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The asymptotic behavior as A — % of the function U(x, M) that satisfies the reduced wave equation L,[U] =
V-(E(x)VU) + \2N*(x)U = 0 on an infinite 3-dimensional region, a Dirichlet condition on 9V, and an outgoing
radiation condition is investigated. A function U,(x, \) is constructed that is a global approximate solution as \
— o of the problem satisfied by U(x, \). An estimate for Wy(x, N) = U(x, \) — Un{(x, \) on V is obtained, which
implies that Up(x, \) is a uniform asymptotic approximation of U(x, \) as A — o, with an error that tends to zero
as rapidly as A"V (N = 1, 2, 3,...). This is done by applying a priori estimates of the function W(x, \) in terms
of its boundary values, and the L, norm of rL,[W,(x, \)] on V. It is assumed that E(x), N(x), 3V and the boundary
data are smooth, that E(x) — I and N(x) — 1 tend to zero algebraically fast as r — o, and finally that E(x) and
N(x) are slowly varying; 0V may be finite or infinite.

The solution U(x, N\) can be interpreted as a scalar potential of a high frequency acoustic or electromagnetic
field radiating from the boundary of an impenetrable object of general shape. The energy of the field propagates
through an inhomogeneous, anisotropic medium; the rays along which it propagates may form caustics. The
approximate solution (potential) derived in this paper is defined on and in a neighborhood of any such caustic,
and can be used to connect local “geometrical optics” type approximate solutions that hold on caustic free subsets
of V.

The result of this paper generalizes previous work of Bloom and Kazarinoff [C. O. BLOOM and N. D.
KAZARINOFF, Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions, SPRINGER
VERLAG, NEW YORK, NY, 1976].

AMS Nos.: primary 35J25; secondary 35B40, 35B45, 78A05, 78A40, 78A45

Kerworps: High frequency radiation, scattering, global approximate solution, uniform asymptotic approximation,
caustics, geometrical optics, inhomogeneous medium, anisotropic medium, reduced wave equation.

1. INTRODUCTION

In this paper we investigate the asymptotic behavior as A\ — o of the solution U(x, \) to
the following radiating body problem:

LU= V-EDU) + NN @OU=0 (= (x,X,x),xE V),

® U@, N) = h(x") x' €aV),
im ) - MPLVIEdS =0 (=i = @',

where D[U] = U, — i\U + r~'U.
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334 C. 0. BLOOM

We take V to be either (1) a region exterior to a smooth, simply connected, closed
surface 9V, or (2) a region bounded by a smooth, simply connected surface 3V that extends
to infinity. The function A(x") is required to be smooth on 9V, and to have compact support
on 9V if 9V is infinite. We assume that:

H-(i) The 3 X 3 matrix E(x) is symmetric, strictly positive definite, and smooth on
VU av.

H-(ii) The function N(x) is smooth, and strictly positive on V U aV.

H-(iii) N(x) — 1 = O(r"?) and N(x) — 1 = O(r"P) for some p > 2, uniformly, as
r — 0o,

H-(iv) For m = 1 all m™ order derivatives of E(x)

and N(x) are O(r"?~™) for some p > 2, uniformly, as r — oo,

Note that hypotheses H-(iii) and H-(iv) on the far field behavior of E(x) and N(x) are
consistent with the outgoing radiation condition imposed on U(x, \).

Additionally, we require that E(x) and N(x) be ‘slowly varying’ on V U aV. (See (viii)
after equation (5.2), and (vi') after equation (5.5).)

The problem P is a mathematical model for the propagation of time-harmonic waves
through an anisotropic (isotropic if E(x) = I), inhomogeneous medium, filling the infinite
region V. At each point x where E(x) # I the direction of propagation of a wave front
through x differs from the direction of flow of the energy carried by this front. If E(x) =
I and N(x) # 1, the solution U(x, N\) of P can be interpreted as the amplitude of a time
harmonic electromagnetic scalar potential, or as the amplitude of a component of the
electric or magnetic field intensity (cf. [11] and [12]). Under this interpretation N(x) is the
index of refraction, and \ is the wave number (A = w/c, ® = frequency, ¢ = velocity of
propagation in vacuo). If E(x) = N* (x)I the solution of problem P can be interpreted as
the amplitude of a time harmonic velocity potential of an acoustic field in a medium of
density p(x) = 1/N? (x) (cf. [9]). We note that problems of the form P also arise in linear
elasticity (cf. [1]), and in quantum mechanics (cf. [11]).

In applications where \ is large, the physically salient features of the radiation field are
revealed by analyzing the asymptotic behavior of the solution as A — . To this end we
obtain a uniform asymptotic expansion as A — « of the solution to problem P. We first
construct an approximate solution to problem P for A >> 1. The form of this approximate
solution is a finite sum of surface integrals over certain subsets of the support of the
boundary data. We then obtain order estimates for the difference between the exact and
approximate solution of the problem P. These order estimates imply that our approximate
solution of problem P is a rigorous asymptotic expansion of the exact solution, and are
derived by applying previously oBtained high frequency a priori estimates (cf. [5], [7],
[13], [14]). The latter hold for the solution of the problem P' that is satisfied by the
difference of the exact and approximate solution of problem P.

Results of this kind have been obtained by Bloom and Kazarinoff in [6] under the
assumption that E(x) = I. However, in [6] rather severe restrictions are imposed on the
boundary; it is required either that dV be ‘convex relative to N(x)’, or at least that the
support of the radiating boundary source distribution A(x") (U(x', \) = h(x') if x' € 9V) be
contained in disjoint patches of oV that are convex relative to N(x). In [6] a surface is
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defined as convex relative to N(x) if any two geodesics (rays) of the Riemannian metric
do = N(x)ldx| that emanate orthogonally from distinct points on the surface, extend to
infinity without intersecting the surface or each other. This definition reduces to ordinary
convexity if N(x) = 1.

In the isotropic case (E(x) = I) the energy of the geometrical optics field propagates
along rays that emanate orthogonally from each point in the support of h(x'). If the above
mentioned convexity condition is eliminated, it is possible for the energy of the
geometrical optics field to propagate along a family of rays that form caustics.

In the anisotropic case (E(x) # I), the energy of the geometrical optics field propagates
along rays (geodesics) of the Riemannian metric (do’)> = N*(x)dx-(E~*(x))dx that emanate
orthogonally in a generalized sense from each point in the support of i(x'). A ray emanates
orthogonally from a point x' of 9V if #-(E~'(x')#) = 0 for any vector ¢ tangent to 9V at x',
and any vector ¢' tangent to the ray at x'. Again in this more general case, the orthogonal
rays from points in the support of A(x') may form caustics. At points of V that do not lie
on caustics formed by these rays, each surface integral in our asymptotic approximation
of U(x, N) can be expanded asymptotically by the method of stationary phase. If E(x) =
I and the support of A(x') is contained in a finite union of disjoint subsets of oV that are
convex relative to N(x), then the leading terms of these asymptotic expansions can be
shown to coincide with the leading terms of the asymptotic series expansions of U(x, \)
constructed in [6]. They can also be shown to coincide with the leading terms of analogous
ansetze for the case E(x) # I

The geometrical theory of high frequency wave propagation provides an algorithm for
calculating the radiation field of a scattering problem at a typical point x in the transmitting
medium without direct reference to the governing differential equations. A well-known
conjecture of Luneburg [12] and Kline [11] asserts that the field calculated by applying the
geometrical theory to problem P should be asymptotic to the exact solution as A — . It
can be shown that the leading terms of the above mentioned series ansetze are identical
to the predicted “geometrical optics” field.

The approximate solution of problem P that we obtain in this paper does not depend on
a priori knowledge of the structure and location of caustics that may be formed by the rays
of (do)*> = N*(x)dx-(E™'(x))dx that emanate orthogonally from points in the support of
h(x"). On the other hand our method succeeds only if the following condition is satisfied:
any two rays emanating in distinct directions from a point x° in the support of A(x") extend
to infinity without intersecting. This condition is obviously met if E(x) = I and N(x) = 1.
It can be shown that it is also fulfilled if E(x) and N(x) are slowly varying, and if E(x) —
I, N(x) — 1 with their derivatives approach zero as r — o algebraically fast as assumed
above.

We remark that if Maslov’s method (cf. [18, chap. V]) were applied to problem P, it
would in principle be possible to construct a uniform asymptotic expansion of U(x, \) as
\ — oo, without the above mentioned condition. However, this method can only be applied
after the location and structure of each caustic formed by orthogonal rays from the support
of h(x") has been determined. For given coefficients E(x) and N(x) the structure and
location of such caustics depend specifically on the geometry of 9V, and obviously can be
very complicated.

In a number of special cases scattering problems for the reduced wave equation have
been solved explicitly in the form of integrals or infinite series, and high frequency
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asymptotic expansions of the geometrical optics field have been obtained from these
solutions (cf. [17]). Explicit solutions are of course not available for general E(x), N(x) and
av.

It is sometimes possible using iteration to obtain a convergent series representation of
the exact solution that is at the same time a (generalized) asymptotic expansion. For
example, Ursell [16] derived the leading term of such a series expansion for the velocity
potential ¢ of an acoustic field satisfying the Helmholtz expansion (A + A*)¢$ = 0 in the
region exterior to an infinite cylinder of convex cross section, a Neumann condition on the
boundary, and the Sommerfeld radiation condition. Using Ursell’s technique Grimshaw
[10] was able to construct a rigorous high frequency asymptotic series expansion of
Green’s function for the problem considered in [16]. The results of Ursell and Grimshaw
are consistent with the geometrical theory of optics.

The asymptotic expansions derived in this paper are obtained directly starting with an
appropriate integral ansatz. To achieve our goal we first construct an approximate solution
of problem P, i.e., a smooth function U,(x, \) such that as A — o

L, [Upx, )] = O(r_3)\_N ) (uniformly on dV U V),
Up(x', N) = h(x") + ON™7) (uniformly in x', x' € dV),
lim ﬁmmyﬁ=o

R—x & r=

forN =1, 2, 3,....

Applying the high frequency a priori estimates obtained by Bloom and Kazarinoff in [7]
we are able to conclude that if E(x) = I, if N(x) satisfies the hypothesis of problem P, and
if dV can be illuminated from the exterior (see Section 5, or [6, chap. 1]), then U(x, \) —
Un(x, \) = O(r—' A™), uniformly, as A — . In the special case E(x) = I and N(x) = 1,
the a priori estimates of Morawetz [13] can be used to prove that this result holds if oV
is finite and “non-trapping” as defined in [13]. Applying the high frequency a priori
estimates obtained by Bloom in [5] we conclude that U(x, \) — Upf(x, \) = o™
uniformly on every bounded subset of V U aV if (i) E(x) # I, (ii) N(x) and E(x) satisfy the
hypothesis of problem P, and (iii) 0V is star-shaped.

We remark that it is possible to represent U(x, \) as follows:

K
U, \) = > U¥(x, ),

k=1

where U*(x, \) is the solution of problem P with A(x') replaced by Hx') = x"(x')h(x'). The
functions xk(x') (k = 1, 2,..., K) define a smooth partition of unity subordinate to a
covering of 9V by open sets Sk (k = 1,2,..., K). The diameter of each set S* can be made
arbitrarily small by taking K sufficiently large. Therefore, we consider without loss of
generality, the problem of finding an approximate solution U,(x, \) of the problem P if
U(x', ) = x(xHh(x"), x' € 9V, where (i) x(x') and h(x") are smooth, (ii) supp x(x") C §'
where S' is an open set of arbitrarily small diameter. Furthermore, we assume without loss
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of generality, that the normals to S’ are approximately vertical. For simplicity we restrict
our analysis to scattering problems where the energy of the geometrical optics field
propagates along orthogonal (in the generalized sense defined above) rays from the
support of h(x") that extend to infinity without being reflected by the boundary.

In Section 1 we present a detailed definition of our approximate solution Up(x, \) to
problem P with the boundary data, and the geometry of the boundary restricted in the
manner described above. We prove in Section 2 that in addition to being continuous on V
U aV, the function L,[Ux(x, N)] is O(r—> \™) as X — o, uniformly on V U 9V for N =
1,2, 3,.... In Section 3 we establish that U(x', \) — Up(x', \) is continuously differentiable
on 9V, and that this function and its first order tangential derivatives are O\ ") as A —
oo, uniformly on dV for N = 1, 2, 3,.... In Section 4 it is proved that Up(x, \) satisfies the
same radiation condition as U(x, N). In Section 5 we consider the problem P' satisfied by
U(x, N\) — Up(x, \). We first apply the pointwise a priori estimates obtained in [7] and [13]
to the problem P’ to prove under the conditions mentioned above, that U(x, N) — Up(x, \)
= O(r~"\™"), uniformly on V U 8V as A — «. We next apply the pointwise a priori
estimate obtained in [5] to the problem P' to prove under the conditions mentioned above
that U(x, N\) — Up(x, \) = o™, uniformly on bounded subsets of V U 9V as A\ — .
In Section 6 we describe how our global approximate solution of problem P can be used
to connect local approximate solutions of L,[U] that are valid only in caustic free subsets
of V U 4V, and that can be obtained by truncating certain formal asymptotic series
solutions of L,[U] = 0. We conclude with a brief outline of some contemplated extensions
and generalizations of the methods used in this paper.

1. Definition of U,(x, \). Let Gp(x, x'; \) be an approximate free space Green’s function
(a high frequency parametrix for the differential operator L,):

L[Gu(x, x'; N)] = 3(x, x') + ep(x, x'; Mx — x'17! ((x, x') € R® X RY),

lim | AD[Gy]* dS = 0,

R—ox» & 1=

where £,(x, x'; \) is smooth in x and x', and gx(x, X; A) = O((1 + A" ' A" Dyas \ >
o, uniformly in x and x'. It can be shown that Gp(x, x'; \) = Gu(x', x; N).

We next define a cut-off function yi(x, x'). If 3V extends to infinity we set y(x, x') = 1.
If 0V is finite we set Yi(x, x') = y(cosB(x, x)) where 68(x, x') is the angle between Vo(x',
x) and the outward unit normal to 8V at x', and o(x', x) is the geodesic distance along the
ray from x to x'. (See Theorem 1 below.) The function y(£) is defined as follows:

@) y® € C -1, 11.

OYO=~vyE) =1foral &€ [—1, 1]

() vy = 1if cos(m/2 + §;) = & = cos0, 3, > 0.

@)y =0ifcosm=§E=cos(m —9,),d8,>0,72 + 8 <mw— 9,

The constants &, and 8, are further specified in Section 2.
Let S be an open set containing S’ such that the distance between boundary of S, and the
boundary of §' is positive and small. It follows from above that for all (x, x') € V X §:
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(a) P(x, x") is as smooth as 0(x, x').

® 0 =Y, x)=1.

(c) Y(x, x") = 1 if the angle 6(x, x') is greater than or equal to 0, and less than or
equal to /2 + 3.

(d) Y(x, x") = 0 if the angle 6(x, x') is greater than or equal to w/2 + &, and less
than or equal to .

©) Vi, x) = 0™ "), V(E@VY(x, x)) = O~ ?) as r — o, uniformly with
respect to x/r and x', (x, x') € V X S (See Appendix).

(f) Derivatives of any order of V{i(x, x') and V-(E(x)Vii(x, x")) with respect to
x (i =1, 2,3) are O(r"") and O(r™?) respectively, as r — %, uniformly with
respect to x/r and x', (x, x') € V X S (See Appendix).

Note that by taking the diameter of S sufficiently small the subset of 0V U V where {(x,
x) = 1 for all X € S contains the region T filled by the geodesics (rays) of the
Riemannian metric (do)? = N*(x)dx-(E~'(x)dx) that emanate orthogonally, in the sense of
the inner product v+(E”'(x)w) from points in S.

TuEOREM 1. For every positive integer N there exists a smooth function uy(x', \) defined
on 3V, such that u(x', \) = 0 for x' € 9V — S, and

Upx,\) =\ fs B(x, x) Gpfx, X' Nupy(x', N)dS (1.1)

is an approximate solution of the problem P. As A —

LUNx N] = Ry(x,\)  (xEYV), 1.2)

Upx', N) = x(0Oh(x') + By(x, )  (x € V), (1.3)
lim AD[U,)* dS = 0. 1.4)
R—x o r=R

where Ry(x, \) € C[oV U V] and Ry(x, \) = O(r >\™"), uniformly on 9V U V.
Furthermore, By(x', \) € C[dV] and By(x', \) = O(N""), uniformly on dV; the same is
true for the first order tangential derivatives of By(x', A).

We prove that (1.2)—(1.4) hold under the assumption that any two geodesics of (do)? =
N*(x)dx+(E~(x)dx) that emanate from a point x' on 8V in distinct directions, extend to
infinity without intersecting.

Under this assumption it can be shown that

Gp(x, x's N) = exp[iho(x, x)]AN(x, x'; N) x€dVU V;x' € V).
Here o(x, x') is the smooth eikonal function satisfying

Vo-(Ex)Vo) = Nx) (x ER%x € V),
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1
I [(x = x)(E™ )x = )]
m
x—x' O'(X, x')

= [N ' €aV),

oo bk—x!
lim -=1 (x' € V).
r—o% o-(x, x)

The function o(x, x') is the distance traveled by a signal propagating along the path of
least time from x' to x.
Furthermore,

N+1
A, 5N = S a,(x, XN
n=0

where the smooth functions [x — x'lay(x, x'), a,(x, x), a5(x, x'),..., ay,,(x, x') are defined
recursively by the transport equations

2Vay (E(x)Vo(x, x') + V(Ex)Vo(x, x'))a, = 0, (1.5)

2Va«(Ex)Vo(x, x) + V(ExX)Va(x, x)a; = —i(d(x, x") — V-(E(x)Vay)),

2Va, (Ex)Vao(x, x)) + V-(Ex)Vo(x, x))a, = iV-(E(x)Va,_))) (n = 2,3, - -, N+ 1),

1.7
and the following conditions:
3(x, x) — V-(E(x)Vayx, x)), V-(Ex)Va,_,(x,x)) = O(1 + A~ 'ix — x17),
uniformly in x and x', (x, x) ER* X R* (n = 2,3,..., N + 1).
With the a,(x, x')’s as defined above it follows that as N\ —
L[Gy(x, x'; N)] = 8(x, ') + V-(Ex)Vay.,,(x, X))V (1.8)

where |x — x'IV-(E(x)Vay. ,(x, x')) is smooth on R* X R?, and V-(E(x)Vay. ,(x, x)) =
O((1 + P~ 'lx — x'I™"), uniformly on R® X R®. (See Avila and Keller [3], Babich [4],
Duff [8], Vainberg [19], Whitehead [20].)

The function uy(x', N) in equation (1.1) is expressible as a sum,

N+1

S V@ DA (1.9)

m=0
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where

Vo' N) = [HEOT ™! x(x)Hh(x), (1.10)

and

m

V@ M) = [HE] ' S id2 g0;x,\) (m=1,2,3, - N+ 1).  (L.11)

p=1

The functions gy ,(c; x°, \) are determined recursively for (n = 1, 2, 3,..., N + 1) from
the equations

g0 X% N) = [HE) ' X #7! fOz“ Hy(o, 75 x°, N) 8 gy ,—(0; 2(0, 713 X%), Ndr),
p=1
(1.12)

and

gna(os X%, N) = —i[HG)) ™! 02" Hy(o, 75 x°, N) x(z(o, 715 X°Dh(z(o, 75 x°))dTy,
(1.13)

for o € [0, 0,] and x° € 4V. Here

Hy(o, 7;;2°, N) = ¥(x°, 2(0, 75 X)D(0, 715 x)ANE°, 2(0, T15 X°); N),
J(@, 115 X°) = lzo(@, 715 X%) X z, (0, 715 X)),

H(x°) = 2mH\(0, 7,5 x°, \)

and Ap(x, x'; N) is the amplitude of exp[iAo(x, x")] in the definition of Gy(x, x'; N).

For every x° € §, the vector valued function z(o, 7,; x°) in equations (1.12) and (1.13)
is a parametric representation of a certain neighborhood N(x°) of S on V. This function
and the set N'(x°) are defined more precisely in the proof of (1.3) given in Section 3. Also
it is shown in Section 3 that H(x°) = 2wHM(0, 7; x°, \) is independent of 7, and N\ and
is strictly positive.

2. Proof of (1.2). For all x € V U 9V

LU =\ f U L[Gyluy dS + f ; VAEVIGy uy dS + 2\ f S [EVU1-VGy uy dS.
@.1)

If 9V is infinite, equation (2.1) reduces to
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LUy =\ f LiGyluy dS.

Since, as proved in Section 3, u, (x', \) is continuous on S, it follows from (1.8) that the
function L\[U (x, N)] is continuous on V U 9V, and that as A\ — «

L [Up(x, V] =\ f SLGy (x5 Mluy (x', N)dS = N f S oMV + A7t
b — x17 uy (¢, NdS = OV rd),

uniformly in x, x € V U 9V.

Suppose now that 9V is finite, i.e., the interior of dV is a closed bounded set, and let T
be the subset of R filled by the rays emanating orthogonally from both sides of S. The
intersection of T with V U aV consists of two disjoint closed subsets T™ and T ; the set
T" is the family of orthogonal rays that emanate from the outside of S, and the set 7~
consists of the parts of the orthogonal rays from the inside of S that lie in V U 9V. As stated
above, a ray emanates orthogonally from a point x' of oV if +(E~' (x') #) = 0 for any
vector ¢ tangent to dV at x', and any vector ¢ tangent to the ray at x'. Also as mentioned
in the introduction, we make a simplifying assumption that rules out reflection by oV of
any orthogonal ray emanating from the outside of S, viz., each ray in 7" extends to infinity
without intersecting 3V — S. Again in this more general case, the orthogonal rays from the
support of h(x") may form caustics.

We next define subsets V" and V~ of V as follows:

Vi = {xx € V,0=0(x,x") <g, <m2or0 = a(x, x> < g, for any points x', x> € S},
V ={xxeV,m—¢g = 0(x x°) = = for some point e S}.

In the above definitions it is assumed that &,, &, =~ 0. It is clear that V" U V" contains
T" and that V- U a9V~ contains 7. We have (i) sup 8(x, x) = 8, + m/2 on (V" U V")
X 8, and (ii) inf 8(x, x') = m — §, on (V U 9dV) X S. We assume without loss of
generality that the positive constants &, and 3, are such that §; + w/2 < w — 3,, where
8, and 8, are the constants introduced in Section 1.

Note that the inequalities £, = o(x, x') and &, = 08(x, x') = 7 — &, hold on (V' U aV)
X S where V= (VU aV) — (V" U aV") U (V" U aV"). Consequently, #(x')-Vo(x', x)
is bounded away from zero on (V' U V') X S for every unit vector #x') tangent to S at
x'.
If xliesin V- U 9V~ we have by definition ¥(x, x") = 0 for all x' € S. Then obviously
V(x, x') and V-[E(x) U(x, x')] = 0 for all x' € S, and equation (2.1) reduces to L,[U, (x,
M] = 0.

If x lies in V* U 9V" we have by definition yi(x, x') = 1 for all x' € S. Then as in the
preceding case Vi(x, x') and V-[E(x) ¥(x, x)] = O for all x' € S, and equation (2.1)
reduces to:
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LUy (x, ] = \ f LAy (5, %' M]uy (¢, N)dS. 2.2)

Using (1.8) we have as A — o, uniformly in x,

A f L [Gy (5, %' Mlay (¢, NS =

A f ON MY+ A7 e — X1 uy (¢, NdS = OV 3. (2.3)
N

Finally, suppose x € V' U dV'. Again using (1.8), and recalling that 0 < {(x, x') = 1 on
V X 8V it is clear that the first term on the rh.s. of (2.1) is OA™™ r~?) uniformly in x.

We next consider the second and third terms on the r.h.s. of (2.1) for x € V' U 9V'. Each
of these terms is of the form

A f5~ expliha(x, X(w)) 1F(w, x; N)dw, dw, 24

where x = X(w) = X(w,, w,) is a parametric representation of S, and § is the pre-image
of S under this mapping. Furthermore, F(w, x; N) = uy (X(w), N) fix, X(w); w, \) where

fox, X w, N) = V-[E@ Vi, XAy (x, X; VX, X X,

in the second term of (2.1), and

f0e, X, w, N) = 2[iN EG)Vo(x, XAy (x, X; V) + EQVAy (6, X; N]-Vi(x, X)X, X X,

in the third term of (2.1).

It is shown in the Appendix that Vis(x, x'), V-[E(x)Vii(x, x)], Va(x, x'), Ay (x, X'; N),
VA (x, x'; N), and all derivatives of these functions with respect to the primed variables
are continuous in x and x' under our hypothesis on E(x) and N(x).

It is also shown there that (i) Vo(x, x), ¥(x, x"), Vii(x, x"), V-[E(x) Vii(x, x)], and all
derivatives of these functions with respect to the primed variables are respectively O(1),
O(1), O(r~") and O(r~?), uniformly in x and x' as r — %, and that (i) Ay (x, x'; N), VAy
(x, x'; \) and all derivatives of these functions with respect to the primed variables are
O(r ") and O(r?) as \ and r — o, uniformly in x and x'.

It follows that the function F(w, x; \) in the integrands of the second and third terms on
the r.h.s. of (2.1), and all derivatives of this function with respect to w, and w, are
continuous on S X (V' U dV"). Note that X(w) is smooth on § by hypothesis, and it is shown
in Section 3 that u, (X(w), \) is a smooth function of w on § . In the second term F(w,
x; N) and its derivatives with respect to w, and w, are O(r?), while in the third term F(w,
x; \) and its derivatives with respect to w, and w, are O(\ r~*) as \ and r — oo,

Since uy (X(w), N) and its partial derivatives with respect to w, and w, vanish on the
boundary of S, the of same is true of F(w, x; \) and its partial derivatives with respect to
w; and w,.
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Integrating (2.4) by parts we have as \ and r — oo:
A fs expliha(x, X)] F(w, x; N)dw, dw, =
i f _exp[iNT(X, )] Fy (w, x; Ndw, dw, = ON"2r7Y), (2.5)
where m = 2 for the second term on the r.h.s. of (2.4) and m = 3 for the third term. Here

F,(w,x; \) = T(w, 0)[V,, 0(X, x)-V,, Fw, x; )] + V,-[[(w, x) V,, (X, x)] F(w, x; \),
Tw,x) =1V, o(X, x)I "%
v, 0X, x) = [Vo(X, x)X,,, VoX, x)-X, ],
Y,/ [Tw, x) V,0(X, x)] = T(w, D[A, o(X, x)
— 2w, x) V,, o(X, x)-(M, (X, x) V,, o(X, x))],
T, X 0) = X, -(M(X, ©X,) + Vo(X, 0) - X,,,,

A, o(X, x) = X, «(MyX, 0X,,) + X,.-(My(X, 0X,,) + VoX, )-A X,

where
Ty, (X X) O, (%, X))
M (x', x) = , n s
O, (X, X) G, (%, X)
and
[ *o(x, x) o', x) o', x) |
x,0x, ax,9x, x93
o X', x 620(x', X Po(x, x
M2(x', x) = v( g ) T 0 ) v( g )
0x,0x, 0X,0x, 0x,0x3
620'(x', X) 620'(x', Xx) azc(x', X)
| axsaxll c’)x'3ax'2 {:)xgaxl3

The function F,(w, x, \) and all its derivatives with respect to w; and w, in the second
and third terms on the r.h.s. of (2.4) are continuous on § X (V' U V'), and are ON" 2 r3)
as \ and r — . This is implied by: (i) the continuity of ['(w, x) on § X (V' U aV"), (ii)
the fact that this function is uniformly bounded away from zero on § X (V' U 9V"), and
(iii) the above mentioned properties of F(w, x, ), a(X(w), x) and the derivatives of these
functions with respect to w; and w;,.

In fact we may integrate (2.4) by parts M + 1 times to obtain the result that
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A f . exp[iNa(X(w), x)] F(w, x; N)dw, dw, =
[MED \ M fs explINT(X(W), )] Fpr1 (W, X; Ndw, dw,, (2.6)
where

Forery W, x;N) = T(w, [V, (X, x)-V,, Fy, (W, x; N)]
+ V, [Tw, )V, 0(X, x)] Fyy (W, x; ).

The function F,(y (w, x; N) vanishes on S . and inherits the asymptotic behavior,
smoothness, and continuity of F,,(w, x; \). It follows immediately from the above analysis
that L, [Uy (x, N)] = or 3\ ™M uniformly on V U 9V as A — . Also since (i) ¥(x, X),
VV¥(x, X), V-[Ex) Vii(x, X)], Ix — XI Gy (x, X; N), Ix — XI L, [Gy (x, X; )] € C[(V U
aV) X §1, (ii) uy (X, N) € C[S ] (see Section 3) and (iii) S is assumed to be smooth, it
follows that L, [Uy (x, N)] is continuous on V U aV.

3. Proof of Equation (1.3). We prove in this section that with uy (x', \) as defined
above

lim Uy (x, \) = x(6OhG%) + By &, \) (° € aV) @3.1)

X=X

where (i) By (x°, \) € C' [9V], (ii) By (x°, A) = O\"") as X — o, uniformly in x°, x°
€ 9V, (iii) all first order tangential derivatives of B, (x°, \) are O™ as A > oo,
uniformly in x°, x° € 9V.

First, letting x — x° (€ S) in (1.3), and recalling that o(x°, x') = o(x', x°), we have

Uy, N =\ f s \b(xo, xXNo(x', x")]_1 exp[iNa(x', x)]Ay (x', X% N) uy (X', N)dS
3.2)
where Ay (1, x% \) = [o(x, x)] 7" oy (&, X% N).

For each ray (geodesic of (do)*> = N(x)dx-(E~'(x)dx) emanating from a point x° of S we
have the parametric representation

x = X(a, v; x°) = col(x,(o, v; x°), x)(a, v; x°), X3(0, v; x%)) (@ =0,l=1,x"ES).

The vector valued functions X(o, v; x°) and P(c, v; x°) are defined by the differential
equations

X, = [NX] ’EX)P,

P, = [NX]'VNX) —27'[NX)1 7 P(VEX)P), (3.3)
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and the initial conditions

X, v; x°) =x°
P(0, v; x°) = col(p, (0, v; "), p, (0, v; x°), p; (0, v; x°)) = N(x*) E_"*(x) Rx°),
(3.4
where VE(x) = col(E,, (x), E,, (x), E,, (x)) and VN (x) = col(N, (x), N,, (x), N,, (x)). The
rotation matrix R(x°) is defined more precisely below.
Recall our hypothesis that for each point x° on 9V, the geodesics of the Riemannian
metric (do)? = N? (x)dx-(E~ ' (x)dx) emanating from x° form a field %(x°)(cf. [15]). It can

be shown that such global geodesic fields exist under the following ‘“physically
reasonable” conditions on N(x) and E(x):

) N) = N, <0, ming., £E®E = p, > 0(x ERY).
(ii) E(x), N(x) & C*[R?].
(i) (E(x) — DE™'@)LINV?(x) — 1) N 2(®)1,IVEX)E™ ' (x)| and IVN(x) N2 (x)| are
sufficiently small on R>.
(Note that the local existence of a geodesic field near x° is guaranteed by a theorem of
Whitehead [20].)
Under the above conditions on E(x) and N(x) the function X(o, v; x°) € C~ R where

R = {(0, 1): 0 = 0, lvl = 1}. Furthermore, it can be shown under these conditions that
as o — 0

X(o, v; x°) ~ [N] ' E)? R°v o + X,

and

X°(o, v; x°) ~ [N°]'[E“1” RV,

uniformly with respect to v, where E° = E(x°), N° = N(x°) and R’ = R(x°).

To every pair (x, x°) € R® X 8, there corresponds a unique 4-tuple (o(x, x°), v(x, x°))
with [v(x, x°)| = 1 such that x = X(o(x, x°), v(x, x°); x°). Consequently, the equation x =
X(o, v(7); x°), where v(1) = col[cos T, sin T,, sin T, sin T,, cos T,], defines a one to one
mapping of the region R = {(0,7): 0= 0,0 =<1, <2m, 0 <7, <7} onto R® — (%,
U €,), where

@, = {x:x = X(o, col[0, 0, 1]; x°), ¢ = 0},

and

@, = {x:x = X(o, col[0, 0, — 1];x"), ¢ = 0}.
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Under our assumption that the normals to S are approximately vertical we can be sure that
the curve €, lies entirely in R* — V", and that the curve 6, lies entirely in R* — V. If
the diameter of S is sufficiently small and the elements of R(x’) are chosen so that

R@)collFy, (), Fyp () Fss G _ ooy
[F31 () + F3, ) + Fr, 0] T

where F(x°) = E"? (x%), then there exists a function 7, (1,, o; x°) and a positive constant
o, such that N&9) = {xx = X(o, v(T, To(Ty, O ), 19, T, € [0, 27], o0 € [0, 0]} is
a neighborhood of S on aV for every x° € S.

We set z(o, 7,; x°) = X(o, v(1,, T, (1}, 0; x°); x%). Note that for each fixed x°, and o,
€ [0, 0,], the equation x = z(cy, T,; x%), T, € [0, 2], is a parametric representation of
the curve {x:x € N(x%), a(x, %) = a,).

By taking the diameter of the open set S to be sufficiently small we can guarantee that
for any x' lying in N'(x’) the angle between V o(x', x°) and the normal to 9V at x' that points
into V is close to 7/2, and certainly lies in the interval [0, 7/2 + §,] so that YO, x) =
1 for all x' € S.

We can therefore rewrite the integral in (1.1) in terms of o and T, as follows:

Uy (2% \) =\ f 02" f (;’ exp[iNalHy, (o, 7,5 X%, Nuy (2(0, 73 X, Ndo dr,  (3.5)
where

Hy(o, 75 2% 0) = o "W, 2o, 75 X0, 7,3 DA (2(0, 715 ), 1% V),

and

J(a, 15 X0 = lzg (o, Tl;xo) Xz, (o, 'rl;xo)l.

The function Hy, (o, T}; X \) defined after equation (3.5), is a smooth function of o and
7, forall 0 = ¢ = ¢, and 0 = 7, = 2. Furthermore, the integrand of (3.5) and its o and
7, derivatives vanish if z(a, 7,; x%) € N(x°) — S due to the factor u(z(a, 7,; x%), N). By
construction the factor $(x’, z(o, Ty 1%) = 1as o0 — 0 + for every L eSs.

Integrating (3.5) by parts N + 1 times with respect to o we obtain

N
Uy %N = 2 M=1)"1 a2 gy (0, x°, MGV " +
n=0
(=D eV fOZ“ f:‘ expliza]ol T [Hy(o, T} x°, Nuy (z(0, 73 x°), Mldodr,

(3.6)
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where

gn(os %N = foh Hy(a, 1), x°, Nuy(z(o, 713 %), Ndr,. 3.7

If in (3.5) we set

N+1
uy (X, N) = 2 vy, M, (3.8)
m=0
then
N+1
Hy (0, 75 2°, Muy (2(0, 75 2%, N) = 2 Hy,(o, 75 3% DA, (3.9
m=0

where Hy ,(a, T; x%,N) = Hy (o, 1,5 X%, \) Vam(2(o, Ty x%), \). Moreover, by virtue of
equation (3.7), the defining equation for g (o; 2%, N\), and equation (3.9) we have

N+1
gy (@ X, N) = 2 3 gum (05 3% DN, (3.10)
m=0
where

O gym (03 2% N) = 02“ O Hy,y (0,732 N dry (m = 0,1,2, - N+ 1).
(3.11)

Setting o = 0 in (3.10) and substituting into the sum

N
SNED gy (05 2%, NN T
n=0

on the r.h.s. of (3.6), this sum becomes

N N+1

2 g (05X, MGEN) T
n=0 m=0

which can be rewritten as
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N N+1
S D T g (05 X%, NN

n=0 m=n

Interchanging the order of summation in the above sum we get

N m
> [2 " S gn e (05 X, x)] AT
m=0

n=0
2N+1 N
+ 2 IR AR S (VP VIl D (3.12)
m=N+1 |_n=m—(N+1)
If we now set
gno (05 X%, N) = —ix(x")h(x"), (3.13)

igym 0 XN + 2 T gy 03X =0(m=1,2, - ,N), (3.14)

n=1

and

N
igyne1 00 + X i algn e y-n (0; X% M) =0, (3.15)

n=1

then (3.6) reduces to
2N+1 N
Uy (x°,N) = xR + X > T gm0 XN [N+
m=N+2 | n=m—-@+1)
=DMt an™ f 02" f (;’ exp[iNald) ' [Hy (o, 5 X%, Nuy (2(0, 7; x°), N)1dodr,.
(3.16)

As explained above we have assumed without loss of generality that supp x(x°) € §' C
S. Additionally, we require that the function h(x°) € C~ [9V].
Recall from (3.11) that

8y (03 X% N) = 02“ Hy (o, 7, x%), My, (0, 713 x%), Ndr,

O=o=0,xX’ESp=012,- N+ 1). (3.17)
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It can be shown that Ay (z(a, 7;; x°), x°; N\) = a, (z(0, T,; x°), x°) as ¢ — 0 + where
ay (20, 713 %), x°) = (4m) "' NG")det EGN)] ™ (27" Loy 0, 715 2] [L(w, 715 X177,
L(o, 7; x°) = —[N(z(o, T3 DI K(o, T, T, (T4, 03 x%); X°),
and
K(o, 7, x°) = X (0, v(1); x°):[X,, (0, v(7); x°) X X, (0, v(7); x)].
Furthermore, we have
z25(0, T3 x%) = X (0, v(7); X°) + X, (0, v(7); X°)[15(7}, 0 x)],,
and
2, (0, 75 %) = X, (0, v(1); X°) + X, (0, v(1); X°)[y(T, 05 X)), ,
where T = (1, T, (T}, 0; x°)). The function 7, (7, o; x°) is defined by the equation
x3 (0, (1}, 1); X°) = fixy(0, v(1y, Tp); X°), x,(0, V(Ty, Tp); X)),

where x; = f(x;, x,) is a representation of some neighborhood of N'(x°) on aV.
As a consequence of the preceding equations, our definition of R(x°), and the asymptotic
formulas

X(o, v(7); x°) =~ [N°] ' [E°]? R° v(7)o + x°,
X, (o, v(1); x°) ~ [N°] 7" [E]"* R® v(7),
X, (0,v(1); x°) ~ [N ' [E1? R v, (Do +x°  (i=1,2),

that holds as o — 0 +, it follows that 7,(t;, 0 +; x°) = /2,

lim o Ay (z(0, 7j; X%), % ) = (4m) "' N°[det E°]” "2,

o0+

lim o2 J(o, 1;; 2°) = N1 U(IE) R v(r,, w/2)) X ((E)? R v, (1), W2))l =

a—0+

[N]"'[det E°1*[(R%) v,, (1), m/2))-([E) " (R v, (1), W2)N]? =
[N°]""[det E1"*[RS..-([E*1 ™" R§.01'2,

where (R°)" = transpose of R’, and RS . = col[R5 , R3,, R33].



350 C. 0. BLOOM

We conclude that

Hy 0,73 x") = (4m) ' [RS.+((E") " R§.01" > 0.

It now follows from (3.17) that
Vnp (% N) = [HG)] ™ gy (05 X°, N), (3.18)

where H(x°) = fj“ H\(0, 7,5 x°, Ndt, = 2_1[R§’,*-([E“’]_1 g,,.)]”z, and consequently that

8np (@ X7, N) = [H)] ™ 02“ Hy (0,75 %, Ngy, (0; 2(0, 75 x°), Nd,.

Using (3.14) this becomes

p
8np (03 X%, N) = —[HE ' S # 02" Hy (0,73 x°, N3}y gy pn (0; 2(0, 715 X°), N)dT

n=1
(3.19)
for p = 1, 2, 3,..., N. Furthermore, using (3.15) we get
N
B+t (@5 X°,N) = —[HON ' 2 0217 Hy (o, 75 X%, N3, 8N,(N+1)—n
n=1
0; z(o, ;5 x°), N)d,. (3.20)

Equations (3.19) and (3.20) recursively determine the gy ,(o; x°, N)’s for all p = 0, 1,
2,..,N+ 1,0 €[0,0,] and x° € S.

It can be shown by mathematical induction that these functions are smooth with respect
to o and x° on [0, ] X 3V. By virtue of (3.18) the vy, (x°, N)’s are smooth functions of
x° and vanish identically for all x° € 9V — S. Consequently, the same is true of up(x°, \)
as originally assumed.

It can also be shown inductively that as A\ —

a{;gNJ(c;x”, N=001)§G=12,: - N;n=0,1,2,, - N+ 1),

uniformly in o and x°. Therefore, the sum in (3.16) is a smooth function of x° and is
O\~ N*2) as X — oo, uniformly in x°.

The integral in (3.16) is also a smooth function of x° and is O\ "), uniformly in x°.
This is because:

(1) Hp(o, 7;; x°, N) and the o derivatives up to order N + 1 of this function are
continuous in o, 7, and x° and are O(1) uniformly in o, 7, and x°.
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(i) The o derivatives up to order N + 1 of

N+1
Uy, (2(0, 715 %), \) = [HE)] ' 2 gy ,m(0; 2(0, 715 x7), DA™,

m=0

are continuous in ¢, 7; and x° and are O(1) uniformly in o, T, and x°.

We next consider the case where x — x° € 3V — S. We have

lim Uy (x, ) = \ fs exp[iNa(x%, XW))IF(w, x%; Ndw, dw, (x € 3V — S)

x—x°

3.21)

where
F(w, x°; ) = uy (X(w), MAX(w), x°; w, ),
X, x% w, N) = V&7, XA (3°, X; MK, X X,,|,

and as above the equation x = X(w), w € §, is a parametric representation of S.

The function F(w, x°; ), and its derivatives with respect to w, and w,, are continuous
in x° and smooth with respect to w on S X @V — S). Furthermore, by virtue of our
assumption that supp X(x') C §' where S C S' and the distance from S to S is positive,
it follows that the function u, (X(w), \) and consequently F(w, x’; \) vanishes outside S
where S ' is the preimage of S' under the mapping x = X(w). Therefore, (3.21) reduces to

lim Uy (x, \) = \ f L XPIINT(’, XW)IF(w, x° Ndw, dwy, (3.22)

x—x°

for all x° € 9V — S. Note that o(X(w), x°) and IV, ¢(X(w), x°)| are uniformly bounded
away from zero on § X (8V — S). These functions are also continuous in x°, and smooth
with respect to w; and w,.

If we integrate the r.h.s. of equation (3.22) by parts N + 1 times we obtain the result that
if x° € 9V — S, then

lim Uy (x, ) = "NV |- explina(x, XW)IF s (W, X% Ndw, dw,,
s (N+1) 1 2

x—x°

(3.23)

where
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Fiyiny W, X% N) = T(w, x)[V ,0(X, x°)-V,, Fy (w, x° M)] +
V., [Tw, x)V o0, x°)]Fy (w, x°; N),

and Fy(w, x°; \) = F(w, x°; \).

We may therefore use mathematical induction to conclude that F(w, x°; \) is a smooth
function of w, and w,, and is continuous in x° on § X (3V — S). It follows from (3.23) that
Uy (x°, N\)(= By (x°, \)) is continuous on 8V — S and is O(\~") as A — oo, uniformly in
x°, x> € 3V — S.

We next consider the tangential derivatives of Uy (x, A) on dV. On S these derivatives
are linear combinations of the functions [Uy (X(w), M)],,, (i = 1, 2) with coefficients that
are smooth functions of w, w € § . Therefore, to establish the smoothness and the
asymptotic behavior of the tangential derivatives of U, (x, \) on S as A — oo, it suffices
to consider the functions [Uy (X(w), M)],, (0 = 1, 2). It follows from the preceding
discussion that for all w €8

[Uy X(w), V], = [XXW)HRXW))],, +
=DM a7 f 02“ f (;’ exp[ina] Y [Hy (0,75 X(W), Nuy

(z(o, 715 X(W)), M), do dT (3.24)

The partial derivatives of Hy(o, T,; X(w), \) and u,(z(o, T;; X(w)), \) with respect to w,
and w, are continuous in o, T; and w. Also these derivatives are O(1) as A\ — o, uniformly
with respect to o, 7, and w. Consequently,

[Uy XW), V)], = IXXWHRXW))],, + [By (X(W), M)],,

where [By (X(w), N)],,, is continuous in w, and is O(\™") as X\ — =, uniformly on . This
implies that the tangential derivatives of U(x, N) — Uy (x, A) on S are continuous and are
OAN™™) as N — o, uniformly on S. In particular the tangential derivative [V —
n(n-V)[U(x, \) — Uy (x, N)]lg where n = n(x) is the outward unit normal to S at x, is
continuous and is O\ ") as A — o, uniformly on S. We finally consider the tangential
derivatives of Uy (x, ) on 9V — S. On a typical coordinate patch of dV — S represented
parametrically by y = Y(v), the tangential derivatives of U,(x, \) are linear combinations
of the partial derivatives of Uy (¥(v), N) with respect to v, and v,. It follows from (3.22)
that

UYWMDY, = f < expLNG(Y(v), XW)] F(v, w; Ndw, dw, (Y(v) € 3V = S),
(3.25)

where F(v, w; N) = up (X(w), N) f (X(w), Y(v); v, w, \) and
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FX Y5v, w, N) = (VY X)-Yv) Ay (V, X5 M) + U, X)(Vdy (Y, X; M) Yv) +
NV a(Y, X) Y)Y, X)sdy (Y, X; NIX,, X X, .

Integrating the r.h.s. of (3.25) by parts N + 2 times we obtain the result that [Uy (Y(v),
Mly, = O\™") as N — o uniformly on each coordinate patch of 9V — S. It follows that
in addition to being continuous on dV — S, the tangential derivatives of U(x, N) — Up(x,
\) are OA"N) as X — o uniformly on 4V — S. In particular the tangential derivative

[V = n(-IUX, N) — Uy (5, Mlyy—s
is continuous and is OA™") as A — o, uniformly on 4V — S.

4. Proof of (1.4). To prove (1.4) we start with the following expression obtained from
(1.1).

DIUy (x, V)] = A f L [WCs )], Gy (3, X5 Nuy (¢, N)diS +
A f S W(x, x) D[Gy (x, %3 Muy (<, N)dS. @.1)

Recalling that Gy(x, x'; N\) = expl[iko(x, x)][o(x, 07! Ay (x, x'; N) we have

D[Gy, (x, x'; N) = exp[lira(x, x)][o(x, x)]1 ™" [[Ay (x, x'; V)], +
[—iN(1 = [o(x, X)],) + (' = [o6x, X)) '[o(x, x)]1)1Ay (x, x5 N].

Using the asymptotic formulas o(x, x') = r + O(1), [o(x, x)], = 1 + o(r 3, Ay (x, x';
A) = 001), [Ay (x, X';N)], = O(r™?) that hold as r — o, uniformly in x', x' € §, to estimate
the r.h.s. of the preceding equation we find that Gy (x, x'; \) = O(r™') and D[Gy, (x, x';
M1 = O(r~?) as r — o, uniformly in x/r and x'. Also recall that §s(x, x') = O(1) and [{s(x,
x)], = O(r™ ") as r — oo, uniformly in x/7 and x'.

Using the results obtained above to estimate the integral in (4.1) we conclude that
D[Ux(x, N)] = O(r?), uniformly in x/r, as r — . This estimate immediately implies
(1.4).

5. Pointwise estimates for U(x, \) — Up(x, N\). In [7] the a priori estimate

2 -1 2 12
UG, Ml < C A2 r [{fvrzm dV} +
{fav| [Vg - n(n-Vg)]l 2 ds}“2 + A\ maxlg|] (5.1
1'%

for the solution U(x, \) of the following exterior boundary value problem is obtained,
where C is a constant independent of \ and x, and # is the outward unit normal to dV:
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[A + N2 N*(0)U = fix,\) (x E V),
Ux', \) = g(x', \) (x' € aV),

lim | _ AD[UG, M1 dS = 0. 5.2)

Rox ¢ r=

Inequality (5.1) is derived under the following assumptions:

(i) flx, \) is piecewise continuous on 8V U V and [y rzmz dV = oo,
(i) g(x, N) and its tangential derivatives are piecewise continuous on dV.

(iii) AV is finite and can be illuminated from the exterior: there exists a (smooth) closed,
convex surface 2, containing 8V such that each point of 8V lies on exactly one
perpendicular from 3. For every x € V U 9V let o(x) be the arc length along the
normal from 2, that passes through x; o(x) is smooth, IVa(x)l = 1, and o(x) is
asymptotic to r as r — . Note that o, — o(x) is bounded away from zero on the
inside of 3, for some positive constant .

(iv) N(x) € C°[V] N C[V U aV].

(v) N(x) = gy >0 on V U aV for some positive constant &,.

(i) W-VN@®), IN(x) — 11 = O(o(x) + o,)"?) uniformly on 3V U V for some positive
constant p exceeding two, and some positive constant o, such that o(x) + o, is
positive for all x € V U 9V. Here v is the outward unit normal to 3.

(vii) Form = 1, 2 all m™ order derivatives of N(x) are O(r ?~™), uniformly on V U aV.

(viii) The function N(x) is slowly varying: for some positive constant £, we have N(x)
+ (0(x) + 0,)(Vo(x)'VN(x)) = £, on the exterior of %, and N(x) + (o(x) —
o,)(Vo(x):VN(x)) = &,, on the interior of 3.

If E(x) = I the function U(x, \) — U,(x, \) satisfies equations (5.2) with fix, \) = A~V
1+~ RN(x, N) and g(x', \) = A VS M, N), where as a consequence of what we have
shown above Ry(x, \) is continuous on V U a8V, and Sy(x', \) together with its tangential
derivatives are continuous on dV. Furthermore, as A — % we have RN(x, A) = 0()
uniformly on V U 8V, §,(x', \) = 0(1) and [V — n(n-V)]I8\(x', \) = O(1) uniformly on
daV. It follows that if dV satisfies (iii), and if N(x) satisfies conditions (iv)—(viii) then,

UGx, \) — Uy (5, NI CN*r ' [{ f ) P2 (1 + ) ARy (¢, MNP V2 +

ANV f [V = n(r- )18y (¢, M dS}2 + AV maxiSy (¢, M. (5.3)
v aV

We note that (5.1) and consequently (5.3) can be derived if dV is a smooth surface
extending to infinity provided oV can be illuminated from the exterior by an infinite,
smooth, convex surface 2. This means that dV lies entirely on the concave side of 2, and
that every pair of normals from the concave side of X passes through 9V before
intersecting.
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In [5] it is shown that for some constant C independent of A and x,

U(x, M)l =< C\? [{fv AR dvy2 + {fav [Vg — n(n-V)I? dS}'* + \ max gl
(5.4)

on every bounded subset of V U oV if U(x, ) is the solution of the following exterior
boundary value problem:

LUl =fx,\) x€ V),
U, \) = g(x', \) (x' € 9V),

lim | _ AD[Ux, NP dS = 0. (5.5)

R—ox ¥ 1=

The pointwise, a priori estimate given by (5.4) holds if the following conditions are
satisfied:

(i) fix, \) is piecewise continuous on V U aV, and [y Af* dV = .

(ii'") g(x', N\) and its tangential derivatives are piecewise continuous on oV.

(iii") aV is finite, smooth, and star-shaped.

(iv") N(x) is smooth and strictly positive on V U oV. E(x) is smooth and strictly positive
definite on V U aV.

") [IN®OI 2 Ex) —I=00P), [Ex)], =0F P "Yand VNx) = O0r P asr—
o, uniformly, for some constant p, p > 2.

(vi') The function [N(x)]* and the matrix A(x) = [N(x)]~* E(x) are slowly varying:

min [min <§-(A(x)£)>:| = max !2[N(x)]~1 VN(x)-A(x)| + lmax (r[A(x)],|.
vuav | =1 VUV 2 vusv

The function U(x, \) — U, (x, \) satisfies equations (5.5) if we set fix, N) = ANNa+
)" Ry (x, \) and g(x', \) = A7V SN (x', \), where as a consequence of what we have
shown above Ry (x, \) is continuous on V U 9V, and S, (x', \) together with its tangential
derivatives are continuous on dV. Furthermore, as A — ®© we have RN x, ) = 0(1)
uniformly on V U aV, Sy (x', \) = O0(1) and [V — n(n-V)] Sy(x', \) = O(1), uniformly
on dV. It follows from (5.4) that if 9V satisfies (iii'), and if E(x) and N(x) satisfies
conditions (iv')—(vi'), then

IU(x, \) — Uy (x, NI < C N [{ f § P21+ r¥) ARy (¢, NP vy +

AN f IV - n(n-V)18y (s M dS}? + N7V max 1Sy (¢, V] = O™ (5.6)
)%



356 C. 0. BLOOM

on every bounded subset of V U aV.

We note that (5.4), and consequently (5.6) can be derived if dV is a smooth, star-shaped
surface extending to infinity.

6. Matching Across Caustics. If the subset of V U 9V covered by the orthogonal rays
from supp x(x')h(x) is caustic free then we may assume that the rays in T* form a normal
congruence (cf. [15]), and it can be shown that

Uy (x, \) = exp[iAé(x)]d, (x) + O™ 6.1)

as N — o. Here x'(x) is the point where the “optical path” from x intersects 9V. The
function o(x) = o(x, x'(x)) gives the “optical distance” from x to 9V, ie., the distance along
the orthogonal ray from x'(x) on 4V to x, and

dy (x) = X(x'(x))h(x’) exp

(- f 7 INX(0; XDV [EX(03 X)) V(6 (X(0; X (6)Idal.  (62)

In the preceding equation X(a; x'(x)) is a parametric representation of the optical path
from x'(x) to x. The functions X(o; x') and P(c; x") are uniquely determined by equations
(3.3), and the initial conditions X(0) = x', P(0) = N(x)E~"*(x')Ai(x'), where A(x') is the unit
vector pointing into V such that #(E~"?(x') A(x')) = 0 for every vector ¢ tangent to dV at
x'. Note that A(x)) is the outward unit normal to 9V at x' if E(x') = I.

The function o(x) satisfies the eikonal equation Vo-[E(x)-Vo]=[N(x)]>. Furthermore,
for every x' € 9V we have

[IN(X(o; x)] 2V é(X(a; x)) = P(0; x),

and

X, (03 x') = [N(X(0; x))]* E(X(a; x'))P(0; x).

The rh.s. of (6.1) is obtained if the integral representing Upf(x, N\) is expanded
asymptotically by the method of stationary phase with an error that is O(\™'). However,
it is rather difficult show that the amplitude function dy(x) that is first obtained from the
stationary phase analysis of (1.1) is identical to r.h.s. of (6.2); a proof will be presented in
a sequel to this paper.

We remark that the asymptotic expansion given by (6.1) is the leading term of the ansatz

N
Oy (x, \) = expiNé®)] S d,, GON", (6.3)
m=0

where d(x) is given by (6.2), and the d,,(x)’s are defined recursively for m = 1, 2, 3,...,
N, by the following transport equations and initial conditions:
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2V 4, (Ex)Vé(x)) + V-(Ex)Vé(x)d,, = iV-(Ex)Va,,_,), (6.4)
lim 4, = 0. (6.5)
x—x'(x)

It can be shown that L, [UN (x, N)] is continuous on V U 9V, and that L, [UN (x, M1
= OV, uniformly on ¥ U 9V, as A — o. Furthermore, by virtue of (6.2) and (6.5)
we have UN ', N) = x(xYh(x') for all x' € aV.

Within caustic free subsets of T it is possible to construct local, high frequency
approximate solutions of the problem P. Recall that T™ is the subset of V U 4V filled by
the orthogonal rays from points in points in § O supp x(x")h(x"). The global approximate
solution given by equation (1.1) which satisfies the given boundary and radiation
conditions, “connects” these approximate solutions.

For example, suppose T is a caustic free subset of T, and assume for simplicity that
only one ray from the support of x(x)h(x') passes through each point of 7. We may
assume without loss of generality that 7 is a subset of 7" covered by orthogonal rays
from the surface S(o,) = {y:y = X(0; x'), x' € N} where N is an open, simply connected,
subset of S, and o is a non-negative constant. We have T+ = {x: x = X(o + 0¢; '), x'
€ N, o € [0y, 0,], 0, > 0y}

Consequently, the function Up(x, \) given by equation (6.6) below is a local
approximate solution that is asymptotically equivalent to the global approximate solution
given by (1.1) as A — , with an error that is O~V r~!) uniformly on 77:

N
Uy (x, N) = exp[iha”™(®)] D b,, GO\ (6.6)

m=0
The eikonal function o™ (x) appearing in (6.6) is the unique solution of the equation x
= X>(¢7; x'(x)) for all x such that x'(x) € N, where X*(0; x') = X(0 + 0y; x'). The function
exp[iAa” (x)] b, (x) is the leading term of the stationary phase expansion of the integral

in (1.1) for x € 7. The b,, (x)’s are defined recursively, for m = 1, 2, 3,..., N, by the
transport equations

2Vb,(Ex)Vo~ (x)) + V-(Ex)Va~ (x)b,, = iV-(Ex)Vb,,_,) (6.7)
and the requirement that each b,, (x) should vanish on S(o). Since
INX™ (05 x)] 72 Vo~ (X7 (05 %)) = E'(X (03 x)) X; (03 )
we can rewrite (6.7) as

2b,), + INX™ (03 )] 72 V-(EX (05 ¥))Vo™ (X (03 x)b,, = iV-(EX (03 X)Vb,,_,),
(6.8)

to be solved for b,,(c) (o > 0) subject to the initial conditions b,,(0) = 0 for m = 1, and
with by(o) = by(X™ (a; x)).
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7. CONCLUSION

In a sequel we intend to apply the techniques of this paper to radiating body problems
where each of the orthogonal rays from the support of h(x') intersects the boundary
nontangentially at one or more points on dV outside the support of k(x'"). If this occurs the
radiation from the boundary source distribution is reflected by the boundary one or more
times before propagating to infinity. The family of orthogonal rays from the support of
h(x") may form caustics before being reflected. Additional caustics may be formed after the
first reflection.

We also intend to consider radiating body problems where the boundary is smooth, but
not C, problems where the boundary is only required to be piecewise smooth, and
problems where E(x), N(x) or derivatives of these functions have jump discontinuities
across surfaces lying in V U V.

Additionally, we plan to consider radiation problems where the radiation emanates from
a distributed source of compact support in V U 9V, or a point source located at x° in V U
dV. We note that the techniques used in this paper can be applied directly to problems
where (i) dV is infinite, and (ii) none of the rays from the point source is tangentially
incident on the boundary. Under these conditions the geometrical theory of high frequency
wave propagation predicts that every point x in the medium filling V is illuminated by
radiation from x° that travels along the optical path of least time from x° to x and radiation
that travels along the optical path of least time from x° to x, and that includes a point of
reflection on dV. For the special case E(x) = I, N(x) = 1 a rigorous high frequency
asymptotic expansion of Green’s function for the Dirichlet problem, valid in the
illuminated portion of the region exterior to a finite smooth convex body, has been
obtained by Morawetz and Ludwig in [14]; they used a pointwise a priori bound to
estimate to the difference of the exact Green’s function and a globally valid approximate
Green’s function. Subsequently, Alber [2] established a similar result for exterior regions
with finite, smooth boundaries of more general shape, and used it to obtain a rigorous
asymptotic expansion as A — o of the solution of problem P with E(x) = I and N(x) =
1. The approach in [2] is to represent the Green’s function for the Helmholtz operator as
the Fourier transform of a corresponding Riemann function. The local, asymptotic
behavior of the Green’s function as A — = is established by analyzing corresponding local
approximations of the Riemann function.

We remark that approximate solutions of problem P can be constructed by the method
of this paper if the Dirichlet boundary condition is replaced by a boundary condition of the
second or third kind.

Finally, we are also interested in extending the methods of this paper to Maxwell’s
equations, and the equations of linear elasticity.

APPENDIX.

In this appendix we establish the continuity in x and x', and the asymptotic behavior for
large \ as r — o of the following functions and their derivatives with respect to the primed
variables: sy (x, x'; N), Vly (x, x5 N), Y(x, x), V¥(x, x') and V-(E(x)V¥(x, x). It is
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assumed here that x lies in (V U 9V) — V" where o(x, x'), and a fortiori Ix — x'l is bounded
away from zero for all x' € § C aV.

We first note that A, (x, x'; N) = ay (o(x, x), T1(x, x), T,(x, x'); X', \), where the
functions o(x, x), T,(x, x") and T,(x, x') are uniquely defined by the vector equation x =
X(a, Ty, Tp; x'). Recall that x = X(o, T;, T,; Xx') is a parametric representation of a typical
ray emanating from x', and is defined by equations (3.3) and (3.4). Consequently, the
continuity in x and x', and the asymptotic behavior of s, (x, x'; N), V4, (x, x'; \) and the
derivatives of these functions with respect to the primed variables for A, r >> 1 is
determined by:

(i) the continuity in x and x', and the asymptotic behavior as r — o, of a(x, x'), 7,(x,
X, To(x, x), Vo(x, x), V1,(x, x), V1,(x, x'), and the derivatives of these functions
with respect to the primed variables.

(ii) the smoothness of ax(a, T;, T,; X', \) with respect to o, T, T,, X', and the asymptotic
behavior of this function and its derivatives with respect to @, T,, T,, x' for large
Nas o — .

The continuity of o(x, x') and T(x, x") (i = 1, 2) with respect to x and x' is implied by
the continuity of the vector valued function x = X(o, T;, T,; x'), and its first derivatives
with respect to o, T, T, and x', via the implicit function theorem. The continuity in x and
x' of the derivatives of o(x, x') and T,(x, x') (i = 1, 2) with respect to the primed variables
is implied (inductively) by the continuity of the derivatives of X(o, T, T,; x') with respect
to o, T;, T, and x'. For example the continuity of first derivatives is established by
differentiating both sides of the defining equation x = X(o(x, x'), T,(x, x'), T,(x, x); x") with
respect to the primed variables. We obtain the following formulas after some
straightforward vector algebra:

o, x) =K [X, XX, ] X, = [E@] X, X, (=1,2,3), (A1)

[ ), = (DT KX XX, 10X, (=1,2;j=1,2,3),

(A.2)
Vo(x,x) = =K ' [X, X X_], (A3)
Ve x) = ()T KX, X X,16=1,2), (A.4)

where K(o, 7; x) = [X; X X_]-X,. In the preceding formulas o = o(x, x') and T = 7(x,
x') = (11(x, x), To(x, X))

Note that K(o, T; x') # 0 if o > 0, which is the case if ¢ = o(x, x') and (x, x') € (VU
aV) — V") X . This follows from our hypothesis about the rays emanating from x', which
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guarantees that the equation x = X(o, T, T,; x') defines a global coordinate transformation
for every x' € S.

The continuity in x and x' of higher order derivatives of o'(x, x'), 7,(x, x) (i = 1, 2), and
of the functions Vo(x, x'), V7(x, x') (i = 1, 2) with respect to the primed variables for x
#x (x #xifx € (VUaV) — V' and x' € S) is established inductively by repeated
differentiation of the above equations, and making use of the fact that X (o, T; x'), X,‘, (o,
T x)(=1,2), Xx.j (o, 7; x") (j = 1, 2, 3) are smooth functions of o, T, T, and x' for all
c=0,0=7<2m0=1,<mx ES.

To establish the asymptotic behavior of the aforementioned functions and their
derivatives for large r, we make use of the following results that can be derived from
equations (3.3) and (3.4) under our hypothesis on E(x) and N(x):

1) X(o, v(7); x') = ou(t; x') + c(t; x') + O(c™P), p > 2, uniformly in 7, T, and x',
as 0 — %, where the unit vector u(t; x") and the vector ¢(t; x') are smooth functions
of 7/, 7, and x".

(i) X, (o, v(1); x) = op, (1, x) + ¢, (T3 x) + O(c™P) (i = 1, 2; p > 2) uniformly
in 7, T, and x' as ¢ — .

(i) X, (o, v(1);x") = Ol (1;x") + C, (7;x") + O(c™P) (j = 1, 2, 3; p > 2) uniformly
ianl, T, and x' as ¢ — . ’

(iv) X (o, v(1); x) = p(t; x) + O(@?~") (p > 2) uniformly in 1,, T, and x' as ¢ —
[o.¢]

W) o(x, x) = r — 2u(t; x)-c(t; ') + O~ ") uniformly in x' as r — oo,

(vi) Derivatives of X, (o, v(1); x) (i = 1, 2), X, (0, v(1); x') G = 1, 2, 3) and X, (o,
v(T); x') with respect to the primed variables ‘and/or o, T,, T, are asymptotic to the
corresponding derivatives of oy, (1; x') + ¢, (T; x), oMy, (T, x') + Ce, (7, x') and
u(t; x") uniformly in T,, T, and x' as ¢ — o, with errors that are O(c™P), O(c™P)
and O(c ") respectively.

(vii) Derivatives of o(x, x) with respect to x; (j = 1, 2, 3) are asymptotic to the
corresponding derivatives of —2p(T; x)-c(T; x) uniformly in x' as r — oo, with an
error that is O(r ™ 1).

Using the above asymptotic formulas in (A.1)—(A.4) it follows that as r — o

o, x,x) =~ OH My ‘+uc=pc(G=17273), (A.5)

[ e x)], ~ (=D o X, Ju KL (=1,2,j=1,2,3), (A.6)
Vo, x) ~ (u, X g )K", %))

Vrx)~ Do Xy, VK (= 1,2), (A.8)

uniformly in x'. In the preceding formulas K, = p-(u, X p.), p = p(t(x, x'); x) and ¢ =
¢(7(x, x'); x). Uniform asymptotic formulas as r — o for derivatives of o(x', x), Vo(x', x),
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Tx', x) (i = 1, 2) and V1,(x', x) (i = 1, 2) with respect to the primed variables are obtained
by differentiating both sides of the above asymptotic equivalencies with respect to the
primed variables.

Next, consider ay(o, T; x', \). We wish to study the smoothness and asymptotic behavior
of this function as o — . Integrating the transport equations (1.5), (1.6) and (1.7) along
a typical characteristic curve given parametrically by x = X(o, v(1); x'), it can be shown
that

N+1
ay (@, X, ) = 2 o, (o, 7 x)N" (A9)
n=0

Clearly, a, (x, x') = o, (a(x, x"), 7(x, x'); x), where the a, (x, x')’s are solutions of the
transport equations (1.5), (1.6) and (1.7). The function o (o, T; x') is given by

o (0, 75 x') = (4m)~'[det EG)]™2 N(x)c, (75 x') N2 (X(0, v(1); x)K " (0, 15 )],

where

o (1 %) = lim o ? N* (X(a, v(7); x)K(a, T; x') =
o0+

271 [N? (X(0, v(T); x)K(O, T; x)],, = —[det E(x)]"? sin 7,.

A recursive formula for the functions (o, 7; x') (n = 1, 2, 3,..., N + 1) implied by the
inhomogenous transport equations (1.6) and (1.7), is given by

o, (o, 7, x) = oo, T; X') f(;’ [og(G, T3 17! V-«(EVa,_ )G, 1, x)dG. (A.10)

Here
VA(EVa, ) = N, oo + K" Ky ()] +
NIV (EVT )@ )y, + 297 (EV (), +
V1 (EV Ty Dayr, + VEVT(@,_ 1), + V(EVT (), ],
and

V-(EVT) = Vo (EVT), + V1:(EVT), + VT1,/(EVT),.

To derive (A.10) from the transport equations (1.5), (1.6) and (1.7) the formulas V-(EV o)
= N[(N* K)"' (W* K),] and EVo = N* X, are used.
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Recursive formulas for the derivatives of w,(o, 7; x) with respect to o, T, T, and
x} ( = 1,2,3) can be derived by repeated differentiation of equation (A.10) with respect
to o, 7, T, and x; § = 1, 2, 3). The continuity and the asymptotic behavior as ¢ — o of
a,(o, T; x"), and its derivatives for n = 1, 2, 3,..., N + 1, can then be established by
mathematical induction. It can be shown that as o — oo:

@) ag(a, 75 x) = fo(t; XV, (i) o, (o, T; X) = o (o, 75 X)f, (T; ),

uniformly in 7, T, and x', where the f,(7; x')’s are smooth functions of their arguments. It
can also be shown that the asymptotic equivalencies given by (i) and (ii) are preserved
under differentiation with respect to o, 7,, 7, and xj'- G = 1,2,3). It follows that a, (o, T;
x', \) is a smooth function of o, 7|, T, and x'. Furthermore, as ¢ — o

N+1
ay (@, X, ) =~ fy(mx)a [L+ 2 f, (1N, (A.11)
n=0

uniformly in 7;, T, and x". Uniform asymptotic formulas for the derivatives of a,(co, T; x',
\) are given by the corresponding derivatives of the right hand side of (A.11). In particular
it follows from (A.11) that as o —

ay (o, T, x,\) = O(c ') and ay ay (o, T3 x', \) = O '™ m=1,2,3 ). (A.12)

All derivatives of a, (o, T; x', \) with respect to 7, and/or 7, are O(c ™ ").
(A.13)

All derivatives of o, (0, T; x', \) with respect to the primed variables are O™ .
(A.14)

From the above discussion we conclude that &, (x, x'; A) and its derivatives with respect
to the primed variables are continuous in x and x', and that these functions are O(c~'(x,
M) =0 Hasr—o o

To establish the continuity in x and x', and the asymptotic behavior as r — % of V.
(x, x'; \) and its derivatives with respect to the primed variables, we simply note that

VApx, x's N) = Vay = 3,ay)Vo + @5, an)VT) + (8, an) VT, (A.15)

where a = ay(o, T; X', \), 0 = o(x, x') and T = 7(x, x'). In view of the above discussion
we may conclude that V&, (x, x'; N) and derivatives of this function with respect to the
primed variables are continuous in x and x', and that these functions are O (x, x)) =
O(r~?) as r — o, uniformly in x'.

We next investigate the function ¥(x, x') = vy(cosf(x, x')) where cosB(x, x") =
n(x")-Va(x, x)IVa(x, x')| . We recall that n(x") is the outward unit normal to 3V at x', and
that (a") y(§) € C” ([—1, 1]), (®) 0 = y(§) = 1 forall £ €[—1, 1], (c") y(§) = 1 if cos(m/2
+8)=&E=cos0,8 >0,(d) and y(§) = 0if cos m = § = cos(m — 3,), §;, + §, <
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/2. We need to know that the functions U(x, x'), Vii(x, x), V-(E(x)Vii(x, x')) and their
derivatives with respect to the primed variables are continuous in x and x', and we need
to determine their asymptotic behavior as r — .

Since Y(x, x) = y(§(x, x)) and Vi(x, x) = ve(§(x, X)) VE(x, x') where

&(x, x') = cos O0(x, x) = n(x")-L(T(x, x"); x), (A.16)

and

Um x) = [E772 () v [E7 () v(n)]] > (A.17)

for all x' € 9V, the continuity of Us(x, x"), V{(x, x') and the derivatives of these functions
with respect to the primed variables is implied by the defined smoothness of y(§) on [—1,
1], and the continuity of &(x, x'), VE&(x, x') and the derivatives of these functions with
respect to the primed variables. By assumption n(x'), the outward unit normal to dV, is a
smooth is a function of x'. The components of the unit vector v(t(x, x')) are the functions
cosT,(x, x)sinT,(x, x'), sinT,(x, x")sin T,(%, x'), and cosT,(x, x'). Consequently, the
continuity of the functions &(x, x'), V&(x, x') and the derivatives of these functions with
respect to the primed variables is an immediate consequence of the continuity in x and x'
of ,(x, x') (i = 1, 2), Vrx, x) (i = 1, 2), E~ 2 (x') and the derivatives of these functions
with respect to the primed variables.

Furthermore, yi(x, x') = O(1), uniformly in x and x', since by definition 0 = y(§) = 1 for
all —1 = & = 1. To establish the asymptotic behavior of V {i(x, x') as r — o we first recall
that Vii(x, x') = v (&(x, x)) VE(x, x) where

VEX, x) = V1, n(x)[{(7; X)), + V7 n(x)[{(7; X)), and 7 = 7(x, x)

= (7)(x, X7, Ty(x, X)). (A.18)
It follows that Vii(x, x') = O(r~") as r — oo since v(1)-[E~' (x') v(1)] is bounded away
from zero uniformly in 7 and x', v, (D), v, (DI = 1, v, (§) = O(1), VT1,(x, x), V1o(x, x")
= 0(c " '(x,x)) = O(r™') as r — o, uniformly in x', x' € V.

Finally, we consider the function V-(E(x)Vi{s(x, x")). Under our hypothesis that E(x) —
I=0("P)and V-E(x) = O(r P ') as r —> o, we have

V(Ex)Vi(x, x)) = Nz[(V'rl)-(EV*rl)‘I',]TI + (Vi) (EVT)¥, . + 2V1-(EVT)V,
+ V-(EVT)Y, + V-EVT)V,] (A.19)
where
¥ =W¥(r; x') = y(n(x')-L(T; X)),
Y, =y [n(x)( ]G = 1,2),
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‘PT‘T, = ‘Ygg[n(x').g'r‘] + 'Yg[n(x')'cm] (l = 1’2),

U, = Yeln@) L () L) + yeln@) L, ..

Furthermore,

VA(EVT) = (Vo)-(E, V1) + (Vo)-(E(VT),) + (V1)-(E, VT) +
(V1) (E(V7),) + (V1) (E, V1) + (V1,)-(E(VT),), (A.20)

and

VAEVT) = (Vo) (E, V1) + (Vo) (E(V),) + (Vr)(E, V) +
(V1) (E(VT),) + (V1) (E,, V1) + (V1) (E(VT)),) (A21)

where E, = (VE)'X,, E, = (VE)'X, and E, = (VE)-X, . It follows from the above
discussion that V-(E(x)V{s(x, x)) and the derivatives of this function with respect to the
primed variables are continuous in x and x'. It also follows that V-(Ex)Vis(x, x)) =
O(r~?) as r — =, since as o(x, x') — :

q’*rm? \P'rz-rz’ q’Tsz = 0(1),

K'K,=0@™") =00,

(V1)«(EVT), (V1,)«(EVTy, (V1)(EVT) = O(c %) = 0(r™ ),

V-(EVT), V-(EV1) = O(r"?).

To obtain the last two order estimates in the preceding list, we make use of the following
order estimates in (A.20) and (A.21). As r —
(Vo) (E,VT) = 0(1)0(c H0o(e™") = 0™,
(V1)(E,, V1)), (V1) (E, V1)) = O(c " HO1)0(c™") = 0D,
(V1)(E(VT),), (V1p)(E(VT),) = O(c"HO(1)0(c™") = 0(r™?),
(V1) (E(V1),), (V1)(E(VT,),) = O(a"HO(1)O(c ") = 0(?).
Note that asymptotic formulas for the functions (V1)) , (V1,),, (VT)),, and (VT,), that

occur above can be formally obtained by differentiating equations (A.8) with respect to T;
(i = 1, 2), and then setting T = T(x, x').
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