments of Boltzmann equation and
obtain the I, — V, characteristics of the device. For details of the numerical discretization
of the system of differential equations and the numerical instability problems see Part I of
this paper [2] and also [6] and [7].

3. RESULTS

The structure of the HEMT device used in our simulations is that reported in Part I of this
paper. The variations of the drain current with the drain voltage are calculated under three
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Figure 1 The Flow chart of the numerical iteration in

FQ-BPS model.
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different gate biasing conditions: V, = 0.45V, 0.5 V, and 0.7 V. Fig. 2 shows the I, — V),
characteristics of the device along with those calculated by our One Subband Boltzmann-
Poisson-Schrodinger (OS-BPS) simulator [2]. In both cases, the slopes of the I, — V),
curves decrease as drain voltage increases, but the Full Quantum Boltzmann-Poisson-
Schrodinger solver (FQ-BPS) model predicts lower drain currents. The reason is that with
the scattering rates included in the model, the electron density in the quantum well
decreases, which results in lower drain currents. The overestimation of the drain current
by the (OS-BPS) model can be seen from the I, — V,, characteristics of Fig. 2. In FQ-BPS
model, when a gate bias of 0.7 V is applied, the slope of the drain current decreases
substantially above a drain voltage of 0.8 V, which is the saturation region, whereas the
drain current obtained from OS-BPS model still has a sharp slope as the drain voltage is
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Figure 2 I, — V), characteristics: (OS-BPS) are the results from the
one subband Boltzmann-Poisson-Schrodinger solver, and (FQ-BPS)
are the results from the full quantum Boltzmann-Poisson-Schrédinger
simulator.
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increased, and the onset of saturation occurs at around 1.2 V. Therefore, the FQ-BPS
model shows that the device goes into saturation at a lower drain voltage than the value
predicted by OS-BPS model.

Fig. 3 shows the variations of the electrostatic potential with a gate voltage of 0.7 V, and
drain voltages of 0.5 V, and 1.35 V. Under these biasing conditions, the electron
concentrations in the bulk, first, and second subbands are shown in Figs. 4 through 6. The
concentration of the electrons in the quantum well (for the lowest two subbands) is
obtained by multiplying the probability density Us(x)*, (for i = 1, 2), by the electron sheet
density. The most important observation that can be made is that at room temperature, 72
percent of electrons reside in the first subband and 26 percent reside in the second

V(z,y) (V)

V(z,y) (V)

(@3
% ’ y (%107 Cm)

Figure 3 Electrostatic potential with a gate voltage of 0.7V and a) a
drain voltage of 0.5V, b) a drain voltage of 1.35V.
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subband. These results agree very well with those calculated by the Monte Carlo simulator
reported by Yokoyama and Hess [1] who concluded that the population of electrons in the
first and second subband are 68 percent, and 20 percent, respectively. It is therefore
concluded that full quantum modeling of HEMT must include the quantization of
electrons in the second subband, as well as the coupling terms between and amongst the
subbands.

The multisubband coupling coefficients, H,,(Q), (From Eq. (9)), calculated by the
FQ-BPS model are depicted in Fig. (7a), and those calculated by the Monte Carlo
simulator of Yokoyama and Hess [1] are shown in Fig. (7b). The agreement between the
two sets of data is excellent. The FQ-BPS simulator, however, uses substantially less

10'8 ‘@
1x101: (:5 \\\ ;5

Figure 4 Electron concentration in the bulk with a gate voltage of
0.7V and a) a drain voltage of 0.5V, where we observe the pinch-off, b)
a drain voltage of 1.35V.

computation time than the Monte Carlo simulator.
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Figure 5 Electron concentration in the quantum well for the first
subband with a gate voltage of 0.7V and a) a drain voltage of 0.5V b)
a drain voltage of 1.35V. The concentration of the electrons in the
quantum well is obtained by multiplying the probability density s, (x)?
by the electron sheet density.

The drain current as a function of the gate voltage under a constant drain voltage of 1.0
V is shown in Fig. 8(a), along with the results from our OS-BPS model. Fig. 8(b) shows
the total charge, Q, in channel as a function of the applied gate voltage, V,, along with the
result from the OS-BPS model. The values of transconductance under various gate
voltages are shown in Fig. 9(a), compared to the results of our OS-BPS model. It can be
seen that with our FQ-BPS model, as it has been reported by Widiger, [8] Loret [9], and
Kizilyalli [10], the transconductance increases with the gate voltage at low gate voltages,
and then decreases as the gate voltage is further increased. This effect is not seen in the
OS-BPS results, where the transconductance decreases linearly. Similar patterns are
observed in Figs. 9(b) and 9(c), where the gate capacitance and unity-gain frequency are
presented, respectively. With the FQ-BPS model we obtain smaller drain currents and



228 R. KHOIE

5x10%¢ }

2.55x1016

z (x 1075 Cm)

Figure 6 Electron concentration in the quantum well for the second
subband with a gate voltage of 0.7V and a drain voltage of 0.5V (at a
different angle, where we see the two peaks due to {,).

smaller transconductances compared to the OS-BPS model. For example, at a gate bias of
about 0.625 V, FQ-BPS predicts a transconductance of 316 mS/mm, compared to 520
mS/mm predicted by OS-BPS model; a gate capacitance of 17.68 pF/cm, compared to 21
pF/cm; and a unity-gain frequency of 28.44 GHz, compared to 39 GHz.

4. CONCLUSIONS

A full-quantum Boltzmann-Poisson-Schrédinger simulator, (FQ-BPS), with two-subband
quantum transport model has been developed. In this model we have considered the
electrons in the lowest two subbands to be in the quantum well forming the 2-dimensional
electron gas, and the electrons in the third and higher subbands to behave as bulk electrons
with no restrictions in their motion. We have further incorporated an additional
self-consistency by calculating the field-dependent, energy-dependent scattering rates due
to ionized impurities and polar optical phonons.

The results of the polar optical phonon and ionized impurity scattering rates from our
FQ-BPS are in very good agreement with those calculated by significantly more
computation intensive Monte Carlo simulators reported by others. [1]

From the results of the I, — V, characteristics of these devices it has been found that
at a given gate voltage, the FQ-BPS model predicts lower transconductance and drain
currents than the OS-BPS. The overestimation by OS-BPS model is mainly due to the
scattering rates that were not included in the quantum well. Also, with the FQ-BPS model
we observe the well known pattern reported by [8]-[10], in which the transconductance
increases with the gate voltage at low gate bias, and as the gate bias is increased further,
the transconductance starts to decrease. This pattern was not seen in the OS-BPS results.
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Figure 7 Multisubband coupling coefficients H,,(Q), for transfer of electrons from the first subband to the
other subbands as a function of Q, the phonon wave vector, calculated by: (a) FQ-BPS model, and (b) Monte
Carlo simulator reported by Yokoyama and Hess [1].
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Figure 8 a)l, — Vg, (b) Q — V characteristics under a drain voltage of 1.0 V. (OS-BPS) are the results from
the one subband Boltzmann-Poisson-Schrodinger solver, and (FQ-BPS) are the results from the full quantum
Boltzmann-Poisson-Schrédinger model.
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Figure 9 a) Transconductance, (b) gate capacitance, and (c) unity gain frequency under a drain voltage of 1.0
V. (OS-BPS) are the results from the one subband Boltzmann-Poisson-Schrodinger solver, and (FQ-BPS) are
the results from the full quantum Boltzmann-Poisson-Schrédinger model.

We therefore conclude that the quantization of the electrons in the second subband of
the quantum well is essential in any numerical simulation of HEMT, and these electrons
must not be considered as bulk. Treating these electrons as bulk indeed introduces error
in the results in the form of overestimation of the drain current, the channel conductance,
and transconductance as well as unity-gain frequency.

The results produced by our FQ-BPS model suggest the significance of incorporating
the quantum transport of the electrons in the second subband. It is, however, believed that
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taking the quantization of electrons in the third and higher subbands into consideration,
as the notion of “Full Quantum” implies, would not significantly improve the accuracy of
the model, because of relatively small population of electrons in those subbands, or at least
the computational effort required is not justified for the added accuracy of the results.

References

1

2

10

K. Yokoyama and K. Hess, “Monte Carlo Study of the Electronic Transport in Al,_,Ga,As/GaAs
Single-Well Heterostructure”, Physical Review B, Vol. 33, no. 8, pp. 5595-5606, 1986.

R. Khoie, “A Self-consistent Numerical Method for Simulation of Quantum Transport in High Electron
Mobility Transistor; Part I: The Boltzmann-Poisson-Schrodinger Solver”, Elsewhere in this Publication,
1996.

H. Arman, and R. Khoie, “A Self-Consistent Multisubband Model for Calculation of Scattering Rates in
Quantum Well Structures”, National Center for Computational Electronics, Proceedings of the
International Workshop on Computational Electronics, edited by: K. Hess, U. Ravaioli, and R. Dutton,
Beckman Institute, University of lllinois at Urbana-Champaign, pp. 175-179, 1992.

R. Khoie and H. Arman, “A Two-Subband Self-Consistent Model for High Electron Mobility Transistor
Including Intersubband and Intrasubband Scattering Mechanisms”, National Center for Computational
Electronics, Proceedings of the International Workshop on Computational Electronics, edited by: K. Hess,
U. Ravaioli, and R. Dutton, Beckman Institute, University of lllinois at Urbana-Champaign, pp. 181-184,
1992.

K. Hess, Advanced Theory of Semiconductor Devices, Englewood Cliffs, New Jersey, Prentice Hall, 1998.
Z. H. Ng, R. Khoie, and R. Venkat, “A Two-Dimensional Self-Consistent Numerical Model for High
Electron Mobility Transistor”, IEEE Trans. on Electron Devices, Vol. 38, No. 4, pp. 852-861, 1991.

Z. H. Ng, R. Khoie, and R. Venkat, “A Self-Consistent Calculation of Spatial Spreading of the Quantum
Well in HEMT”, Computational Electronics, Semiconductor Transport and Device Simulation, edited by:
K. Hess, J.P. Leburton, and U. Ravaioli, Kluwer Academic, pp. 55-58, 1991.

D. J. Widiger, L. C. Kizilyalli, K. Hess, and J. J. Coleman, “Two-Dimensional Transient Simulation of an
Idealized High Electron Mobility Transistor,” IEEE Trans. on Electron Devices, Vol. ED-32, 1092-1102,
1985.

D. Loret, “Two-Dimensional Numerical Model for the High Electron Mobility Transistor,” Solid-State
Electronics, Vol. 30, pp. 1197-1203, 1987.

I.C. Kizilyalli, M.A. Artaki, N.J. Shah, and A. Chandra, “Scaling Properties and Short-Channel Effects in
Submicrometer AlGaAs/GaAs MODFET’s: A Monte Carlo Study”, IEEE Trans. Electron Devices, vol.
ED-40, pp. 234-249, 1993.



