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In this work, a new definition of production systems bottlenecks is formulated and analyzed. Specifically, a
machine is defined as the bottleneck if the sensitivity of the system’s performance index to this machine’s
production rate in isolation is the largest. Although appealing from the systems point of view, this definition
suffers a deficiency due to the fact that the sensitivities involved cannot be either measured on-line or efficiently
calculated off-line. To avoid this, the paper develops a method based on indirect but real-time data. From this
point of view, the main result of the work is as follows: The bottleneck machine in a serial production line can
be identified by analyzing relationships between the so-called manufacturing blockage and manufacturing
starvation of each machine. This leads to a simple rule for bottleneck identification. The rule requires neither the
calculation of the production rate sensitivities nor the production rate itself. When the probabilities of
manufacturing blockages and starvations are not available from on-line measurements, the paper presents their
analytical estimates which, under certain conditions, can be used for bottleneck identification. Finally, a case
study at an automotive component plant is described.
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1. INTRODUCTION AND PROBLEM FORMULATION

Serial production lines are manufacturing systems consisting of machines arranged in the
consecutive order and buffers separating each two adjacent machines. For the purposes of
this study, we formalize a serial production line by the following assumptions [1]:

(i) The system consists of M machines arranged serially, and M — 1 buffers separating

each consecutive pair of machines.

(ii)) The machines have identical cycle time T,. The time axis is slotted with the slot
duration T,.. Machines begin operating at the beginning of each time slot.

(iii) Each buffer is characterized by its capacity, N;<», 1 =i=M — 1.

(iv) Machine i is starved during a time slot if buffer i — 1 is empty at the beginning of
the time slot. Machine 1 is never starved for parts.

(v) Machine i is blocked during a time slot if buffer i has N, parts at the beginning of
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the time slot and machine i + 1 fails to take a part during the time slot. Machine
M is never blocked by ready goods buffer.

(vi) Machine i, being neither blocked nor starved during a time slot, produces a part
with probability p; and fails to do so with probability 1 — p, Parameter p; is
referred to as the production rate of machine i in isolation.

For this system, the Production Rate (Fl-é), defined as the average number of parts
produced by the last machine, m,,, per cycle of time, T,, is often considered as a

performance index of interest. According to the model (i)—(vi), PRis a function of all
system’s parameters, i.e.,

PR=PR@,, ..., pys Nps ... s Njy_).

Given system (i)—(vi), an important practical problem is the identification of a machine

that impedes the system performance (i.e., Ff{) in the strongest manner. Such a machine
is typically referred to as the bottleneck (BN), and many believe that a key to a successful
production line operation is a continuous process of identification and elimination of
bottlenecks. Often, this is referred to as the Process of Continuous Improvement or
Kaizan, using the Toyota production system terminology. In fact, a large body of work,
called the Theory of Constraints [2], is devoted to this subject.

In spite of its importance, the notion of a bottleneck does not seem to have a unanimous
and unambiguous interpretation (see [3] for a review of the subject). Specifically, the
following definitions are often found in the literature:

(a). A machine is the bottleneck if its isolation production rate is the smallest among
all the machines in the system. In terms of the model (i)—(vi), this implies that m;
is the bottleneck if p; < p;, Vj # i.

(b). A machine is the bottleneck if the Work-in-Process inventory (WIP) in the buffer
immediately preceding this machine is the largest. In terms of the model (i)—(vi),
m; is the bottleneck if E[h,_;] > E[h]], Vj # i — 1, where h; is the occupancy of
b; and E[-] denotes the expectation.

In this work, we define the bottleneck as follows:

DerntTion 1.1.: A machine is the bottleneck if the sensitivity of the system’s performance
index to its production rate in isolation is the largest, as compared to all other machines.
In terms of the model (i)—(vi), m; is the bottleneck if

OPR(pys .. s Py N1y oo s Njy—y) >6PR(p1, cees Py Nis oo s Ny )
p; p; '

Vi#i  (11)

Although in some cases, all three definitions, (a), (b) and (1.1), result in the same
machine as the bottleneck, they are not always identical. Indeed, Figure 1 gives an
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Figure 1 Example of bottleneck machines for different definitions

example where the machine with the largest sensitivity is neither the one with the smallest
p; nor with the largest E[h;_,]. In Figure 1 and all the subsequent figures, the numbers in
the circles and rectangles denote the machines’ and the buffers’ parameters, p; and N,,
respectively. The two rows of numbers below the buffers and the machines show the

values of E[h;] and aﬁ/ap,. along with 95% confidence intervals. Thus, according to
definition (a), the bottleneck is machine mg, according to definition (b)—machine m,, and
according to (1.1)—machine m,. Consequently, the largest increase in the system’s
production rate is obtained if machine m,, rather than mq and m,, is improved.

Remark 1.1: In Figure 1 and in all the subsequent figures, the simulations are based on
GPSS/H software package [4]. The confidence intervals for all statistical estimates have
been evaluated as follows [S]: Let w be the length of a simulation run in which the random
variable Y is measured. Divide the data measured, ie., Y;, Y,,..., ¥,, into n batches of

w -
length ¢ = —. Hence, Yi,..., Y. form batch 1, Y, ,,..., ¥,. — batch 2, etc. Let Y(c).,j =
n

1,..., n, be the j-th batch mean and Yne) = 2]’;1 f’j(c)/n = >v_, Yw the grand sample
mean. Then, an approximate 100(1 — B)% confidence interval is

P, 0) = t, 11 pn (12)

where t,_; ;_g/, is the upper 1 — B/2 critical point for the # distribution with n — 1 degrees
of freedom and

2y [¥(0) = Pn, o))

2 —
T (M = n—1

(1.3)

Definition 1.1 was introduced in [1] where, in addition, it was shown that if a serial

production line is unimprovable with respect to workforce re-distribution (i.e., PR cannot
be increased by re-assigning work among the operations), then the machine with the
smallest p; is indeed the bottleneck; otherwise any machine, including the one with the
largest p,, can be the bottleneck. However, no characterization of bottlenecks in
“improvable” systems has been given. Such a characterization is the topic of this paper.
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Each of the Definitions, (a), (b), and (1.1), have their advantages and disadvantages.
Definitions (a) and (b) are advantageous because they are formulated in terms of on-line
data which can be measured during real-time system operation. However, being local in
nature, they may not identify the worst machine from the total system point of view.
Indeed, an increase of p, and pg in the system shown in Figure 1 leads to a smaller

improvement of PR than the increase in Da-
On the other hand, Definition 1.1 takes into account not only the local but also the global

properties of system (i)—(vi): the sensitivity of PR to p; depends not only on p; but also on
all otherpj’s,j =1,.,i—1,i+1,..,M, and all Nj’s,j = 1,..., M — 1, simultaneously.
Thus, Definition 1.1 identifies the bottleneck from the total system point of view.
However, it is not formulated in terms of on-line data, and the quantities involved in (1.1)
cannot be measured directly during real-time system operation. Moreover, since even the

mere calculation of PR is a formidable task and cannot be accomplished in a closed from
(see [6], [7]), the calculation of its derivatives may be a more difficult or even a prohibitive
problem. Therefore, to make Definition 1.1 practical, it has to be re-formulated in terms
of data available on the factory floor. The goal of this paper is to derive an indicator
that permits one to identify the bottleneck machine, defined by Definition 1.1, using
real-time data.

From this point of view, the main result of this work is as follows: Inequality (1.1) can
be reformulated in terms of inequalities between the probabilities of the so-called
manufacturing blockages and manufacturing starvations of each machine in the
system. Since the frequency of blockages and starvations can be measured on-line,
this leads to a rule for bottleneck identification which uses only real-time data,

without calculating either 81”72/81),-, or FE, and even without the knowledge of p,’s
and N;’s.

When the probabilities of manufacturing blockages and starvations are not available
from real-time measurements, the papers gives their analytical estimates which, under
certain conditions, can be used for bottleneck identification as well. The calculation of
these estimates does require the knowledge of p;’s and N;’s.

The remainder of this paper is structured as follows: In Section 2, a simple case of a two
machines—one buffer system is considered. The general case is studied in Sections 3-5.
In section 6, the notion of potency of a material handling system is introduced. A practical
application is described in Section 7. Finally, the conclusions are formulated in Section 8.
All proofs are collected in Appendices A and B. The term bottleneck is used throughout
in the sense of Definition 1.1.

2. TWO MACHINES—ONE BUFFER SYSTEM

Introduce the notions of manufacturing blockage and starvation:

DerintTioN 2.1: Machine m; is said to be blocked in the manufacturing sense during a
time slot if it is up during this time slot, b; is full at the beginning of this time slot, and
m;,, fails to take a part from b; at the beginning of this time slot.
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DernITION 2.2: Machine m; is said to be starved in the manufacturing sense during a
time slot if it is up during this time slot and b;_, is empty at the beginning of this time slot.

Remark 2.1: The blockage and starvation introduced by assumptions (iv) and (v) of
Section 1 are sometimes referred to as communication blockage and starvation; they differ

from the above by deleting the requirement of the machine being up.

Let ;;5,. and %i denote the probabilities of manufacturing blockage and starvation,

respectively, i.e.,

mb; = Prob ({m, is up during a time slot}
N{; is full at the beginning of this slot}

N{m,, fails to take a part from b; at the beginning of this slot}),

%,- = Prob ({m,; is up during a time slot}
N{b,_, is empty at the beginning of this slot}).
Lemma 2.1: For the serial production line (i)—(vi) with M = 2,

mb, = p,0(p,, p1, Ny),

ms, = p,Q(py, Py, Ny),

where

1 -xa —Ot), X%y,
X

l—-«
O, y,N) = y

1—x
N+1—-%

_x(1 -y
a = .
yd —x)

N

xX=Yy,

Proof. See Appendix A.

TueoreM 2.1: For the serial production line (i)—(vi) with M = 2, the inequality

dPR(p,, p, Ny) > dPR(p,, py, Ny) (or OPR(p,, p,, Ny) < OPR(p,, p,, Nl))

ap, ap, ap,

takes place if and only if

2.1

(2.2)
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n751 < 2;2 (or %1 > ;;2, respectively). 2.3)

Proof: See Appendix A.
This Theorem relates inequality (1.1) with the inequality between blockages and
starvations (2.3). Specifically, it states that the bottleneck can be identified without

calculating aﬁ/ap,. but just observing blockages and starvations of the machines: if the
former is larger than the latter, the bottleneck is downstream of the buffer, otherwise the
bottleneck is upstream.

Obviously, the case of M = 2 is quite simple and might be of a little practical
importance. Moreover,

CoroLLARY 2.1: For M = 2, the bottlenecks identified by definitions (a) and (1.1) are
always the same.

Proof: See Appendix A.
However, as is it is shown below, the insight provided by M = 2 can be used as a guide
for analysis of the general case.

3. GENERAL CASE

Similar to ;’TQ, the probabilities ;Z,- and ;:;i cannot be calculated exactly for M > 2.
Therefore, a direct generalization of Theorem 2.1 for M > 2 is impossible. Nevertheless,
there are two avenues available for the extension of the result of Section 2 to the general
case: In the first one, guided by the insight provided by the two machine—one buffer case,
we postulate a rule for bottleneck identification, which uses machine blockages and
starvation in a manner similar to Theorem 2.1, and show, using discrete event simulations,
that in most cases it indeed results in a correct bottleneck identification. This is carried out
in this Section. In the second avenue, we develop an analytical approach to the rule

postulated. Here, based on the techniques developed in [1], we derive estimates of %i and
ms;, denoted as mb; and ms;, and show that, under certain conditions, the bottleneck

identified using the measured data, %i and %i, and the calculated data, mb; and ms;, do
coincide. This is carried out in Section 4.
Consider the system (i)—(vi) with M > 2. Assume that the following assumption holds:

Hyrotuesis H.1: There exists a single machine, m;, such that

mbj_1>msj,j =2,...,1
mbj<msj+],j = i, cen ,M_ 1.

Remark 3.1: As it will become clear below, this hypothesis is introduced to ensure that the
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system has a unique bottleneck. The case of multiple bottlenecks is considered in Section
5.

RuLE 3.1: Assume that Hypothesis H.1 holds. Then if

mb;>ms;y, j=1,..,M—1, 3.1)

the bottleneck is downstream of machine m;. If

~

ms;>mb;_y, j=2,..,M, 3.2)

the bottleneck is upstream of machine m;.

Numerical Justification: As it has been pointed out above, Rule 3.1 was justified by
discrete event simulations of serial production lines defined by assumptions (i)—(vi). Two
typical examples are shown in Figure 2. The three rows of numbers below the machines

show the values of %i, %i, and aﬁe/ap,., respectively, along with 95% confidence
intervals. In each run of the discrete event model, zero initial conditions for all buffers
have been assumed and a 10,000 time slots warm up period has been carried out. As it is
illustrated in Figure 3, after this period, the transients have largely decayed, and the next
40,000 slots of the stationary regime have been used to statistically evaluate the quantities
shown in Figure 2 and the variance (1.3) with n = 40 and ¢ = 1000. The sensitivities

d Fﬁlap,- have been estimated, using finite differences Ai;}-é/Ap,, Vi, with the step Ap; =
0.01. The arrows in Figure 2 are obtained by placing a line within the sign of inequality

between m~bj and %j+1. Then, according to Rule 3.1, the bottleneck is the machine that
has the arrows pointed towards it from both sides (or one side, for the first and the
last machine). Thus, the bottlenecks in Figure 2 (a) and (b) are machines m, and my,,

respectively. This conclusion is supported by the values of aFE/ap,. as well. Note that, in
view of the arrows mentioned above, Hypothesis 3.1 indeed implies that the system has
a unique bottleneck.

With a very few exception, in all systems considered, the bottlenecks identified using
Rule 3.1 and aFR'/ap,. were the same. An example in which the two conclusions differ is
shown in Figure 4. Here Rule 3.1 resulted in m,, whereas aFé/api in m,, as the bottleneck.
As it can be seen from the last row in Figure 4, the difference between aI?I-é/ap2 and
] Fk/apl is quite small. This discrepancy could be attributed either to the fact that Ap; is

not small enough to result in a precise value of 6Ff€/8p,- (smaller Ap; results in numerical
instability) or to a relative inaccuracy of Rule 3.1. Based on the above, we conclude
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Figure 2 [Illustration of Rule 3.1

that Rule 3.1 identifies either the machine with the largest aﬁ/ap,- or a machine with

] Ffe/ap,. being close to the largest one. |

4. ANALYTICAL JUSTIFICATION
In this Section, we provide an analytical justification of Rule 3.1. Introduce

ﬁ-{ = Prob({m; produces a part during a time slot} | {it is not blocked at the beginning of
this time slot}),

p? = Prob({m, produces a part during a time slot} | {it is not starved at the beginning of
this time slot}).
Since the last machine cannot be blocked and the first machine starved,
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Figure 4 Counter example to Rule 3.1
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PR = p}, = p.
In addition, by Definitions 2.1 and 2.2,
—_— M Jj—1
mb,=p;, > (]I pA—p)X; 1N, N-)i=1 .. ,M—1,
j=itl r=i+l
ms;=p, X, ©),i=2,.. M. @.1)

Unfortunately, 5/ and j° are unknown and cannot be calculated in the closed form.
However, as it has been shown in [1], they can be evaluated using the following recursive
procedure:

ps+ 1) =pll — Q@l, (s + 1), pls), N)l 1=i=M—1,
P+ 1) =pll — Q@ (s +1),pls +1),N_)Dl,2<i=<M,
Pis) =pi. P =py, s=0,1,2, ..., 4.2

with initial conditions
pPoy=p,i=1,..,M,

where Q(x, y, N) is defined in (2.2).

Lemma 4.1: Recursive procedure (4.2) is convergent and, therefore, the following limits
exist:

pl=1limpls), pl=1limpis), i=1,..,M. 4.3)

s—% s—%

Moreover,

W —pi~00),i=1,.. M-1,
B —ph~0@®),i=2, .., M

and

PR =:p|, = PR + 0(3), @.4)
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where d is defined by (2.5) in [1] as the magnitude of the difference between the joint and
the product of appropriate marginal probabilities of buffers occupancy; according to
Numerical Fact 2.1 of [1], 8 << 1.

Proof: See Lemma A.10 and Theorem 2.1 in [1].

Given pf and pf’ evaluated according to (4.2), (4.3), introduce the calculated prob-
abilities of manufacturing blocking and manufacturing starvation:

mbi =P,~Q(P?+1,P{, Ni)a l = 1’ ’M - 1’
ms; = PiQ(P{—l’P?, Ni_),i=2,...,M. “3)

LemMma 4.2: The calculated and the measured probabilities of manufacturing blockages
and starvations are related as follows:

imb; — mb) ~ 0®), i=1,....,M—1,

ms; — msj ~0@®), i=2,...,M 4.6)

Proof: See Appendix B.

Since, as stated above, the calculated probabilities of blockages and starvations
approximate the measured ones, the analytical justification of Rule 3.1 is carried out in
terms of mb; and ms;. For this justification we need the following

Hypotuesis H.2: For a production line (i)—(vi), if

mbj_1>msj, j=2,..., M,

then
X,_10) ~ O/, P}, N;-)) =: €, << . @.7)
If
mb;<ms;,j=1,....M—1,
then

a —pr)Xj(N,-) Q(Pjﬂ,pf N) =:¢,<< 1. 4.8)

Here X;_(0) and X;(N;) are the probabilities that buffer j ] — 1 is empty and buffer j is full,

respecttvely functlon Q(x, y, N) is defined in (2.2), and p] and pf are the steady states of
the recursive procedure (4.2).

Remark 4.1: Expression (4.7) implies that if the upstream machine is blocked more often
than the downstream machine is starved, the probability that the buffer, separating these
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two machines, is empty is small. Similarly, (4.8) implies that if the upstream machine is
blocked less frequently than the downstream machine is starved, the probability that the
buffer is full is small.

Conditions under which Hypothesis H.2 takes place can be characterized formally in a
number of situations. These include situations where the buffers are large enough or when
p]f and pJ’-’ are sufficiently different from each other. The former is carried out in Lemma 4.3
and the latter is illustrated in Figures 5 and 6 (a).

Lemma 4.3: Under Hypothesis H.1, for any 0 < €, << 1 there exists N* such that if N; >
Nk j=1,..,M-1,

€ =: max(e;, €;) < €,
Jss

where €;, and €, are defined in (4.7) and (4.8), respectively.

Proof. See Appendix B.

It should not be necessarily concluded that N* has to be large in order for € to be small.
Indeed, Figure 5 shows a system with N* = 2 but € quite small. On the other hand, the
same system with machine m, being different (p; = 0.75 instead of 0.6) needs larger
buffers to have € small (see Figures 6 (a) and (b)). In Figures 5 and 6, the first four rows
of numbers under the machines show the measured (during the process of discrete event

bl b2 b3

ms;: 00 0.0179 4 0.0014 0.0067 £ 0.001 0.2312 + 0.0056
,‘,ij . 0.2802 £ 0.0059 0.3183 £ 0.0061 0.0216 + 0.0017 oo
ms;: 0 0.0179 0.0071 0.2296
mbj : 0.2796 0.3181 0.0228 0
€1 — 0.0198 0.0118 —
€3 — — 0.038 —
! b
Ip;_, —P;l— 0.2681 0.3049 0.2071

Figure 5 Example of a system with a small N* resulting in a small € (N* = 2, e = 0.038)
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by by bs
:
;j : 040 0.0338 + 0.0023 0.0213 + 0.0017 0.1202 £ 0.0037
,’,','bj : 0.1692 £ 0.0048 0.1918 + 0.0051 0.0498 + 0.0024 00
msj: o0 0.032 0.0202 0.1202
mbj : 0.1702 0.1951 / 0.0514 / 0
€1 — 0.0356 0.027 —
€G3 — — 0.0685 —
Ipf__, - p}l P 0.1451 0.1694 0.0702
(a)
bl b2 b3
my my mg3 my
;’,’5 . 0£0 0.0082 £ 0.0017 0.0022 + 0.0008 0.0726 + 0.0036
,',I'bj : 0.1216 £ 0.0048 0.1646 £ 0.005 0.0192 + 0.0023 0+0
ms;ioo 0.0072 0.0015 0.0722
mbj : 0.1222 0.1663 0.0207 / ]
€1 — 0.008 0.002 —
€3¢ — — 0.0277 —
lpi_, -p%1: — 0.1163 0.1635 0.0515

(b)

Figure 6 Illustration of the effect of Ip!fv_1 - pjl-’l on N* ((a) N* = 2, e = 0.0685, (b) N* = 4, € = 0.0277)
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simulations) and the calculated probabilities of manufacturing blockages and starvations
whereas the last three rows give €;;, €;, and |p1’-_1 - pj’-’l, respectively.

Figures 5 and 6 (a) indicate that larger values of |p]f‘_1 - pjl-’ | result in small values of €.-
This illustrates another situation when Hypothesis H.2 takes place.

The main result of this Section is in the following:

THEOREM 4.1: Under Hypothesis H.1 and H.2, the following two statements hold:
(a). If
mb; > ms;, |,

then there exists i > j such that

dPR < dPR

b, b
(b). If
ms; > mb,_,,
then there exists i < j such that

dPR dPR
_—<—
dp;  9p;

Proof: See Appendix B.

Theorem 4.1 justifies Rule 3.1: Indeed, it says that under the conditions stated, if mbj >
ms; the bottleneck is downstream of machine m;, if ms; > mbj_l, the bottleneck is
upstream of machine m;. In addition, this Theorem offers a possibility for bottleneck

analysis in systems where the measured data, mb; and ms;, is not available, e.g., in the
design stage of a serial production line or in situations where production lines are not

instrumented to measure mb; and ms;. In such situations, given p;’s and N;’s, the values of

m~b,~ and r’rz.s:,. can be evaluated using (4.5), and Rule 3.1 (i.e., Theorem 4.1) could be
applied, resulting in a correct bottleneck identification, if € is sufficiently small. A case
study, based on the calculated data mb; and ms;, is described in Section 7.

5. MULTIPLE BOTTLENECKS

Assume that Hypothesis H.1 does not hold, i.e., there are at least two machines that have
the arrows pointed towards them from both side (or one side for the boundary machines).
Examples of such systems are shown in Figures 7 and 8. Which one, then, is the “primary”
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me;: 00 040001 0.39 £0.008 0.37 £0.01 0.33 £0.012 0.27 £ 0.013 0.11 £ 0.007 0.41 + 0.006
mb; : 0.41 £07005 0.01 + o%x 0.03 io%s 0.05 to%s 0.1 *o.t‘s( 0.17 £07009 0 £0.001 00

%%.B .0.11 £0.11 0.76 £0.16 0.11 £0.11 0.09 £0.09 0.09 £0.09 0.09 £0.09 0.13 £0.13 0.09 £ 0.09
i

S — 0.7845 - _— —_ - 0.4682 —_

ms;: 00 0.12 £ 0.006 0.07 £0.005 0.1 +0.005 0.06 % 0.005 0.03 £+ 0.003 0.1 £ 0.005 0.31 £ 0.005
mb; : 0.11 :kO!(O.‘) 0.2 £0.006 0.15 £0.006 0.23 £ 0.007 0.26 £ 0.006 0.09 % 0\.64 0.01 £ 0‘.41 00

%'B :0.13 £0.12 0.08 £0.08 0.1 £0.1 0.08 £0.08 0.09 £0.09 0.46 £0.13 0.38 £0.13 0.07 £ 0.07
[

3:: 0.0157 — - - — 0.2552 —_ —_

(b)

Figure 7 Illustration of Rule 5.1

—~

ms;: © +0 0.01 £ 0.001 0.14 £ 0.007 0.09 £ 0.007 0.04 £ 0.003 0.19 £ 0.007 0.09 + 0.005 0.3 + 0.005
v:b.' . 0.29 £ 0.004 0.09 + 0\.46 0.17 £ 0.008 0.22 £+ 0.007 0.06 + 0%4 0.13 £ 0.006 0.01 + 0%1 0+0

%@ :0.06 £0.06 0.274+0.1 0.1%0.1 0.08 £0.08 0.37+0.1 0.1 009 0.27+0.1 0.06+0.06
L]

Si: - 0.3394 —_ _ 0.3053 — 0.3332 -

Figure 8 Counter example to Rule 5.1
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bottleneck? To answer this question, we introduce a heuristic notion of bottlenecks
Severity. This notion can be defined in a number of way. The simplest (but, possibly, not
the most accurate) one is as follows:

The severity of the i-th bottleneck is defined as

S, = (mb,_, + ms;y,) — (mb; + ms),i=2,...,M— 1, G.1)

using the calculated data, or

S, = (mb,_, + ms;y,) — (mb, + ms),i=2, ..., M—1, (5.2)

using the measured data. For the first and the last machine as the bottleneck severity
becomes, respectively,

S; = ms, — mb, or §; = ms, — mb,,

SM = mbM_l - mSM or S~M = m~bM—l - %M~
RuLe 5.1: Assume m; ,..., m;, k < M, are the bottlenecks identified according to the Rule
3.1 (with Hypothesis H.1 being omitted). Let m;,je(l,..., k), be the bottleneck with the
largest sensitivity. Then m; is the primary bottleneck (PBN) in the sense that dPR/dp; >

dPR/op,j (or 3PR/op, > dPRIap), i # i,

Numerical Justification: This Rule also has been analyzed through discrete event
simulations. Using the numerical procedure described in the Numerical Justification of
Rule 3.1, a large number of systems (i)-(vi) with multiple bottlenecks has been
investigated.

Two typical examples are shown in Figure 7, where the last row of numbers is the
bottleneck severity. Although in most cases, Rule 5.1 resulted in correct identification of
the primary bottleneck, a number of counterexamples has also been discovered. One of
them is shown in Figure 8. Moreover, counterexamples to Rule 5.1 seem to be more
numerous than those to Rule 3.1. Nevertheless, since in the majority of cases analyzed
Rule 5.1 identified the machine with the largest effect on the production rate, we conclude
that it can be used as a tool for the primary bottleneck identification.

At this point in time, we do not have an analytical justification of this Rule. |

6. POTENCY OF THE MATERIAL HANDLING SYSTEMS

Production lines consist of machines and buffers or, more generally, material handling
system (MHS). In the framework of model (i)—(vi), the potency of machines is defined by
minp,. The potency of the MHS, however, does not seem to have a quantitative
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Figure 9 Automotive component production line

characterization. Indeed, buffers capacities, Ni,..., Ny;_;, do not, by themselves, define
how efficient MHS is. Based on the bottleneck analysis presented above, such a
characterization is introduced below:

Dernimion 6.1: MHS is weakly potent if the machine with the smallest isolation
production rate is the bottleneck; otherwise, MHS is not potent. MHS is potent if it is
weakly potent and, in addition, production rate of the system is close to that of the slowest
machine in isolation. MHS is strongly potent if it is potent and this production is achieved
using the smallest total buffer capacity 2?’:1 N,.

Verification of the weak potency, non-potency, and potency can be carried out using
Rules 3.1 and 5.1. A tool for verification of the strong potency will be addressed
elsewhere.

Below we apply the notion of the MHS potency, along with Rule 3.1 and 5.1, to analysis
and improvement of a practical production line.

7. APPLICATION AT AN AUTOMOTIVE COMPONENT PLANT

The production system considered in this case study is shown in Figure 9. Parameters of
the machines and the buffers identified are shown in the Figure, where the numbers in the
circles and rectangles represent, as before, the p,’s and N,’s, respectively (see [8] for
details). The system was not instrumented to measure the frequency of blockages and
starvations and, therefore, the bottleneck analysis that follows has been carried out in term
of the calculated data, mb; and ms,.

Base on the parameters shown in Figure 9 and using the recursive procedure (4.2), the
production rate of the line has been evaluated to be 0.2068 parts/cycle which is less than
50% of the production rate of the slowest machine (ms). Thus, the system incurs
substantial losses, due to a relative inefficacy on the material handling system. The goal
of the continuous improvement project was to recover some of these losses by modifying
the MHS.

Table I shows the values of mb;’s and ms;’s calculated according to (4.5). From these

Table I Starvation and blockage of the system without the MHS improvement

i 1 2 3 4 5 6 7 8
ms; 0 0.0042 0.0815 0.1494 0.1737 0.3978 0.3207 0.2982
mb; 0.3252 0.3477 0.2365 0.1912 0.0862 0.161 0.1175 0

Bottleneck: ms; Production rate = 0.2068 parts/cycle
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Table II Starvation and blockage of the system with N, = Ny = 5

i 1 2 3 4 5 6 7 8
ms; 0 0.01 0.1083 0.2173 0.1604 0.2511 0.2159 0.2367
mb; 0.2634 0.2825 0.1392 0.0057 0.0048 0.2408 0.1525 0

Bottlenecks: m; (S; = 0.2523), m, (S, = 0.1091);
Production rate = 0.2683 parts/cycle

data and Rule 3.1, it follows that mg is the bottleneck, i.e., the MHS is weakly potent. To
protect the bottleneck, increase b, and bs to N, to N5 = 5. The resulting system has the
production rate of 0.2683 parts/cycle and the new bottlenecks, as it follows from the data
shown in Table II, are m; and m, with the severities S; = 0.2523 and S, = 0.1091. This
renders the MHS not potent. Protecting the primary bottleneck, we increase b, and b; to
N, = N; = 5. Resulting system has PR = 0.3249 parts/cycle with the bottleneck at mg
(Table IIT). Again, the potency is not achieved. Increasing now b, to N; = 5, we, finally,
obtain PR = 0.3882 parts/cycle and the primary bottleneck at ms (Table IV). Since this
production rate is within 10% of the slowest machine in isolation and this machine is the
primary bottleneck, we conclude that the MHS arrived at is a potent one.

A version of the system designed above has been implemented on the factory floor. A
new, robotic MHS has been installed to accommodate the buffering recommendations
developed. At present, the line exhibits a satisfactory performance. More details can be
found in [8].

8. CONCLUSIONS

Using the largest sensitivity of the system performance index with respect to the isolation
production rate of each machine as the definition of a bottleneck, it is shown in this work
that the location of the bottleneck in a serial production line can be determined by
analyzing frequencies of blockages and starvations of each machine. Since these

Table III  Starvation and blockage of the system with N, = N; = N, = Ns =5

i 1 2 3 4 5 6 7 8
ms; 0 0.0192 0.0025 0.0065 0.0057 0.0238 0.1032 0.1801
mb; 0.2071 0.2194 0.1584 0.1597 0.1027 0.3331 0.1847 0

Bottleneck: mg;
Production rate = 0.3249 parts/cycle

Table IV Starvation and blockage of the system with N, = N; = N, = Ns = N, =5

i 1 2 3 4 5 6 7 8
ms; 0 0.0369 0.0102 0.0225 0.023 0.1156 0.181 0.1168
mb; 0.1438 0.1402 0.0884 0.0821 0.0219 0.2008 0.0157 0

Bottlenecks: ms (S5 = 0.1528), m, (S, = 0.1209);
Production rate = 0.3882 parts/cycle
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frequencies could be either measured (real-time operation environment) or calculated
(production system design environment or for systems not instrumented for on-line
measurements), this offers a simple and systematic tool for bottleneck identification. For
both, single and multiple bottlenecks situations; this rule can be summarized as follows:

Bottleneck Identification Rule: If the frequency of manufacturing blockage of
machine m; is larger than the frequency of manufacturing starvation of machine m;.,,
(either measured or calculated), the bottleneck is downstream of machine m;. If the
frequency of the manufacturing starvation of machine m, is larger than the frequency of
the manufacturing blockage of m;_,, the bottleneck is upstream of machine m,. If,
according to this rule, there exist multiple bottlenecks, the primary one is the bottleneck
with the largest Severity.

Although this rule is to a certain extend justified in this work, both numerically (Section
3 and 5) and analytically (Sections 4), additional research is needed to more rigorously
quantify its properties, especially in the case of multiple bottlenecks.

APPENDIX A. PROOFS FOR SECTION 2

Proof of Lemma 2.1: The dynamics of buffer occupancy in system (i)—(vi) with M = 2 can
be described by an irreducible, ergodic Markov chain with states 0, 1,..., N, and transition
matrix:

1-p, (1= pp, 7]
P pp, (A —p)A —py E
p= p(1—py) - -
Pt (A —p)A-p) (A-pp,
L (1 —py) 1=p,+pwp, _|

As it has been shown in [1], the invariant measure of this Markov chain has the following
form:

o
+--~+0LN’+1—p2

Prob(h = j) =: X(j) = ,1=j=N,
a

where h is the buffer occupancy atz =«anda = p;(1 — p,) / D>(1 — p)). Therefore, after
some algebra,

1-p)d -
———————— D1 ¥D»
_P o
X(0) = )2}
1-p, _
P1 = P>

N1+1—p1’
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a 1
1__
a
p 1 ’pl¢p29
XNy =94 1-=20N"
P«
1 —
kNl"'l—Pl,p1 Pz

Thus, the probabilities of manufacturing blockage and manufacturing starvation are:

m’wb1 = Prob ({m, is up during a time slot}
N {b, is full at the beginning of this slot}

N {m, fails to take a part from b, at the beginning of this slot})

=p; X(N)( — py)
6 1
(1 -p)ad—-—-)
ol
1 P * D,

=q -2t
Py @

1-p
L PN+ 1-p,

= plQ(pZo P1, N1)9

P1 =D

r:;z = Prob ({m, is up during a time slot}

N {b, is empty at the beginning of this slot})

= pX(0)

(1-ppd -
Pz_l;‘_
1 -2
= p>
1-p
Py =

= p2Q(p13 pZ’ Nl)a

s P1 :/:P2

P1=D

where Q(x, y, N) is defined in (2.2).
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To prove Theorem 2.1, we need the following three lemmas: |

LemmA A.1: Let f(p,, p,, N,) be the sensitivity of PR with respect to p;, i.e., f{p,, P2, N,)

= 9PR(p,, ps» N)/dp,, i = 1, 2. Then functions f,(p,, p,,» Ny) and fy(p,, po, N,) are
monotonically decreasing and increasing in p,, respectively.

Proof: Recall [1] that

PR(p,, py, N) = po[1 = Q(p1, p2. NI = pi[1 — Q(p,, p1, NY)] (A.1)
Hence,
9PR(p,, py N)) 30y, P, Ny)
fi@y, Py N)) = ik, o 12 o' ek P> =Trlr (A.2)
op, op,
From equation (2.2), function Q(p,, p,, N,) can be re-written as follows:
_ 1-p,
Q1. pr M) = at---+ad+1-p)
where a is given in (2.2). Then
1 —_— 2
-1+2a+-- -+ NIOLN‘_I)(—pz)2
0Py, Py, N _ p(1 —py)
ap; [a+- -+ + (1 - p)l
After some algebra, this simplifies to
-1+ oV + N (- a)a™
P , P1 # Py,
30(p,, p N 1 — =My
Q(Plapz 0 _ pa( s ) (A3)
P1 —N, (N, + 1) ~
2p,(V; + 1 _P1)2’ Pr= b
Therefore, from (A.2) and (A.3),
1 -a") =N, 1 — o)
p » D1 #* D>
(1 - oMy
H®1, Py, Ny = P (A9
N} + N,

Wy P

Analogously, it can be shown that



254 C.-T. KUO ET AL.

1 11
- -NMa-9e"
o a o
p 1 9p1 :ﬁpZ’
= 1 - .._2 Wi 2 .
51 Py NY) ﬁ ( o (o (A.5)
N} + N,
— % PL=P
§ 2N, +1-py)° e

Consider now the two cases, p; # p, and p; = p,, separately. For the case p, # p,, we
write:

fi(@1, P2, Ny)
_(-a)(+a +o?+ ... +aM! —NlaN‘)
- _P1 w2
a 7 )
_ 1
(1 -2t (1 -5

A=) Q+a+a®+ .. + oM - N oM

1

- oM+ (1 - ByaM = oM + (1 -2 oMy
P P2
I-o I-a"+@—a™+ .. +@" " -a")
~ 1
—(pz;p') n-o%+a —?)a"']
N-1 2 N, 2
Throat ot T 0w | Tl ot o T N+ o (= oo
p2(1=py)

1+2a+3a?+ ... +Na™™!

1_
N+at+ta®+ ... +a" 2401 +1¥) oM
2

_ 1+2a+3c%+ ... +Na™!
Tl4 20+ . AN - DA TR (N 240 T+ L+ 2+ 24)N T+ (1 + AN

)
= ko) ¥ Ko, A (A.6)

where

_ pi(1 — py)
12 ’

A

k(a)=l+2(x+3a2+ +N1aN‘_1,
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24cM7M + L+ 2+ 247 + (1 + AP N, = 2,
l(a, A) =

24 + A%, N =1.
p(1 = py)
For an arbitrary p; € (0, 1), choose p, so that p; > p,. Then @ = ————— > « and
p.(1 —py)
pi(1 —py
A = ———— > A. Therefore, for N, = 1,
P2

1
1+A+A 1+A+ A

fi@y1, P2 NY) — fi(P1, P2, NY) = <0.

For N, = 2,

£i®ys Py, Ny — f1(@45 P2 Ny)

_ k() ~ k(o)
T k@) + W@ E) k(o) + Ko, A)

k@, A) — K)I@, B)
k@) + U@, A)[k(e) + Ko, A)]

(A.6)

The numerator of (A.7) can be re-written as

@)l(a, A) — ko)l(@, &)

=1+20+ .. +NT HRAM T+ L+ (1 + AN
—(1+2a+ ... +NMH AT+ L+ (1 + BT
=@+ 2@+ L AN T AT A+ L+ (1 + AT
—@ 2@ et L AN Y RE S L+ A+ R A
(A7)

Since®@ > a and 4 > A,
@ '+ 2@+ LA NE T T <@ 28 L N MY
and

A+ .. + 1+ TN [ZA+ ..+ 1 +AE,
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Hence,

k(@)l(at, A) — k(o)l(@, A) <0,

and, therefore,
fi®@y, p2s Ny) — fi(P1, P2, Np) <0,

i.e., fi(p;, P>, N;) is monotonically decreasing in p, if p; # p,.
For the case p; = p,, expression (A.6) holds as well, since in this case « = 1. Hence,
fi1, P2, Ny) is again monotonically decreasing in p,.
The monotonicity property of £,(p;, p,, N;) with respect to p; is proved analogously.
|

Lemma A.2: Functions nF;Zl and ;;2 defined by (2.1) are monotonically increasing and
decreasing in p,, respectively.

Proof: By Lemma 2.1, we have

mb; = p,Q(p,, p;» Ny).

Since Q(p,, p;, N,) is monotonically increasing in p; (see [1]), function %1 is also

monotonically increasing in p,. Similar argument is used to prove that ms, is monotoni-
cally decreasing in p,.

|
Lemma A.3: For the case p, = p,,
mb, = ms, and f(p,, P2, Ny) = f2,(p,, P2, N)).
Proof: Follows directly from (2.2), (A.4) and (A.5).
|

Proof of Theorem 2.1: Denote %, = ;l;l(pl, Da, N;) and n’Ts2 = %2@1, P», N,). Suppose

;r?l;l < ;;.;2. Then we show, by contradiction, that p; < p,. Indeed, assume p; = p,. Then,
by Lemmas A.2 and A.3,

mb,(py, py, N1) = mb(p,, py, Ny) = msy(py, Py, Ny) = msy(py, py, Ny),

which contradicts the assumption. Therefore, p; < p,.
Since p, < p,, using Lemmas A.1 and A.3, we have:
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Ji®ys P2y NY) > 102, Poy Ny) = (P2, P2, NY) > (P15 P2y N,

ie., aﬁ(pl, D2 ND/op, > GFI_é(pl, D>, Ny)/dp,. This proves the “if” part. The “only if” part

is proved by assuming BFI_é(pl, D», Ny/op, > BFE(pI, P2, N1)/dp, and using arguments
analogous to the above.

|
Proof of Corollary 2.1: From (A.1) and Lemma 2.1, we have:

PR(p,, py, N)) = p, — ms, = p; — mb,.

Therefore, the inequality p, < p, implies and is implied by the inequality ;—r;l;l < %2.

Similarly, p; > p, implies and is implied by m’Vb1 > m~s2. Thus, by Theorem 2.1,

OPR(p,, py, Ny) S OPR(p;, p,, Ny) (or OPR(p,, p», N < OPR(p,, p;, Nl))
ap, ap, ap, ap,

takes place if and only if

D1 <Py (or p, > p,, respectively)

i.e., the bottlenecks identified by definitions (a) and (1.1) are the same.

APPENDIX B. PROOFS FOR SECTION 4

Proof of Lemma 4.2: From equation (4.1), we have:

— M j—1
mb; = p; >, ( 11 p,)(l—pj)X,-W_J_l(N,-‘...,Nj_l),i= L..,M—1.

Jj=it+l r=i+1

By Lemma A.6 of [1], %,- can be expressed in terms of ﬁf’ as

—~

mb;=p,—p; +0®),i=1,...,M— 1.

Using Lemma 4.1,
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mb;=p,—pt +0@),i=1,...M— 1.

Thus, from the steady state equation of recursive procedure (4.2),

mb; = p; — p{1 — (L1, Pl N)1 + O(3)
= pQW@}s 1, Ph N) + O()
=mb,+0@),i=1,...,M— 1.

Therefore,
imb; — mb) ~ 0(),i=1,..., M — 1.
Analogously, from equation (4.1), ;;z;,. can be written as
ms; = pX;,_,(0),i =2, ... .M.
By Lemma A.6 of [1] and Lemma 4.1, this can be approximated as
ms, = p; = b/ + 0(3)
=p,—pl+03),i=2,..,M.

Using the steady state equations of recursive procedure (4.2), we have:
ms; = pi = pll = QL. pl, Ni-)] + 0()

= p QL. Pt N,_)) + O()
= ms; + 0(8)5 i= 2, e ,M.

Hence, we conclude that

ims; — msj ~ 6@),i=2,..., M.

Proof of Lemma 4.3: Under Hypothesis H.1,

mb;_, > ms;, Vi=<i
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Under thlS condition, we show, by contradiction, that there exists N* < such that
i1 >pj, forall N;,_, > N*, Vj < i. Assume that, for all N| < , there exists N;_ >N, Vj
=< i, such that pf_1 < p;. From (2.2) and (4.5),

lim mb_] = hm p] lQ(p_] p_] 1» '—l)'

N> Ni- >
6 1
(1 -pH - D
limN]_‘_)x pj—l T’ ij >ij_l
-1 &
i 1-p
L My e Pj- IN F1- b’ pj —p, 1

0,
lim ms; = lim ij(pJ 1,p,, N;_)
Nj_ > -1
r f
) (1-p -
llmN’_l_,xpj 4Lpf1' ,P]l-’>p;_1
1 — =L M
1 —p;
li Dy ——1—, i~
¢ T p’N +1-pf P =P
- b f
Pj — Pj-
_ pjj—bjl>0, PJI:,>P][—1’
= 4 p;
| 0, P =P

where
f (1 —-npb
=Pbl—1( fP,) <1
Pj(l - pj—l)

Therefore, there exists N;_; > N}, Vj < i, such that

mb;_, =

ms  js

which contradicts the assumption.
Choose M large enough so that plf-_1 > pj’ , forall N;_; > N}, Vj < i. Then,
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lim WP N_) =
Ny Q(ij 1 pj Jj 1) : —-’E

p;

where

A-pl)d-o _

5 O
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0,

Ny

_rpLa-m_
pf(l - pjf—l)

Thus, for any 0 < €, << 1, there exists N;” > N such that, for all N_,> N, Vj =i,

b _
Q(P;-pl’j, Ni_)) =€ <€

Similarly, for j = i, we can conclude that, for any 0 < €,;, << 1, there exists

N,* > N, such that, for all N;> N,

b =
owj. 1, ij’ N)) = € <€y,

Therefore, for given €,, choose N* = max(I\fk Y N;*) so that

€

= max(gj;, €) < €.

Js

The proof of Theorem 4.1 requires the following four lemmas:

Lemma B.1: Let g,(x, y, N) be the sensitivity of Q(x, y, N) with respect to x and g,(x, y,
N) be the sensitivity of Q(x, y, N) with respect to y, i.e., g,(x, y, N) = dQ(x, y, N)/ox and

g2(x, Y, N) = BQ(x, Y, M/ay Then

gl(x9 y1M = ﬁ

g2(x9 y’N) = <

r

q 20N + 1 — x)*

y—Xx OLN
y(1 —x)

X
y(1 —= oy
y

-1+a"+N

X F Y,

—N(N + 1)
X = y,

a Xy —=x). y
x = [xﬁ-Ny—(1 _y)]a

X
¥ (1 —=a
Yy

, X F Y,

NN+ 1—-2x)

L 2N+ 1-x7%

(B.1)

B.2)
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where o is defined in (2.2).
Proof: Follows directly from (A.3).

LemMma B.2: Introduce

opl_ op?
k1j=¢,j=2,...,M, k= j=2,.. .M, (B.3)
9p; op;
opb op,
Yy = =1, M-, k4j=—d,j=1,...,M—1,
p; 9p;

where pjf, p}’, Jj = 1,..., M, are the steady states of recursive procedure (4.2). Then

kyy = Vy, kyy =1, kyjp =0,

V21028205 Ph, No) + Vy3p28,(p5, Ph, No)
B,

V.
kpy = Ezf [1 — Q@ ph Ny)] — [1 - 0@y, p3. NI,

V10,8,(py, P, Ny) v
kyy = — 1372 2B1 270 1 — 0@ Pl Ny + ﬁ [1 — O(p;, P2 NI,
s 2
V10,8201, Po» Ny) v
Ky = — 232 ZBI Py N [ — Q% NI + B_23[1 - Oy, P, NI,
) 2
_ Uijo1 Va1

k=== 11 = 0@, 1 N))
j
U, V, ~+1p<g2(Pl7+pr', Ny + UV, ‘+1P'81(Pl'7+1’17fa N) b
_ 2 J+Wis2\Pj+1 Pj 1V ; J edls NS AU S A —Q(P;—pl’j,Nj—x)]a

J

Uy Vo
by = =R (1 = QG P N))

J

_ 22yl Y2+ iS22\ j+ s Fjp Y 5 2j—1 V1j+Wis1\Fj+1> Fj» 1V; [1 —Q(pj(_l,Pf,Nj_l)],

J

j=3 .., M-2, (B.4)
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Uyiy VyisPi8o@ 1, P2 Niey + Uy iy Vioy 081, 25, Ny
ky = — 24j-1 1J+1P182(P,f 1 Pj, I 1B 1j-1 1,,+1P,g1(1’,f 1» D> Nj—1) [ —Q(P,["H,P,waj)]

J

Uy Vi
+ =R 1~ 0], B Ny D),

Uy Vayr1P820}—1, B3 Ni)) + Uy iy Vo 10811, P}, Nj—)
k4j=— J J+ UjO2N) J2 5 J J+ 1 J Jr [l—Q(p,'-’H,p,[,Nj)]

J

Usioy Vo
A L = Q@ P N

Uiy-
kiaay = B2 11~ O Pl Ny-1)]

Uy st Put-182®ats Pha—1s Nag—1)
_Yim ZPMIZBM M—10 IVm—1 [I_Q(wa—z»Pgd—vNM—z)],
M—1

U, -
ka1 = 32:_12 [1 = Q@ Phy-1 Nyy-1)]

Uz pt-Prt—1820rts Pot—1o Nyg—1)
— Zzm=Pus ZB e O@hs—2: Prt—1» Ny—)1,
M—1

k3p-1 =0,

_ U2M—2PM—182(P§w—2’ Pfu—p Ny-p) + Ul,M—2PM—181(P1fw—2’ Pﬁ4—1o Ny—2
By

ksp—1 =

[1 — Qs Phi—1> Nyy—)]

Urm—»
+ B [1 — OWs—2 Phi-1> Ny—)),
M1

kiy = Up—1s koyg = 1,
where g,(x, ¥, N) and g(x, y, N) are given in (B.1) and (B.2),

U1=0,

Uy = (U 01 @)1 P> Nj-) + pigo@]-1, P Ny DIpig1 @, 2 NDLJ = 2,0, M~ 1,
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Uy =1 = U pg1@}-1, P} Ni-1) + piga@}-1, 1), Ny DIPiga® 1, P DL = 2, ..., M — 1,

Uy,
U=—j=2...M-1,
J U2j
V, =0,

Vi = Vieipgi®jer B, N) + P&a®ir Py N)IPii @1 P N = 2,0, M= L,
Vo = 1 = Vi1 0810041, Pl N) + Pga®)i1s P N)IPP|-1, P N =2, ... . M — 1,

V~=Klj'=2 M-1 (B.5)

i= v ) e , .
2j

and

B, = Vi — Viap38:(p1, P3 N)&I(PSs Ph No) — Vau3g:(pys P, NDELPS, Ph, N,
B; = U1V, — V1J+1P,282(P,f'—191’]1?, Nj—1)81(P,l'7+1,P,[, N)
- V2J+1P}82(P;—1, P,l"s 1\7,'—1)82(1’,{’“’ P;’ N)]
+ Uypjosl= V141278101, P}, Ni- )81 Pf41, Py N)
= VP 1@)-1, P Nj-)82@rers P NDL G = 3, ... . M = 2,
By, =Upy-2— U1m—2Pi4—181(P§t4—2’ wa—p Ny-2)8:Pus P];u—l, Ny-1)
= Uy p1-2P21-18:Pht-2 Prt—1s Nyy-D82Pts Pha—1> Nyg—1)- (B.6)

Proof: The expression for &, is obtained using the induction: Introduce apflapl, s=2,...,
M — 1.Fors =M — 1, we have

3pﬁ4-1 — apy[1 — Q(Pfhm P;u—l,NM—l)]

ap, ap,
-, 30Whs Phy—1s Nuu—1) 9Py p 9QWhs Phy—1s Nua—1) a1
M Py op, M P op,
-1
= —Pu-180m Pfu—l, Ny-1) T
D1
Py-1[1 = QWhi—2 Ph—1» Nyy—»)]

= —Pu-180m wa—l’ Ny-1) P,

= —Pu-1820m P§t4~1, Ny-1)

[—p 9QWhy—2 Pat-1> Nu=2) 9Py —»p 90Why—2 Pry—1s Nu—2) 31’24—1]
v Why-2 p, M -1 ap,
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P>

ap,

—PM 182(PM,P£4 1 Ny 1)81(P1fw 2’PM 1s Ny—2)

aPM L
+PM 182(PM’P£4 1 Ny 1)82(P§M 2,PM Ny ——

where g,(x, y, N) and g,(x, y, N) are given by (B.1) and (B.2), respectively. Thus,

aph_, _ P18 Pha—1s Not- )81 P2 Pht—1» Nuu—2) 9Py
ap, 1 - p12t1—1g2(pM’ wa—lv NM—O§2(P£4—2’ Pﬁl—l’ Ny-) dp,

_ Vim-1 apfn—z
Vom-1 9p,
P2

= Vy_y —, B.7
M1 o B.7)

where V) 31, Vo1 and V,,_, are defined in (B.5). Assume that for 2<s<M — 1,

op, Ve 3P1

where V,, 2 < s <M — 1, are given by (B.5). Then,

ap?—l _ op,_4[1 — Q(Pls,’ Pz—lst—l)]

P, 9P,
- 90WS, Py—1, Ny-) aLf —p 30®S, P, Ny—p) ;-
! op; p -1 ap,

apl , apl_,
= _Ps—181(P?’ P);—l’ N,_) ;;1 - ps—ng(ps’p§ 1 Ns—1) E

ap’

[_Vsps—lgl(p?’ P’;—ls N, — Ps—lgz(va s—15 NV,

= [_Vsps—lgl(p?’ pi—l’ N,y

ap,—[1 = Q@ P2_1. N, )]
ap,

= [_Vsps—lgl(pf’ P§—1’ N,y — Ps—182(l’?’ Pi—l’ Nl

- Ps—182(P?a Pf—l’ N, )]
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[—p 30W, 2, Py-1, Ny—) 9P} -p 90w, 2 P}-1, Ny 31’?—1]
T wl, oo T e 2

= [Vsps—lgl(p?’ Pg—lv N,y + Ps~182(PI;, P£—1a Ns—1)][Ps—181(P£—2, P}s]—p N,

pl_,
ap,
+ [Vsps—lgl(pf’ Pﬁ—l’ N,y

+ pe18(P% Py No- D[P, 18P0 PE-1, N, 2>1

P

Hence, using notations (B.5),

po_, _ (Vp,—181®% Pl_1, Ni—y) + Py—1820% Pits No-DIPs— 181 P2, P21, No-)] 3P},
;1= [V, 18105 Piots Nooy) + P 18200 Pt Ny DD 18202, P21 Ne—2)] dp,
_ Vi 317); 2
Vz s-1 9P
pl_,

=V, . B.9
s—1 apl ( )

Thus, the inductive hypothesis is established, and therefore,

ap? v e
Doy, Py (B.10)
9p, ap’
In particular, for s = 2,
op} Py
ky=—=V,—=1V,, (B.11)
3 op, 2 9p, 2
since p/ = p,. For the same reason,
9
kyy = v _ 1, (B.12)
op,
)
kpy = 6—’;:‘ = 0. (B.13)
2

The expressions for k,,, and k,,,, given in (B.4), are derived in a similar manner.
The expressions for k,,, k3, and k4, are derived as follows:
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a5 _ apll — 0@, i )]

k,, =
2 ap, ap,
_ 90(w3, 5 N)) 0p5 903, P, N,) oph
1 - Q@5 Py N) — p———5——— —p,
W, o, : a op,
=1- Q(Pg, Pé, Ny - ngl(pg’ Pg’ Nyky, — Pzgz(l’a, ng Nyky,,
v = _ ol = 0@, s, NI
42 — -

ap, ap,

1= 0L N — p aQ<p{,p‘z’,Noa_p{_p 30, p3, Ny) op;
- LY X 1 2 2 b
w.  op w;,  op,

=1- Q(PpPlz” N) - P282(P1,P’2)’ Nyky,.

(B.14)

(B.15)

To find the expression for k3, in terms of k,,, we use again the induction. Introduce

ap"ap ,8§=3,..,M— 1.Fors =M — 1, we write
2

‘31’11:4—1 - opy—y[1 — Q(Pﬁl’ p;l—l’NM—l)]

op, op,
- 3QPhps Phy—1> Ny f’f_ig - 30Whyts Pha—15 Nyt—1) 9Phy—s
v Py ap, M W1 p

0Pl

= _PM—lgz(PM’P{u—l’NM—l) P)

2

opy-i1[1 — Q(P{w—zv pﬁl—l’NM—2)]

= —Py-1820m P];tl—l, Ny-y)

ap,
= —Pm-1820m Pfu—h Ny-1)
[—p 9QWhs—2 P15 Ny—2) 9Phs—2 —p 90Why—2 Pry—1» Nu—2) 3Pk4—1]
M- Phy-2 ap, M Py op,
Py

= Pzzu—lgz(PM’ pr—-l’ NM—1)81(P£4—2’ pﬁl—l’ Ny-2) p

2

P

+PM 182(PM,P'1‘M s Ny 1)82(17{\4 2’pM—-1’NM 2) p
2

Hence,
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Py _ Pr-18:Pw P£4—1’ Ny— )8 Pht—2 Pra—1s Nu—2) Py,
ap, 1 - Pfu—lgz(PM, P{u—p NM—l)gz(szw—z’ pil—l’ Ny-2) dp,
- Vim-1 al’fu—z
Vom-1 9p2

P2
- op,

=V, (B.16)

where V; p,_ 1, V-1 and V,,_, are defined in (B.5). Assume that for 3<s<M — 1,

ap? v Pl
op, * 9p, '

(B.17)

where V, 3 < s <M — 1, can be found in (B.5). Then,

P _9 01— 0@?, pi_1, N,

9p, op;
- 30}, P1; Ni—1) illg —p 90, Pi1 Ni—1) 0Pl
= —p,  —teeb el ~
’ ap? op, 7 -, op
op? pl_,
= —p,_181 L Pl Nyoy) ;; — P18 @ Pl_1 Nimy) 6;2
w1
= [—Vsps—lgl (P?, p,;—lv Ns—l) — Ps-182 (P?, pt:-—l’ Nx—])] a;]
2
-1 [1 = Q@) 2, P, Ny-2)]
= [~Vp,-181 @} Pio1s Ni—1) = P-182 @ Py N D] — 6;2 > :
= [~ Vo181 P2 Plo1s Ny=1) — P—182 @2, Pl 1 Ni2p)]
[=p 0@, 2 P 1, N2 2 » 90,5, Pe-1, Ni—2) aPf—l]
o ) ap, ! pr_, op,
P,
= V181 @ Pl Noc) + Poci8r B Plore No-DUPs- 181 Pl P Mool <2
2

apb—l
+ [Vips_181 P2, Pl No—)) + Pom182 @ DLty N DIIPs-182 Pl PE-1, No—)] 3;2 .

Hence, taking into account (B.5),
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ap?_, _ V58 ®%, Pl_1, No-1) + Py—182 @8, Pt Ne—DPs—181 @i P21 No—)]  0Pfy
ap, 1 —[Vp,18 @ Piots Neoy) + Pe—182 @2, P No- DD, 182 P2, P21 Ne—2)] py

— Vl,s—l 3P£—2
Vas—1 9p;
s

=V (B.18)

Therefore, the inductive hypothesis is established, and we have

a_eg = &a_pg_l =V 3P£—1
p, Vi 9p, * op,

,2<s<M. (B.19)

The case of s = 3 yields

ky=—=——=— ky,. (B.20)
2 op, Vydp, Vi3 @

Equations (B.14), (B.15) and (B.20) can be re-written in the matrix form as follows:

1 282 (95, Py N) Pagy 03,95 N | [ &y 1- Q. P Ny)
P28 (01, P53 NY) 1 0 ko | =| 1- 0@, P2 N)
0 -V Vo k3, 0
(B.21)

Solving (B.21) for k,,, k3, and k,,, we get

V. v, S b Ny +V, % P N.

kyy = f (1 — 0% Pl Ny)1 — 13028203 P 2)B 12022103 P, V)

2 2

[1 = Q@ P2, N,

V130,821, P, Ny) 1%
kyy =~ 1 - 008 P VDL + 1 - 0GP N,

Vo281 P2 ND) V.
kg = —HEEEREREE 0L - 04 Nl + 2211~ 0 P4 V)

where
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1 Pzgz(Pg, Pés N, p.g 1(1’13” Pg’ Ny
B, = det | p,g:(py, P35 Ny 1 0
0 =Vis V23

=Vy— V13P§82(P1’P3’ Nl)gl(Pls” Pév Ny — V23P§82(P1’Pg, Nl)gz(Pg» Pé, N,).

For ky;, kyj, kajs kaj j = 3,..., M — 2, and for ky ps_y, k3 pr—1> Kapr—1» Using the same
procedure, we obtain, respectively,

Usja —Uyj Y 0 ky;
0 , 1 , pjgz(p_?+1’ P;’ N) Pjg1(PJI‘,+1, P,f', N) ky;
pjgl(p;-—l: P> Ni-1) Pjgz(ij'-p pj>Ni—p) 1 0 :4j
0 0 —Vij+ Vaj+ Y

0

1= 0@}y, P, N)

b ) B.22
1- Q(P,f'—l’Pj’Nj—l) ¢ )
0
Urm-2 ~Uym-2 0 Kkyp1
0 1 Pm-1820um> pﬁr[—lv Ny-1) ko p-1
Pr—181Pht-2» Pht—1» Nut—2) Pra-182Pht—2 Phy—1» Nyy—2) 1 kap-1
0
=| 1-0@wPy-1.Ny-1) | (B.23)

1 = Q-2 Ph—1» Nu—2)

Solving (B.22) and (B.23), we obtain k,;, ky;, k3, kyj»j = 3,..., M — 2, and k; ps_1, ko pg—15
k4 -1, as shown in (B.4) with B, j = 3,..., M — 1, given as follows:

U2J—1 _UIJ—I 0 0
_ 0 1 png(p]I"+1’ ij’ N) Pjgl(P,"’H, ijw N)
B; = det b b
Pjgl(p,f-_pp,-, Nj—l) Pjgz(p;—l’l’j’ Nj—l) 1 0
0 0 —Vl,;'+1 V2J+1

= U1V — V1J+1Pj?g2(P,f'—1,PJl',, M—1)81(P,I-7+1o17§, N)
= V2j+10}8:P}-1. P} Ni-)82p1. P, N
+ U1J—1[_V1J+1P,281(P;—1’Pf’ 1\71—1)81(1’,1',+1’P§’ N)
~VajsiP81@)-1 P} Ni- )& @, Py NDLJ =3, ... , M = 2,
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U2M—2 - U1,M—2 0
By—y = det 0 1 Pr-1820wts Pht—1: Nyy—1)
PM—181(P1[w—2’ pkd—lo Ny-2) PM—182(P1fw-2, Pﬂ—ly Ny-2) 1

= Upp-2 = Ui pr-oPyy—181®h—2 Pyt—1» Nit-2820uss Pg—1 Nyy—1)

~ Uy p-2Pr1-182Phi—2> Pot—1» Nut—2)82Pass Pht—15 Nua—1)-

Finally, since p%, = p,,, k3 ar—1 is evaluated as follows:

op’ F)
kypoy = Py _ PM__ 0. (B.24)
Py-1  Pu-1
|
Lemma B.3: For a serial production line (i)—(vi),
oPR b » b
3;‘ =1— 0@ p1s Ny) — pilks,181(P, P15 Ny) + kyy8:,(p3, P1» NI,
1
OPR
Pl Q@|-1, P}, NI = Q@Y1 Py N
J
—pill — Q(P,["H’P,[’ A,j)][kljgl(pjf—l’pjl',’ Ni-) + kzjgz(l’;—l’Pf’ N;_D]
= pll - Q(ij_l,P;, I\Jj—1)][k3j81(Pf+1’ij" N) + k4jg2(p§’+1,pjf-, Ny},
Jj=2..,M-1 (B.25)
OPR
5“ =1- Q%—l’pM’ Ny-1) — PM[klM&(szw—pPM, Ny + kzMgz(P{u-l’PM’ Nyl
M

where g,(x, y, N), 8>(x, y, N), kyj, kyjo j = 2,..., M, and kyj, ks, j = 1,..., M — 1, are given
by (B.1), (B.2) and (B.4), respectively.

Proof: Since PR = (p;pf)/pj, Vj=1,..,M,andp, = p,,ph = p, we obtain

oPR aQ®5, P, N

— =1- 0@ p|,N) - py ——1—L

op; ap;

905, P, N) 9Pz | 905, P, N)) 0P
31’3 ap, 3P{ ap,

= 1_Q(p12,’P1’N1)_pl[ 1
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oPR
Pl U O@,_1, P2, Ni-)I[1 — Q@s 1, Py N
J
0@, p}
_ - 90Wj-y, pj> Nj-1)
pjll = 0@\, Pl N)] P :
Pj
30(p} ,p’ N)
_ _ __L__l__l_
pll — Q. pb N ] —=
= [1 - Q(p;—-p P]b, N]—l)][l - Q(pj+19 P;,N
, 0Q®]-1, P} Ny-0) )1 3], P} N;-1) 39
— pjll = Q@)1 P} N)] + 7
) 9p; 9p; 9p;
b b
- piil - Q@/_1, P, Nj—l)][aQ(ijt:&f.’ N 2y 3Q(P,+1,pf ) OP/]
pj+1 ap; ap]f- ap
=2 . M1, (B.26)
oPR d0Wht—1» Pt Nyy_y)
=1-0 » P Ny—1) —
3pM Oha-15 Pots Nyy—1) = Pt Py
d0@}s-1, Pots Nyy—1) 0Phs—y aQ(P;u 1» Pots Na—1) 3PM]
=1- Q —1 9N — ) - [
(P{w o Par T Pu BPfM—l Py aI’M pu

Using the expressions for dQ(x, y, N)/dx and dQ(x, y, N)/dy from Lemma B.1 and the
expressions for apjf»_llapj, apf/apj, j=2,.,M,and apj.’+1/apj, ap,f./ap,., j=1,...,M—1, from
Lemma B.2, (B.26) is reduced to (B.1), (B.2), (B.4) and (B.25). ]

Lemma B.4: Under Hypothesis H.2, the following hold:

(a) if mb;_, > ms;, then

kyg\P}-1 P} Ny + kyg,0)- 1, P} N ~ 0(e),j = 2, ..., M; (B.27)

(b) if mb; < ms;,,, then

kyg (i1 Pl N) + kygo®hi1, PLN) ~0(e),j=1,... .M — 1, (B.28)

where € = max; (€, €;) and g,(x, y, N), g,(x, y, N), ky;, kyj» j = 2,..., M, and ky;, ky;,
j=1,..., M — 1, are given by (B.1), (B.2) and (B.4), respectively.

Proof: Statement (a) is proved as follows: From Hypothesis H.2,
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1-7_)a -
€ = OP|-1, P}, Nio)) = A-p )1 -«

1- p’(—_bl o
Ppj
Pbg "Pfg—l
b
=+<< 1,j=2,...,M,
1- Ib—laN/'"
p;
where
p{. a-p
Py —p)
Thus,
1 — gl -/ pf‘, =2, ..., M (B.29)
p; JIPJ

Using Lemma B.1 and (B.29), we write:

b b b
b N_@b =P b _ of
efll’jl‘,{—1+[£L+ ; 1(5’1,_51)](1_1’165’; 9}
81F}-1, P} N;-) = = = — ~ 0(e),
@; i-1)

(B.30)

b_ b
6 ). - v+ Ml o e 2

/-1 5 b 1 o e
1 -p) "~
8:P}-1, P} Nj-)) = P ;? )2 PP g
i

By Lemma B.2 and (B.30), the k;s, involved in (B.27), are calculated as follows: For
j=2,

(B.31)

Vs ,
l - I 9 N
V23 - V13p§g1 (pg, pé, Nz)@(e) - V23p§g2 (pg’ pg, Nz)@(é) [ Q(p?a pé 2)]

_ Vapags 03, P, Ny) + Viapsg, (03 Ph No) [ —e]
Vas — Viapig, (0% Ph Ny)O(E) — Vyap3g, (0% ph, NpO(e) i1

ky =

Neglecting the O(e) terms, we have
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ky, ~ 1= Q@4 Ph, Ny) = pagy (03, b No) — Vapagy (05, . Ny). (B.32)

For 3 =j = M — 2, we first calculate

B = Uy [Vayi1 = Vijs10]0(€)81 @1, Py N)
= V2j+1P;0(€)82 (1, P}, N)]
+ Uyjoi[= V1010008, @fe1 Py N))
= V2;11P;0(€)8; 011, P, N))
~ Uyj-1Vajs1- (B:33)

Then, using (B.33),

ky~ Uy [l = Q@Ls1, P N))

~ U_ipg: @fe1s s N) = Ui \Vis1pig) P11 Py N, (B.34)
kyy =~ 1= Q@1 P N) = pigs @1 P N)) = Visrpigs 041> P N).
(B.35)
Similarly, forj = M — 1,
kyp—1 = Uy,[1 — Oy, p{t'l—hNM—l)] = Upy-oPy-182 Pu> pr—l’ Ny-1)s
(B.36)
kypy-1=~1-— 0@y P/fw—l’ Ny_1) — Pu-182 @us pr—l’ Ny-p)- (B.37)
Forj = M,
klM = UM—l’ (B.38)
ko = 1. (B.39)

Therefore, substituting (B.31), (B.32), and (B.34)—(B.39) into the left hand side of
(B.27) and using (B.30), we conclude that

kljgx(P;f'—pP,l", Nj—l) + kzjgz(P;—pPJl"’ Nj—x) ~ OC(e).

Statement (b) is proved analogously. |
Proof of Theorem 4.1: Suppose first that

mb; > ms; . . (B.40)
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Then, under Hypothesis H.1, the following two cases are possible:

(a) mbj,y > ms;,s,..., mb,_y > ms;, mb; <ms;,y,..., mby_; <msy, j<i<M,ie,
according to Rule 3.1, the bottleneck is in the interior of the line,

(B) mbj, > ms;,,,..., mby_, > msy, i.e., according to Rule 3.1, the bottleneck is the
last machine.

Consider first case (o). By Hypothesis H.2 and Lemmas B.3 and B.4,

PR

S -0 QW1 Pt NI — Q@4 1, Py N

= pll = Qs 1, P, N)Ilkyi81Pl-1, P} Nizy) + kg1, 7> Niy)]
= pll = O/, pi, N, )lks 1@ 1s P N) + kg, P NI,
=01 -€)( —€py)
—pi1 = €lkig(}-1, P} Ni-)) + koo, 7, Nio)]
= Pl — €)lksg,@}s1, P N) + kg (®hir, P N)),
=1-q B41)

where
o, =¢€; + (1 —¢ey

+ pi1l — ex)lkyg, (V)1 PY Nioy) + kpigo @y, Yo Ny )]
+p(1 — €i1)[k3181(l’?+1’1’£ N) + k4i82(P?+1’P£ N)] ~ O(e).

Now we calculate dPR/dp;, j < i. This calculation is different for j = 1 and j > 1. For j =
1, using Lemma B.3, we write

OPR b b b
— = 1= 0@, pi, N) — p, [k3181 02, 1> Ny) + kg8, (03, P1> Ny

ap,
=1- oy, (B.42)

where

o, = Q5 p1. NY) + py [ks 8, 05, Py, Ny) + kuygy (05, py, Np1 ~ O(D).

For j > 1, by Hypothesis H.2 and Lemmas B.3 and B.4, we obtain
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OPR »
W (1 = €[l — Q@+ 1, P, N
= p;[1 = Q@1 P N)ITkyg, @f=1 )2 Ni—y) + kyyg, )1 P}, Ni— D]
—pj a- €j,1)[k3j81 (P]l"ﬂs ij" Nj) + k4j32 (pr'PJf" NJ')]’
=1-a (B.43)
where

o = Q@)1 P N) + €41 — Q@)1 P, N)]
+p; [1 = Q@}s1, ), N)Ilkyjgy B)-1s P Ni—1) + kg, (-1, P}, Ny )]
+p; (1 = €)lkyg, @fe1s P N) + kyg, 011, Py N
~ O(1).

Thus, forall 1 =j <,

dPR < dPR
op; p; ’

i.e., under the assumption (B.40), the effect on the PR of the machine, upstream of
machine i, is less than that of machine i.

Consider now case (B). Using Hypothesis H.2 and Lemmas B.3 and B.4, 0PR/dp,, is
estimated as follows:

OPR
_ap =1~ €y — pulking (szw—l’PM, Ny + kopg, (wa—l’PM’ Nyl =1—ay,
M
(B.44)
where

oy = €y + Py k81 (P;w—l’PM’ Ny-1) + kg, (szw—l’PM’ Ny—)]1 ~ O(e).

The expressions for dPR/dp;, M > j = 1, remain the same as in case (), i.e., (B.42) and
(B.43). Therefore, again,

dPR OPR )
—<—, M>j=1,
ap; Oy

i.e., under the assumption (B.40), the effect on the PR of the machine, upstream of
machine M, is less than that of machine M. Thus, the Rule 3.1 is proved for the case (3.1).
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The case of ms; > mb;_, is proved similarly. Therefore, the Rule 3.1 is proved for the
case (3.2). |
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