MPE — Volume 2, pp. 301-318 © 1996 OPA (Overseas Publishers Association)
Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands
Photocopying permitted by license only under license by Gordon and Breach Science
Publishers SA

Printed in Malaysia

A NEW TECHNIQUE IN CONSTRUCTING
CLOSED-FORM SOLUTIONS FOR NONLINEAR PDEs
APPEARING IN FLUID MECHANICS AND GAS
DYNAMICS

D.E. PANAYOTOUNAKOS

Dept. of Eng. Science, Sect. of Mech., Nat. Techn. Univ. Athens, 5 Heroes of
Polytechnion Avenue, GR-157 73, Zographou, Athens, Hellas

(Received 15 September 1995)

We develop a new unique technique in constructing closed-form solutions for several nonlinear partial
differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer
arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial
state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned
technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the

dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer
flow.
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1. INTRODUCTION

The unsteady, one-dimensional isentropic flow of a perfect gas with variable pressure is
one of the most discussed items of aerodynamics. The major difficulty in obtaining
analytical solutions of the governing differential system is the nonlinearity ([2], [4]). Long
ago the unsteady one-dimensional transonic flow of idealized compressible fluids has been
studied by several ad hoc assumptions or other analytical methods and techniques. We
mention here the classical works by Tamada [20] and Tomotika and Tamada [21], where
exact solutions of the above problem are obtained by making use of some ad hoc
assumptions or by means of separation technique, or other assumed forms of solution (see
Ames [2]). Also, Pai ([15], [17]) dealt with the derivation of the equations of an ideal,
one-dimensional, viscous, heat and electrically conducting gas. He constructed exact
solutions concerning velocity and density for an isentropic flow making use of the ad hoc
assumption that density is a function of the velocity alone.

On the other hand, Noh and Protter [14] have found that the technique of the utility of
Lagrangian coordinates is a convenient vehicle for obtaining soft solutions ([2], [7]) of the
equations of gas dynamics. Two cases of nonlinear partial differential equations (PDEs)
concerning the gas-dynamic equations with or without constant pressure in Euler form
were examined by Ames [2]. Another important and applicable technique in solving such
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types of nonlinear PDE:s is that of similarity variables. Birkhoff [3] was probably the first
to apply a general method of a one parameter group of transformation in order to develop
similarity solutions in some area of fluid mechanics. This procedure was based upon a
general theory due to Morgan [12], later elaborated by Schuh [18] and Manohar [10] for
two-dimensional, unsteady, laminar, incompressible boundary layer flows. The method
was also applied to the three-dimensional boundary layer equations as discussed by Geis
[6] in the axisymmetric case, and Hansen [7] and Morgan [13] in the general case.

In this paper a successful attempt is made to develop a new unique technique in
constructing closed form solutions for several kinds of nonlinear PDEs appearing in fluid
mechanics and gas dynamics. The examined herein mathematical models of physical
problems are classified into the mathematical category of well posed problems. The
obtained solutions include fewer arbitrary functions than needed for general solutions, fact
that permits us to specify them according to the initial state, or the geometry of each
specific problem under consideration. The developed methodology is unique and can be
applied to nonlinear PDEs exact solutions of which until now have been obtained by
several different methods, as ad hoc methods, similarity concepts, Lagrange formulation
and combined techniques. Thus, closed-form solutions of the gas-dynamic equations with
constant pressure, the dynamic equations of an ideal gas in isentropic flow, and, the
one-dimensional incompressible boundary-layer flow are extracted. Since nonlinear PDEs
similar to the investigated herein arise in other domains of mechanics, the developed
solution technique may be proved powerful for the research of other problems.

2. MATHEMATICAL FORMULATION

In this section we present several nonlinear partial differential systems of high interest in
engineering practice, which appear in fluid mechanics and gas dynamics. A new technique
in constructing closed-form solutions for these kinds of systems will be developed in the
next sections. Note that the examined herein mathematical models of physical problems
are classified into the mathematical category of well posed problems; namely, into the
category of problems in which: a) The governing PDEs and sufficient auxiliary conditions
are known to provide a unique solution, and b) The solutions continuously depend upon
the auxiliary conditions [2].

The two-dimensional gas-dynamic equations with constant pressure in Euler form are
(14]

u, +uu, +vu,=0;

v, tuv, +w,=0;

p,+ (pu), + (pv), = 0; (la,b,c,de)
€, + (eu), + (ev), = 0;

=e +p,



CLOSED-FORM SOLUTIONS FOR NONLINEAR PDEs 303

with initial conditions

u(x, y, 0) = fix, y); v(x, y, 0) = g(x, y); )
p(x,y,0) = h(x, y); €(x, y, 0) = k(x, y).

In the usual notation u; v are velocity components, p is density, € denotes internal energy
per unit volume, and p represents pressure. We note that all the above quantities are
smooth and sufficiently differentiable functions of the distance-coordinates x, y and the

time-variable #; also, sub index after comma denotes partial derivative with respect to this
index.

Simple extention of equations (1) in the three-dimensional problem furnishes the
system:

u, tuu, +vu, +wu_=0;
v, tu, +w, +wv. =0
w,tuw, +ww +ww_=0; (3a,b,c.d.e.f)
p,t (puw), + (pv), + (pw) . = 0;
€, t(eu),t(ev), +(ew), =0
€=e+p,
with the initial conditions
u(x,y, z,0) = fix, y, 2); v(x, y, 2, 0) = g(x, ¥, 2);
w(x, y,z,0) = h(x, y, 2); p(x, ¥, 2, 0) = k(x, y, 2); (C)
€x,y,z,0) = m(x,y, 2).
Both previous systems (1) and (3) derive from the more general form
u, + ewu, + ll;(v)u,y + o(wu_ = 0;
v, T v, + Py, + oww, = 0; (5a,b,c)

w, + eww, + b(Ww, + ow)w, =0

with the following initial conditions:
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ux, y,z,0) = fix, y, 2); v(x, ¥, 2, 0) = g(x, y, 2); ©
w(x, y, z, 0) = h(x, y, 2).
In equations (3) to (6) w denotes the third velocity component, while in (5) and (6) ¢; ¥
and w are smooth arbitrary functions of the corresponding velocities.

A one-dimensional ideal gas which is inviscid, nonheat-conducting and has infinite
electrical conductivity obeys in the following nonlinear PDEs ([16], [17]):

Pt (pu), = 0;
pu, + puu, +p, + uHH, =0,

H,+ (uH) , = 0; (7a,b,c,d)
ph,+ puh, — p, + pyuHH =0,

in which p, u, p, H and h are density, velocity, pressure, magnetic field (planar and

perpendicular to u), and stagnation enthalpy respectively. The hA-function is given by the
equation

1 2
h=cpT+§u, (8)

where T is the temperature, while ¢, denotes the specific heat at constant pressure. Finally,
M, is the magnetic permeability. Furthermore, in case of isentropic flow the equation

p = \p"; N = const. 9

must be added to relations (7). Here vy is the constant ratio of specific heats (usually taken
equal to 1.40). In this case, the initial conditions are

p(x, 0) = g(x); u(x, 0) = fix); H(x, 0) = k(x). (10)

In the special case of the isentropic flow of a gas, when a sound wave of finite amplitude
is being propagated through the governing equations of momentum, centinuity and gas
laws are, [4]:

pu, + puu,+p, =0;
Pt pu,tup, =05 (11a,b,c,d)

p = \p"; ¢ = dpldp
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with initial conditions

u(x, 0) = fix); p(x, 0) = g(x). (12)

Here c is the velocity of sound in the gas, and y the constant ratio of specific heats.

The last system which will be investigated is the one describing unsteady, incompress-
ible, two-dimensional boundary layer flow. The consisting equations are the continuity and
the momentum equations expressed in the form

u,+v,=0; (13a,b)
u,tuu, +vu, = —%p’x + nuy,
with boundary conditions
u=v=_0fory=0; (14a,b)

u = u,(x, t) for very large values of y,

where u, denotes the outer velocity, namely the velocity outside the boundary layer, and
n is a positive constant. Note that pressure can be prescribed deriving from the potential
flow solution [8], or, better, it can be discovered depending on the outer velocity u, ([18],
[2D.

Analytical solutions for systems of the form (13) were obtained by the well-known
method of similarity via-one parameter groups [3], [16], [7], [12] and [13]. Also, the
special case in which equations (13) an independent from time, (case of steady boundary
layer flow), was successfully investigated in [16] and [11].

3. THE PROPOSED TECHNIQUE-CONSTRUCTION OF SOFT SOLUTIONS

Noh and Protter [14] have found the Lagrange formulation to be a convenient vehicle for
obtaining ‘“soft” solutions of the systems of equations in gas dynamics, namely of
equations (1), (3) and (5). A function u(x, ?) is said to be a soft solution of the nonlinear
PDE u, + uu, = 0, subjected to the initial conditions u(x, 0) = f(x), if u satisfies the
functional relation u = f[x — tu(x, )]. Sufficient differentiability of f will insure that a soft
solution is also a strict solution. The term “soft” was used by Ames [2] to distinguish these
from the “weak” solutions of Lax [8]. Weak solutions of nonlinear equations automatically
satisfy certain jump conditions across discontinuities, such as occur in choks. Soft
solutions have no jump conditions. On the other hand, there are two well-known methods
for developing similarity variables; that is, the use of transformation groups [3]; [6]; [7];
[12]; [13], and the separation of variables approach [1]; [3]; [8]. Both these techniques are
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convenient and applicable to problems concerning boundary layer flows [2], but they lead
to solutions of special forms according to each specific problem under consideration.

Contrary to the above methodologies, we shall try to develop a unique technique in
solving analytically nonlinear PDEs of the form (1), (3), (5), (7), (11) and (13). The
obtained solutions are soft including arbitrary functions, determinable through the initial
state, or the geometry of each specific problem under consideration.

Let us consider a fluid in a n-dimensional space. Then, each particle of the fluid has a
velocity vector U given by

U = [u(xg, x93 X5 )50, U (X1, Xgse ey X5 D],

where x; (i = 1,..., n) are the space-coordinates and ¢ is the time-variable. If we assume
constant pressure, the Navier-Stokes momentum nonlinear PDEs, including velocities u;,
are in Euler form the following

u, + Wy, = 0, i=1,2,...,n; j=sum.index]l,2,..., n, (15)

in which sub index after comma indicates partial derivative with respect to this index.
The total differential of each velocity u; is given through the relation

and the total derivative (du/dt) by the relation

du_ o oudy

@t ot ox; dt’ (16)
By definition we have
and, consequently, equation (16) can be rewritten as

du;

T = Uy Ul a7

In general, for any function F(x,,..., x,;; f) one can write

dF _OF oFdy . a8
—_— —_ L = u. .
dt ot ox; dt AR
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In the present case, combination of equations (15) and (17) results in

du; _ 0; + =0
ar M T Mt T (19a,b)
Equations (19a) furnish
u; = Az’ i= 1’. - R, (20)

where A; are constants of integration. Since A; are arbitrary, combination of Egs (20)
among them leads to the functional relations

up = fiwy); up = o), oy = £ () @1

in which f; are arbitrary smooth and sufficient differentiable functions. Introducing (21)
into equations (19b) and rewriting them explicitly we finally derive

n—1 n—1 n—1 n—1
( H fi“nn)un" + u, < H fiukﬂ))un,xl + u, ( H fg(uk+l))u'l,)(2 +...+ u, ( H fi“nl))umxn =0;
k=1 k=1 k=1 k=1

(22)

n—1 n—1 n—1 n—1
( 1 fi“**")u,,,, +u ( I fi“**”)um + 1 ( I fi“**”)um +otu, ( I1 fi““”)uu,, =0;
k=2 k=2 k=2 k=2

Uy T Uyl F Ul ot uu, =0,

where the upper-right index in partenthesis denotes derivative of the function f, with
respect to its argument u,_, ;, while the symbol [] expresses finite product. For f " +
0 (k = 1,..., n — 1) Eqns (22) furnish the unique equation

Upt + ulun,x1 + u2un,x2 +...+ unun,x,, = O’
which, by way of the expressions (21), can be rewritten as
Uy, + Fruy, + Fou,, +...+F,_qu,,  +uu,, =0 (23)

where

Fy = fi(h(. fomr))) = Fi(uy); Fy = H(( fum 1)) = Fyuy);...; Foey = foo(uy)
=F,_(u,) (24)



308 D. E. PANAYOTOUNAKOS

Eqn (23) is of quasi-linear form. Using the corresponding Lagrange subsidiary
equations

dt dx, dx, dx,_, dx, du,

0

1 F, F F,_, u

n
and integrating, we derive the solution
u, = H(x; — wit, x, — upt,..., x, — u,t), (25)

where H,, is an arbitrary function. This result permits us to obtain the soft solutions of the
system (15), due to the initial conditions

uxp,..., x5 0) = g(xq,..., x,) (26)
in the form
u; = qx; — ut, Xy — ugt,..., X, — u,t). 27
The same solution technique is applicable to the more general systems of the form
u;, + cpj(uj)uu] =0;i=1,...,n;j = sum.index 1,...,n (28)

which have the soft solutions

u; = qilx; — @ (ut, x; — @(ukt,..., x, — @, (u,)t] (29)

satisfying the initial conditions

u(xy, X0 X5 0) = qixq, X35, X,,). (30)

4. APPLICATIONS

The already developed in section 3 technique will be applied for solving analytically the
nonlinear partial differential systems presented in section 2.

4.1 Solution of the gas-dynamic equations with constant pressure

The two-dimensional gas-dynamic equations with constant pressure in Euler form are
given by the expressions (1) with the initial conditions (2). Using the already defined
solutions (27) by setting u; = u; u, = v; u; =...= u, = 0 in combination with the two
first of the initial conditions (2), we deduce the following soft solutions for « and v
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u=fix—ut,y —vt);v=gx— ut,y — vp). (31a,b)

Furthermore setting
X—ut=w;y —vt=ao, 32)

we find, by means of (31a,b) the partial derivatives u, and v, as follows

u. = f:m + t(f:wg,o _f:og,w) .
YA+ A+ g) — L.

by = 8ot WuBo = fo8)
YA+ +1gy) — Pfogy

One observes that

_fot 80t 2(u80 ~ fo8)

u,tv, 7 (33)
where
T=Q+ 1)1+ 18,0) = £ fo8.0
as well as that
dJ
o fo T 8o T 2086~ fo80)-
Therefore, equation (33) can be rewritten as
uﬁﬂy:ld_f‘ (34)
v Jdt

By now, we are able to continue the solution of the system under consideration. In fact,
observing that the third of Eqns (1) becomes,

pytup,+vp, = —pu,+v,),

and using the relations (18) and (34), we deduce

dp__ 1dJ 35)
a_ Prar
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The integration of this equation furnishes

pJ = \ = const. (36)

Combining (36) with equations (20) for u; = u, we obtain

pJ = z(w), (37

where z is an arbitrary function. Because of (31a), (37) and the third of the initial
conditions (2), we derive the following soft solution for the density

1
p= 7 h(x — ut,y — vt). (38)
Finally, the Euler equation (1d) becomes

€, +ue, +tve, = —e(u, tv,),

fact that permits us to obtain a soft solution for the internal energy e as follows

1
e=;k(x— ut,y — vt) — p. (39)

Through an exactly similar procedure one gets soft solutions for the three dimensional
problem (Eqns (3)), as well as for the more complicated system (5).

4.2 Soft solutions for the dynamic equations of an ideal gas in isentropic
flow

We begin our analysis with the more complicated nonlinear system of equations (7), (8)

and (9) with the initial conditions (11). Since equations (7a) and (7c) are identical, we may
write

H = Ap; A = const. 40)

On the other hand, Eqns (7a) and (7b) based on relations (18) and (40), become

dt * (41a,b)
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For isentropic flow introducing (9) into (41b) we derive

= TMP Tt uAlp, = 0.

The division by parts of this equation with equation (41a) leads to

dp 1
— A>0,u,>0,p>0
du

= * — )
IVypY ™2 + p AT

the integration of which furnishes

B*u= f /My 2+ p Al dp (42)
where B is an integration constant.
This functional relation including velocity and density permits us to write

u=a(p)orp=Pu) (=0, (43)

where w and { are known smooth functions. Therefore, equations (7a,b) in combination
with (9) take the form

p, + o(p)p, + o'(p)pp, = 0; (44a,b)

U, + uu, + My W)W, + p AW, = 0,

which, based on the already developed in section 3 solution technique, as well as on the
initial conditions (10), have the soft solutions

p=2glx— (o + o'p)t]; (45a,b)

u=flx = @+ M2 + A% Py,

Here prime means differentiation with respect to p and asterisk with respect to u. Now, as
far as the magnetic field H is concerned, combination of the first of equations (43) together
with (40) and (7¢) results in

H (H
H + o) H o+ Hol = H, =0 (46)

which, in accordance with the third of the initial conditions (10), has the soft solution
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H=h|x~— +'Ii 47
=h|x wu)At 47)

(dot means differentiation with respect to H/A).
The stagnation enthalpy /4 can be derived through the combination of equations (7d),
(7b) and (9). Thus, solving (7b) for u HH , and introducing the result into (7d) one yields

1 u
h, + uh, — P (uu, + wlu, + p p)=0.

Based on relation (18) the last equation becomes

dh du 1ldp
——u

or, by means of (9),

dh  1di* My d(pV‘l)_O
d 2dt ~y—-1 dt

Integration of this equation furnishes

1 Ay
2 vy—1

P+ C,

where C is an integration constant. Finally, the temperature T can be directly evaluated
through relation (8).

The simpler, but of great interest in engineering practice, system (11) refers to the
one-dimensional isentropic flow of a perfect gas. One eliminates the pressure by using the
gas laws (11c,d), which yield

P.=Y\p""'py = dpldp

namely
=yl
Through this result one rewrites the above system in the form
u,+uu,+p' " 2p,=0; (48a,b)

p,t pu,+up,=0.
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According to (18) the simplified system (48a,b) furnishes

du ., dp_ B
ar P P g T TP (49a,b)
Dividing by parts we obtain
du y-3
— =+
dp =P
and integrating, we deduce
2 !
u=A= ;—:—1 p 2 ; A= const. (50)

This functional relation succeeds in giving, by way of (48a,b), the following nonlinear
PDEs

2
y=1)" 2z
u,+lu=x = w—Ap-1 |u, =0,

which, according to the initial conditions (12), have the soft solutions

[yt
= —_ O 2 t,
P8 y—1° (51a,b)

4.3 Solutions for the Two-Dimensional Boundary Layer Flow
This problem in incompressible flow is described by the system (13a,b) with the boundary

conditions (14a,b). In order to apply the solution technique of section 3, we consider the
corresponding to (13a,b) homogeneous system

U, +v,=0; (52a,b)
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u, +uu, +vu,=0.
As it has been already proved, equation (52b) has the solutions

u=Fx—tuy—t), v=G(x—tu,y — tv) (53a,b)

where F and G are arbitrary functions. Setting

n=x—tu;E=y—tv, (54a,b)
Eqn (52b) is identically satisfied, while Eqn (52a) furnishes
F,+ Gy +2(F,G;— F,G, =0. (55)
Since Eqn (55) must hold true for any value of the time-variable ¢ = 0, we conclude that
F,=-GxzF,G,—F,G,=0. (56a,b)
Introducing the first of these equations into the second we obtain

2 F,zn
—F’n = F,gG,n = G'n = *F—; F’g #* 0,
£

and then

2F ,§F ,nF ng F ,2nF £8
e = F2§ :

Combining the last expression together with Eqn (56a) we lead to the second-order
nonlinear PDE of the Plateau problem for the minimal surface area, in which the linear
terms are vanished ([2], [19]), namely

FiF,, — 2F FF .. + F>F o = 0. (57
This nonlinear PDE has the well-known general solution

F = H[E + no(F)], (58)

where H and ¢ are arbitrary functions. Similarly, one obtains an analogous solution for the
G-function, that is

G = Q¢ + nl(G)]; Q, ¥ = arbitrary. (59)
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Recalling equation (56a) we deduce that there exists a functional relation between H; Q;
¢ and s that is

*

eH 0

o *°
1—n¢e'H 1—nyQ

In this relation symbols “°” and “*” denote differentiations with respect to the groupings

[£ + ne(F)] and [§ + nli(G)] respectively, while prime and dot means differentiations with
respect to F and G respectively. If we select

G =fF); ¢ = —f' (F), (60a,b)

the solutions (58) and (59) become

F=Hg—nf" (P, G=fF), (61a,b)

and, therefore, the solutions (53a, b) take the form

u=H{y — xf(u) — t{u) — f' Wul}; v=7fuw (62a,b)

where H and f are arbitrary functions.
The next step is to specify the already introduced functions H and f such that the
boundary conditions (14a,b) are satisfied. As long as this is achieved, the pressure p must

be determined by the equation resulting from the vanishing of the right-hand side of
equation (13b), that is

Py = npuy, (63)
Evaluating the partial derivative u , by way of (62a) we get

o

H

U, =

1+ x—twf"H

where here “°” denotes derivative with respect to the grouping {y — xf(u) — t[fu) —
uf'(u)]}. Based on this expression one sets

f"=2a = const.; H= \ = const. (64a,b)
Thus, the solutions (62a,b) become

u =Ny — 2axu + ati®); v=au’. (65a,b)

Supposing now that



316 D. E. PANAYOTOUNAKOS
O<<aN=N, N> (66)

as well as that

O<<y=M, M-o>» (67)

and solving (64a) for u, we find

(@Nax + 1) = \/(2hox + 1)* — 4\%azy
u= .

2\at (68)

Noting by means of (66) that both o and N\ must be of the same sign and considering only
the sign minus in (68), we derive the solutions

(1 +20haby) — /(1 + 2\alx)’ — 4ANAalty
‘T 2hal ’

au’. (69)
Since for #; x, y > 0 the inequality
(1 + 2Ialx)® — 4NNalty > 0,
or the inequality
AN%0%% + 4halx + 1 — 4Nhad +y >0
must hold true, we deduce that

16\ %a’INalty < 0.

This means that A < 0 and a < 0 and, therefore, the solutions (69) take the final form

_ (14 2haly) = V(1 + 2Nal)® + 4N alty ol
"= 2Nalr VT T (70a,b)

One observes now that the boundary condition (14a) is identically satisfied. For the second
boundary condition (14b) we rewrite the velocity u given in (70a) as

Lo N P 2 + 4N
—x | - —X
\/ \aly y \/ oyl y
u= s
/I)\al
2 —t
y
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which, for very large values of y, according to the inequalities (66) and (67) furnishes the
outer velocity u, as a function of x and ¢ only; namely,

x x\> I
u—)ue(x,t)=;— )t (1)

where K = M/N > 0.

Evaluating also the second derivative u ,, and using (63) we calculate

_ 2v p)\zlkalt
[(1 + 2\alx)? + 4N%alty]™*

Px (72)

For very large values of y, because of the inequalities (66) and (67), the last expression can
be rewritten as

2v pt K"?
o [(2Kx)* + 4NeP”

@)= (73)

which means that the pressure outside the boundary layer is a function of x and ¢ only, as
exactly the outer velocity u, given by Eqn (71). The results (71) and (72) are analogous
to those discovered by Schuh [18] through the method of similarity via one-parameter
groups [2]. Finally, the pressure p can be estimated by the integration of equation (63),
through the relation (72), giving

_vp 1+ 2\alx +
P Ny N/ + 22 + 4Nl 1y

Gy, t) (74)

where G is an arbitrary function.

References

—_

D.E. Abbot, and S.J. Kline, (1960), Simple methods for classification and construction of similarity
solutions of partial differential equations, Air Force Office Sci. Res. Rept., No. AFOSR-TN-60-1163.
W.E. Ames, (1965), Nonlinear Partial Differential Equations in Engineering, Ac. Press, New York.

G. Birkhoff, (1960), Hydrodynamics, Chpts 4 and 5, Princeton Univ. Press, Princeton, New Jersey.

R. Courant, and K.O. Friedrichs, (1948), Supersonic Flow and Shock Waves, Wiley (Inters.), New York.
N. Curle, (1962), The Laminar Boundary Layer Equations, Oxford Univ. Press, London and New York.
T. Geis, (1955), Ahnliche Grenzschichten an Rotationkorpern, in 50 Jahre Grenzschichtforschung (H.
Gortler and W. Tollmien, eds.), p. 294, Vieweg, Braunschweig.

A.G. Hansen, (1958), Trans. ASME, 80, 1553.

PD. Lax, (1954), Commun. Pure, Appl. Math., 7, 159.

H.W. Liepmann, and A. Roshko, (1963), Elements of Gasdynamics, John Wiley and Sons, Inc., New York
and London.

10. R. Manohar, (1963), Some similarity solutions of partial differential equations of boundary layer equations,
Math. Res. Center (Univ. of Wis.) Tech. Summary Rept., No. 375.

S e

O ® N



D. E. PANAYOTOUNAK

D. Meksyn, (1961), New Methods in Laminar Boundary Layer
A.J.A. Morgan, ( 1952), Quart. J. Marh. (Oxford), 2, 250.
A.J.A. Morgan, (1959), Trans. ASME, 80, 1559,

W.F. Noh, and M_.H. Protter, (1963), J. Marh. Mech., 12, No.
S.IL Pai, (1956), Viscous Flow Theory, Vol. 1, Laminar Flow,
S.I. Pai, (1957), Proc. 5th Midwestern Conf. Fluid Mech., 1956
Michigan. )
S.I Pai, (1962), Magnetagas-Dynamics and Plasma Dynamic:
H. Schuh, (1955), Uber die ahnlichen Lésungen der instationa;
inkompressiblen Strémungen, in 50 Jahre Grenzschichtforsch
149, Vieweg, Braunschweig.

LN. Sneddon, (1957), Elements of Partial Differential Equatio
S. Tomotika, and K. Tamada, (1949), Quart. Appl. Math., 7, 3
K. Tamada, (1950), Studies on the two-dimensional flow of a
through various nozzles, Ph.D. Thesis, Univ. of Kyoto, Japan.



