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LIDAR (Laser Integrated Radar) is an engineering problem of great practical importance in environmental
monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and
consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper,
the Lainiotis’s multi-model partitioning methodology and the related approximate but effective nonlinear
filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance
evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that
the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman
filter (EKF), which has been the standard nonlinear filter in past engineering applications.
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1. INTRODUCTION

The remote sensing of atmospheric and oceanic properties in both active and passive
models has been traditionally limited due to the nature of the classical instrumentation
available. The insufficient penetration of infrared and microwave radiation, especially
through the water, has restricted most of the oceanic studies to surface characteristics that
often do not provide one with a complete and informative picture concerning the
distribution of features with depth. Among alternate observation procedures currently
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available, the most viable method is that of obtaining vertical profiles of radar-like range
gated systems utilizing lasers as the radiation emitting source. Such laser systems are
referred to as LIDAR [40]-[45]. They operate near appropriate wavelengths and have
sufficient penetration of the order of tens of meters under favorable conditions. LIDAR
systems are usually installed and operate from aircraft or space, and they provide
indispensable data to both oceanographic and climatic studies.

Typically, atmospheric parameter estimation has entailed signal processing techniques
that are based on single-pulse LIDAR returns. For example, in many LIDAR return cases,
a simple estimator such as the average is adequate [12], [36], [37], [50]. Recently, the
advantages of LIDAR estimate processing over multiple pulses have been recognized and
consequently addressed extensively. In their pioneering work [41], [42], [44], Rye and
Hardesty have applied the state-variable formulation and the related linear Kalman filter
(KF) [14], and the nonlinear extended Kalman filter (EFK) [7], [10] to the estimation of
the return power and to the logarithm of the return power for incoherent backscatter
LIDAR in which multiplicative noise or speckle is present. The results obtained by Rye
and Hardesty have been extended by the authors to the case of unknown LIDAR
state-variable models [30], [31]. Several drawbacks are usually associated with LIDAR
state-variable models. The whiteness assumption of the Kalman theory is violated, as the
multiplicative noise source, seen in the speckle, exhibits serial correlation, and, in
addition, the same quantity demonstrates non-Gaussian statistics. In addition, the
environment around the measurement may abruptly introduce unknown bias effects in the
observation sequence, or, from the system’s reference point, random failures may
suddenly occur. Finally, system parameters or part of the signal structure is usually
unknown, which requires adaptive filter designs for their determination [48]. The study
described in [42] has eliminated some of the major difficulties discussed above by the use
of the optimization process of an adaptive simplex routine [38]. Reiterated passes are
typically made through the data to jointly evaluate the signal power and track the uncertain
parameters in the unmodeled dynamics. The real-time implementation of such an
approach, nevertheless, allows for the possible introduction of significant delays during
the filter realization.

This work reviews efficient methodologies for the effective estimation of the logarithm
of the LIDAR return power in which multiplicative noise or speckle is present and for
which the state-variable model is unknown. The paper is organized as follows: In section
IL, the form of a possible LIDAR system model in the presence of both additive and
multiplicative noise (speckle) is presented with particular reference to estimation of the
log power returns. Section III addresses the optimal solution of the general nonlinear
estimation problem, explains the implementation difficulties that accompany the exact
realization of the formulation, and provides some necessary simplifying assumptions to
facilitate the introduction of practical approximate filters. Section IV develops the
algorithmic basis for the Lainiotis partitioned adaptive filter as a parallel implementation
of a bank of EKFs. The actual filter design for the specific LIDAR uncertain model of
interest is outlined in Section V. Section VI reviews the results of extensive simulation
studies on the performance of the alternate filters and gives a comprehensive error
comparison between the partitioned algorithms and the classical EKF. Section VII
summarizes significant findings from the study and provides a series of concluding
remarks.
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2. LIDAR SIGNAL PROCESSING: NONLINEAR ESTIMATION PROBLEMS
A. Measurement Equation

The development here utilizes the state-variable approach to model the system of interest.
The desired quantity to be estimated is denoted by x; (k) and corresponds to the kth
discrete sample of LIDAR signal power return received at the sensor. The state return is
assumed to arrive corrupted by additive Gaussian noise, v (k), with zero mean and
covariance R (k). The measurement equation takes then the form

z(k) = Ox, (k) + v (k), ey

where O, represents an unknown parameter to be identified. This is introduced to account
for the fact that the designer may have no knowledge of how the returns are scaled and
appear at the sensor that receives the readings. To estimate the absorbance of the LIDAR
channel, which is proportional to the logarithm of the return power, the measurement
equation becomes

z(k) = ©exp [x) (k)] + v (k), 03]

with ®, having a similar meaning as before. Moreover, if one includes a source of speckle
or multiplicative noise, equation (2) transforms to

z(k) = O, W (k) exp [x; (k)] + v (k), 3)
where W (k) is the speckle term just mentioned. Research studies have shown that,
spectrally, W (k) should be expected to be uncorrelated from pulse to pulse, and,
statistically, its probability density function may be nonsymmetrical, although ap-
proximately Gaussian for high-order speckle [42]. Other properties required are that W (k)
should be positive, on the average equal to unity, and expressible in terms of Gaussian

sequences to comply with Kalman theory stipulations. A simple model to satisfy the above
observations and speckle characteristics is given by

Wk =1+ w(k), @)
where w (k) is a zero mean Gaussian noise sequence [42].
B. System Equations

To simultaneously keep track of signal power returns and speckle perturbation, a
two-dimensional state space representation is adopted as follows:

x, (k+1) = x, (k) + O,w, (k), 5)

x(k+1)=1+w,(k), ©6)
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where the first state, x; (k), is the power return and the second, x, (k), is the speckle; w,
(k) is a white Gaussian sequence with zero mean and unity variance that is scaled to Q,
(k) by the unknown parameter ®,; and w, (k) is the zero mean white Gaussian sequence
of equation (4), independent from w; (k), having covariance Q, (k). In meteorological
measurements, the strength of the additive stochastic disturbance associated with equation
(5) is unknown, and hence the purpose of the quantity ®,, becomes meaningful and
effective. The measurement equation may be rewritten to accommodate the state dynamics
format as

2(k+1D)=0x,k+ Dexp[x; (k+ D] +v(k+ 1. @)

Expressions (5)—(7) are finally in a form which permits discrete nonlinear state
estimation and identification. Future simulation experiments have fallen into two major
categories. The first involves the state dependent unknown noise parameter ®,. of the
plant, whereas the other one deals with the uncertainty connected to ®, in the
measurement returns. In general, the optimal nonlinear estimator is known to be
practically unrealizable as shown in the next section [1], [21], [46], [47]. Effective
approximate formulations, nonetheless, exist and are also reviewed in the sequence.

3. OPTIMAL NONLINEAR ESTIMATION

The problem of estimating the parameters and/or states of a nonlinear system—whether
the nonlinearity is inherent to the model generating the stochastic process or is introduced
by the observation mechanism—is a truly complicated one. Optimal nonlinear filtering is
far less precise than its linear counterpart and one has to work hard to achieve even little.
In the study of decision theory, nevertheless, one senses the need for nonlinear filtering
algorithms. Many frequency and phase modulation problems, for example, have nonlinear
observation structures, and the dynamic message models for the majority of realistic
vehicle-guidance and control systems are by nature nonlinear. Signal processing nonlinear
situations are also abundant, namely, the typical LIDAR formulation of this study. As a
result of the practical necessity for solutions to such problems, many ideas and procedures
have been proposed and investigated in the literature. Although some of them are no more
than a philosophy of approach, rather than a procedure leading to derivation of practical
estimators, there are a few that attack specific problems and result in useful filtering
formulations satisfying the limited objectives.

In general, one has to accept that, when dealing with nonlinear dynamical system
estimation, an analytical solution in closed form is not likely to be available and, instead,
computational algorithms should be sought in their place [2]. The following subsections
introduce the statement of the general nonlinear problem, outline the form of the optimal
solution, and explain the implementation difficulties that lead to the search for alternative,
suboptimal configurations. Such approximations are reviewed in later sections and include
extended Kalman and Lainiotis partitioning filters.
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A. Nonlinear Dynamical Model Description

The general state space model for a discrete time nonlinear stochastic system has the
following form [7], [9]: System model:

x(k+ 1) = f(k, x (k), w (k). ®)

Measurement model:

z (k) = h (k, x (k), v (k). ®

If additive Gaussian excitation and measurement noise is assumed, the above model can
be rewritten as a simpler model with the form given next. System model:

x(k+ 1) =fix k), k) +w(k). (10)

Measurement model:

z (k) = h(x (k), k) + v (k). (11

In above notation, f{...) is a nonlinear function of the states that depends on the index,
k, w (k) is zero mean, Gaussian noise having variance Q (k), A(...) is a nonlinear function
of the states that depends on the index, k, and v (k) is zero mean, Gaussian noise having
variance, R (k). The following figure gives a block diagram of the nonlinear prototype
system.

Comments

e The state vector x of the system evolves according to a nonlinear stochastic difference
equation, in which the vector valued function f{...) is in general time-varying.

o The initial state of the system, x (0), is assumed to be described by a known probability
density function (pdf).

e The behavior of the plant is observed imperfectly through the nonlinear, stochastic,
time-varying function A(...).

The objective of the optimal nonlinear estimator is to obtain the optimal estimates of the
stochastically varying state vector X = {x ), x 2),....x %)}, given the available
information contained in the related sequence of measurement vectors Z*={z(),z

(2),....z ()} [10].
B. Nonlinear Estimator Equations
The best representation of the system’s states at a particular time instant & is provided by

the conditional probability density function of the state vector x (k), given all pertinent
information available at time k; such information involves the initial state of the system
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and all past measurements through time k. If the probability of interest, denoted p (x
(k)IZk), is somehow available, one can obtain a number of estimates of the desired state
vector x (k) according to prespecified criteria. These estimates are usually a consequence
of a straightforward computational manipulation of the density function [1], [47].

To begin, one assumes that the initial probability density function, p (x (0)lz (0)) is
computable from the a-priori information of the state space equations (8) and (9), and that
the probability density functions p (x (k + 1)IX*) and p (z (k)IX*~!) can be obtained from
those of w (k) and v (k). Using the familiar Bayes’ rule theorem, the following
relationships hold:

x* z5
XNZ* =5’—————, 12
p (XNZ" > 5 (12)
with
p (X5 ZN =p(x(), X', 2 (k), Z"7 M), (13)

or, in terms of more elementary probability densities,
and

p@H=p®I1ZFYp @, (15)

so that equation (12) becomes

pXNZEYp e XL Z5 Y p @ (01X ZFY

krky —
p X1 I :

(16)
and the denominator is given by

p G (KIZEY = f p X*NZF Y p e () XL, ZF Y p (N XK, ZF Y dxk,  (17)

where dX* = dx (1) dx (2)...dx (k).

If the noise sequences are assumed (conditioned on the state vector x (k)) mutually
independent, additive, white noises as in the simpler case of equations (10) and (11), then
the optimal estimator can be determined using a recursive functional relationship among
a-posteriori densities as follows:

p (x (RIZ = cp (x 0 1Z¥ Y p @ R x (k), ZF), (18)
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pa®Z Y = [pa®uk- 1,2 p k- DIZ k=1, (19

and

1
—= [ p a2 p  W1x ). 2 dx (), (20)
Ck

where Z* is the record of all the measurements up to and including time k.

Comments

The cumulative measurement set Z* is the complete substitute for the past data in the
probability density function for any present and future quantity related to the system.
The same holds true for the state set X*.

For a white, independent measurement noise sequence, the following equation is true:

p @ (k) x (k) = p (z (I X, Z*7N. (1)

If the process noise is also a white, independent sequence and in addition is mutually
uncorrelated with the measurement noise, then the state vector x (k) constitutes a
Markov process satisfying

px(®k(k—1)=pxEIX",Z". (22)

Based on the previous ideas, the state prediction probability density function is given by
the Chapman-Kolmogorov equation:

PG @2 = [ (@b k= 1) p (k= DZY e k= 1), 23)

The joint probability density function of the measurements up to the time instant k is
given by:

k
PEZH=pc®.Z"N=p®Z"Hp @ H=Tlp®Z™). (24)

i=1
The above joint density of the observation record, which is conditioned indirectly on the
system model, forms the likelihood function of the system’s model. The likelihood

function serves as a normalizing factor in the recursive calculations of the state
a-posteriori probability density function.

Given that the probability density of the initial condition, p (x (0)), is known a-priori,

or assumed to have a specific form, equations (18)—(20) constitute a nonlinear functional
recursion, which enables one to obtain the probability density function p (x (k) | Z¥) at time
kfromp (x (k — 1) | Z¥"1) and the new measurement z (k).
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C. Implementation Considerations

The recursion scheme outlined in the previous subsection seems promising and powerful;
the probability densities involved, however, are not Gaussian and, as a result, they cannot
be completely described from the first two moments (or in general from any finite number
of moments). Thus, the actual realization of the optimal nonlinear estimator is hampered
by a series of implementation difficulties. Such considerations are stated next.

e Memory requirements: The storage of the probability density function used in the
recursive nonlinear equations is, in general, equivalent to an infinite-dimensional vector.

e Computational requirements: The integrals involved in the recursion are not likely to
have a closed form solution; as such, the integrations have to be evaluated numerically
with calculations that are routine but represent tedious and time-consuming operations.

With the exception of the linear Gaussian models, the above functional recursive
formulation is apparently impractical for real nonlinear estimation problems. On the other
hand, if the system is linear and the disturbances are assumed Gaussian, only a finite
statistic, consisting of the state’s mean and error covariance, is sufficient to implement the
equations (18)—(20). The Kalman [14], Lainiotis [25], or any other linear optimal filter
provide the means for a recursive update of such a sufficient statistic.

D. Approximations of the Optimal Nonlinear Estimator

The implementation difficulties associated with a truly optimal nonlinear estimator, on one
hand, along with the practical importance that accompanies the solution of nonlinear
filtering problems, on the other hand, have led to the development of approximation
procedures that facilitate the determination of the states in nonlinear stochastic systems.
Such approximate methodologies introduce an estimation criterion that helps reduce the
available information concerning the state to a finite collection of numbers [1]. The most
commonly used criterion minimizes the quadratic performance index J (k) defined as

J(k) = E{[x(k) —gZH1"Q;[x (k) — g (2]}, (25)

where Qj is a positive definite matrix. For example, if Qj = ], then the index becomes

J (k) =E{[x (k) — g Z1" [x (k) — g (ZH]}. (26)

Other fundamental assumptions behind approximating scenarios is that the involved
a-priori distributions are Gaussian and that the nonlinear state space model can be
linearized with respect to prespecified reference values.

Given the mentioned stipulations, one can now construct a series of practical, yet
suboptimal, non-linear estimation algorithms. Linearized, extended Kalman, and Lainiotis
partitioning filters, along with some of their modified versions, fall into this category [7],
[24], [28]. The following sections are intended to highlight some of the important aspects
underlying these techniques. As expected, such approaches do not necessarily ensure high
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reliability or robustness, as they create a mismatch between the approximate linear
framework of the procedure and the inherent nonlinear structure of the actual model.

4. PRACTICAL NONLINEAR ESTIMATORS: EXTENDED KALMAN FILTER
AND EFFECTIVE PARTITIONING NONLINEAR FILTERS
A. The Extended Kalman Filter

So as not to depart very far from the standard linear Gaussian model, one usually considers
the simpler nonlinear model described by equations (10) and (11). Imposing some
mathematical formalism on the nonlinearities, such as continuity, smoothness, and
differentiability, the functions f(x(k), k) and A(x(k), k) may be expanded in a Taylor series
about the conditional means £(klk) and £(klk — 1) as follows [7], [10]:

f (x(k), k) = f (R(klk), k) + F (k) (x(k) — £(klk)) +- - - (27)
h (x(k), k) = h (X(klk — 1), k) + H (k) (x(k) — X(klk — 1)) +- - -, (28)

Neglecting higher order terms and assuming that the quantities £(klk) and £(klk — 1) have
already been processed and thus are known, the nonlinear model of equations (10) and
(11) can be approximated as

x(k+ 1) = F (k)x(k) + w (k) + u (k), (29)
z (k) = H (k)x (k) + v (k) + y (k), (30)
where u(k) and y(k) are calculated on-line from
u (k) = f (£ (klk), k) — F (k)% (klk), 3D
y (k) = h (% (kk — 1), k) — H (k)X (kk — 1), (32)

and F(k), H(k) are given by the following expressions:

0
F (k)= ox (k)f(x (k), k) ‘ x(k) = 2(kIk)y (33)
)
H (k) = ax—(k)h(x (k), k) ix(k) = #(klk—1) (34)

Once transformed into the above approximate signal model, the extended Kalman filter
(EKF) for the original nonlinear system is simply a trivial variation of the standard
Kalman filter algorithm [14]. It must be noted, however, that the notations £(klk — 1) and
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P (klk — 1) are loosely used and denote only approximate conditional means and error
covariances of the true process x(k). The recursive equations for the discrete extended
Kalman filter are given below.

Initial conditions:

x (0) ~ N(x(010),P (010)). (35)
Other assumptions:
cov{w (k),v (j)} = 0 for all £, ;. (36)
State extimation propagation:
X (k + k) = f( (klk), k). 37
Error covariance propagation:
P (k+ 1Ik) = F (k)P (kIk)F" (k) + Q (k). (38)

Filter gain:

K(k+1)=Pk+ 1k)H (k+ 1)[H(k+ 1)P (k + Ik)H (k + 1) + R (k + 1)]"".
39

State estimate update:

fk+1k+ 1) =%Kk+ 1k) + K(k+ 1)[z(k+)— h &k + 1k),k+ 1)]. (40)

Error covariance update:

Pk + 1k + 1) =[I — K(k +)H(k + 1)]P(k +1lk), 41
where F(k) and H(k + 1) are adjusted as in equations (33) and (34).

Comments

o The filer gain K(k) and the approximate performance measure P(klk — 1) are coupled
to the filter equations since they depend on the linearizing reference point of £(klk — 1).
As a result, one concludes that in general the calculation of K(k) and P(klk — 1) cannot
be carried out off-line. If, however, the application at hand necessitates a-priori
computation of these quantities, then a deterministic reference trajectory may be used
in the linearization process, in which case one deals with the so-called linearized
Kalman filter [7], [10]. In practice, the reference trajectory is obtained by developing an
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appropriate mathematical model of the process in question or by simulating about some
reasonable operating conditions with respect to the actual system.

o The quality of the approximation involved in passing from the original nonlinear system
of equations (10), (11) to that of (29), (30) improves if the quantities |1x(k) — R(klk)I1?
and llx(k) — £(klk — 1)I|? are smaller. Thus, in high signal-to-noise ratio situations, one
would expect fewer difficulties and better performance in using the EKF. Another option
one may consider in determining whether or not the filter will perform adequately is to
check the degree of whiteness of the pseudo-innovations, for the whiter these are the
more nearly optimal the filter becomes.

e Variations of the EKF have also been considered in literature by slightly altering the
derivation procedures and the assumptions involved in the derivation. Such modifica-
tions include higher order filters, where more terms are kept in the Taylor series
expansion, and iterated EKFs, where the reference trajectory can be improved by
iteration techniques. Although both methods aim to better their respective estimates,
they differ in their philosophies for accomplishing their common objective. The former
seeks a better approximation to the optimal filter, whose structure is constrained by the
fact that the measurement appears linearly in the state estimate; the latter allows a more
general dependence of the estimate upon the observation data. Application of the EKF
in engineering problems has been very common and popular [3], [4], [8]. A comparative
analysis of several related nonlinear techniques has been reported by Mehra [35] and
Wishner et al. [49].

The minimum-variance-based estimation, with the Taylor expansion approximation, is
by no means the only possibility when designing nonlinear filters. Several other
alternatives have been suggested in the literature, and they may be superior to the EKF
related algorithms in particular problems. A statistical linearization found in [10], for
instance, has shown overall better performance than the Taylor series based approaches.
Maximum a-posteriori probability (MAP) and nonlinear least-squares estimation criteria
have also been employed in several places as a substitute for minimum variance
techniques [6], [39]; the latter is especially useful in situations where the statistical
properties of the uncertain quantities are not well-defined or not even known at all. Yet
another class of nonlinear estimators depends upon finding functional approximations of
the conditional probability density function of the state x. Details can be found in Sorenson
[46], [47].

B. Adaptive Estimation: The Lainiotis Partitioning Theory

In many physical phenomena, one is often confronted with the task of designing an
estimator in the face of incomplete model knowledge. In such cases, the approach usually
taken is to implement the filter in a way that offers self-learning capabilities, so that it can
adapt itself to the particular environment at hand. The discussion here primarily focuses
on the development of methods and procedures for system adaptation or identification in
the presence of parametric or structural uncertainties. The subsections that follow
formulate the problem for the linear case and present the Lainiotis adaptive multi-model
approach. The results are subsequently generalized to include a treatment of the nonlinear
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scenario. Finally, state augmentation techniques for nonlinear system adaptation are
described as an alternative approach to parallel-structured methods.
Adaptive estimation problems may be categorized according to:

e The nature of the basic mathematical model, e.g., linear, nonlinear, etc.

e The nature of the model uncertainty, i.e., parametric versus functional or structural
uncertainty, time-invariant versus time-varying.

e The nature of the constraints imposed on the adaptation process.

The basic element in the design of adaptive estimation filters consists of linear models
with time-invariant parametric uncertainties. More elaborate schemes may also be treated
by appropriately modifying the standard problem; such extensions incorporate time-
varying unknown parameters or structures and are to be reported elsewhere. It should be
noted, however, that, even in the simplest possible case of linear Gaussian state space
models, because of the introduced uncertainty, the problem becomes one of nonlinear
estimation. The exact solution to the described problem is credited to Lainiotis [17]-[28],
who was able to decompose the original nonlinear problem into a bank of linear subparts
in a process known as the adaptive multi-model algorithm [18], [20], [26]-[28].

Apart from the multi-model methodology, which is the only optimal solution but could
well be too complex for consideration, an ensemble of other suboptimal results have been
made available in various sources. Adaptive estimation via least-squares, for example, is
a popular choice with many specializations [16], [34]. The Kalman filter as an identifier
has also been employed by Ljung and Soderstrom [33] and Goodwin [11] in certain
applications. Augmented state models, which incorporate the unknown parameters and
account for their estimation, is the only suboptimal technique to be introduced here; such
methods can be used with the usual linear or nonlinear filters to perform state estimation
and identification at the same time. Theoretical justifications and convergence analysis for
this type of adaptation has been given by Ljung [32].

C. Linear Uncertain Models

A linear scenario is first treated. The adaptive estimation problem considered is specified
by the following equations (linear Gaussian uncertain model):

xtk+1)=® Kk + 1,k;O)x (k) + I (k;O)w (k), (42)
zk+ 1) =Hk+ 1,0)x k+1)+vk+1), (43)

where x(k) is the state vector of the system, ®(k + 1,k;®) is the (possibly unknown)
transition matrix, I'(k;®) is the (possibly unknown) standard deviation of the noise term
w(k), z(k) is the measurement vector, H(k;®) defines the observation matrix that may
contain uncertainties, and v(k) is the additive noise that corrupts the measurements. The
unknown parameters are denoted by the vector ®, which, if known, would completely
specify the model. Moreover, ® is considered to be a random variable with known or
assumed a-priori density p(®10) = p(0). The processes w(k) and v(k) are still uncorrelated
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when conditioned on ®, with covariances Q(k;®) and R(k;®), respectively. The initial
state vector x(0) is conditionally Gaussian for given @, with mean £(010;®) and covariance
P(010;0), and is conditionally uncorrelated with the sequences w(k) and v(k).

The above partially unknown model is specified up to the unknown parameter vector,
0O, which may be time-invariant or time-varying. The time invariance of the parameter
vector ® may be justified on the basis of physical considerations or simply as an
approximation to slowly time-varying parameters. Indeed, usually, as pointed out by
Lainiotis [18], the parameters have much longer time constants than the actual system
states. Given the measurement record A, = {z(1), z(2),..., z(k)}, the objective is to obtain
the optimal, in the minimum mean-square-error (mmse) sense, state estimate £(klk) of x(k).

D. Lainiotis’s Multi-Model Approach: Adaptive Lainiotis Filters

Under the model conditions of equations (42) and (43), the optimal mean-square estimate
X(klk) of x(k) and the corresponding error covariance matrix P(klk) are given by the
following expressions [18], [26]:

£ (ki) = f £ (Kik;®)p (Ok)dO, (44)

P (ki) = f (P (Kk;®) + [£ (kk) — % (kik;©)] [£ (klk) — % (kik;0)] }p (OIk)d®, (45)

where £(klk;0®) and P(klk;®) are the ®-conditional state vector estimate and the
corresponding ®-conditional error covariance matrix, and they are obtained from the
corresponding filter matched to the model with parameter value ® and initialized to
%(010;0®) and P(010;0), respectively.

The a-posteriori probability density function p(®Ik), given the record \;, can be
computed by the following recursive Bayes-rule formula, Lainiotis [22], [23], [26]:

L (kik;®)

p (Olk) =
fL (k:®)p (Ol — 1)d®

p Ok — 1), 46)
where

1
L (kik;®) = IP_ (kik — 1;0)I" Pexp[— P (kk — 1;0)P]" (kk — 1;0)],  (47)

and Z(klk — 1;0) and P (klk — 1;0) are obtained from the filter matched to the model with
parameter value ®, namely,

Z (klk — 1;0) = z (k) — H (k;0®)% (kik — 1;0), (48)

P_(kik — 1;0) = H (k;®)P (kik —1)H (K;0)" + R (k;0). (49)
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Remarks

¢ A feature of cardinal importance in the above partitioned realization is that the optimal
mmse estimate £(klk) and its error covariance matrix P(klk) are given in terms of the
model-conditional estimates £(klk;®) and the corresponding model-conditional covari-
ance matrices P(klk;®) in a weighted-sum, decoupled, parallel-structure form, which is
convenient and natural for parallel processing.

e Partitioning, through conditioning on a pivotal set of vector parameters 0, decomposes
or disaggregates a complex or large scale estimation problem into a bank of simple
subparts, which are non-adaptive and linear, and a nonlinear part, consisting of the
a-posteriori probability density function p(®lk), which incorporates the adaptive,
self-tuning, or system identifying nature of the estimator.

e Adaptive estimation in this context constitutes a joint estimation and multi-hypothesis
detection problem [23]. Estimation takes place with respect to the desired state x(k),
whereas detection or hypothesis testing occurs with respect to the decision of each
model. This inference can be readily seen by noting that L(klk;®) may be viewed as the
likelihood ratio for the following set of pattern recognition problems (one for each
element of the vector ®):

H, — z (k) = H (k;0)x (k;0) + v (k) (50)

Hy— z (k) = v (k) S

e Each value of the above detection problems tests the hypothesis that the observed data
was generated by the model indexed by the parameter value ® against the null
hypothesis that the data was generated by noise only. This global and unifying
viewpoint of estimation, identification, and detection as different manifestations of the
same problem has been proposed and extensively studied by Lainiotis [17], [20], [23].
Estimation and identification, in the Lainiotis framework, can be formulated as a
detection problem, and, in turn, detection and pattern recognition may be considered as
estimation and system identification formulations [26]-[28].

e The partitioning theorem also provides the exact error covariance matrix expression,
equation (45), in integral partitioned form, which is realizable with a minimum of
additional computations since the quantities involved are already available from the
evaluation of the adaptive estimator. As such, it is useful for on-line monitoring of the
estimator performance. It is noteworthy to state that the exact error covariance
expression is the only exact and explicit one obtained in nonlinear or adaptive scenarios.

¢ The situation outlined above and described in equations (44)—(49) pertains to the case
where the probability density function associated with © is a continuous function of ©.
Under such operation, however, one is faced with the need for a non-denumerable
infinity of parallel linear filters for the exact realization of the optimal estimator. The
usual approximation performed to overcome this difficulty is to represent the probability
density of ® with a finite sum, i.e. to discretize the sample space of ©. There exist, of
course, cases in which the sample space is in itself naturally discrete. In those cases, the
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integrals in equations (44)—(49) are replaced by summations running over all possible
values of the vector parameter @. It is comforting to know that when the true parameter
value lies inside the sample space, the adaptive estimator converges to this value. When
the true parameter value is not included in the assumed sample space, the estimator
converges to that value in the sample space that is ‘closest’ to the true value in the sense
of Kullback’s information measure minimization [13].

e From a practical standpoint, the partitioning formulae yield realizations of the optimal
or suboptimal estimators that are computationally attractive, numerically robust with
respect to failure of any of the parallel processing units, and whose implementation may
be accomplished in a pipeline or parallel processing mode [5], [15], [27], [29].

E. Partitioned Adaptive Filters for Nonlinear Models

In this section, the partitioning filters proposed by Lainiotis [21], [24], [26], [27] are
presented for the basic nonlinear model given by the following equations:

x(k+ 1) = f(x(k),k;0) + I' (k;O)w (k), (52)
z (k) = h (x(k),k;0) + v (k), (33)

where x(k) is the state vector of the system, f{x(k), k;®) is a (possibly unknown) nonlinear
function of the state, I'(k;®) is the (possibly unknown) standard deviation of the noise
term w(k), z(k) is the measurement vector, h(x(k), k;®) defines a nonlinear observation
matrix of the state that may contain uncertainties, and v(k) is the additive noise that
corrupts the measurements. The unknown parameters are denoted by the vector ®, which,
if known, would completely specify the model. Moreover, ® is considered to be a random
variable with known or assumed a-priori density p(®10) = p(0). The processes w(k) and
v(k) are still uncorrelated when conditioned on ®, with covariances Q(k;®) and R(k;0),
respectively. The initial state vector x(0) is conditionally Gaussian for given 0, with mean
£(010;0) and covariance p(010;®), and is conditionally uncorrelated with the sequences
w(k) and v(k).

To seek an optimal solution to the above problem is hopeless. The partitioning approach
can produce an efficient solution for the estimate %(klk), given that the conditional
estimates £(klk;®), which are the approximate estimates matched to a specific value of the
vector parameter ®, are available through normal estimation techniques. As explained in
earlier discussions, nonlinear estimators require infinite-dimensional processes and cannot
be, in general, implemented. Since approximate structures can be formulated, though, as
in the case of the EKF, the partitioned algorithm, at least intuitively, may be realizable. For
example, one may construct a bank of EKFs in parallel, each one matched to an
appropriate value 0, such that the overall vector ® = [0,,...0,,...0, 17 spans the space
of the unknown parameters. Then the partitioned estimator is used to select the EKF
conditional model matched to the correct value of the unknown parameter (or the one that
is closest to it). The design is herein referred to as the adaptive Lainiotis extended filter
(ALEF). What one has to remember is that the estimates £(klk; ®) in the individual filters
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of the parallel configuration, will only be approximations of the conditional means, and
this is also true for the corresponding error covariances.

The integrals of the formulation will eventually be substituted by a finite sum of discrete
values for digital computer implementation. In other words, a concatenation of two
approximations is put into practice, namely, one for the nonlinear estimator of the
individual subparts in the bank of filters, and another to avoid the infinite amount of
parallel structures that is needed to cover the exact sample space of the unknown
parameter ©. As a result, there is no theoretical justification or guidelines for how well the
nonlinear partitioned algorithm can perform or even if it manages to converge. Monte
Carlo techniques should be used to verify adequate performance manifestation.

5. NONLINEAR FILTERS FOR LIDAR UNCERTAIN SYSTEMS
A. ALEF Conditional Filters
We now redirect our attention to the problem of signal processing of LIDAR log power

returns. To design a nonlinear estimator for an unknown LIDAR model such as the one of
Section II, we define a vector ® that contains the model uncertainties as follows:

0= [gz], (54)

w

The EKF equations are modified to include the vector ® as follows: State Estimate
Propagation:-

£ (k + 1lk; ®) = £ (kik; ©), (55)

without multiplicative noise, or

2 (k + 1ik; ©) = [xl (kllk; ®)], (56)
when one considers measurements with speckle.
Error Covariance Propagation:-
P (k + lIk; ®) = F (k) P (klk; ®) F' (k) + Q (k; ©). (57)

Filter Gain:-

Kk+1;0)=Pk+1k;®)HKk+1;0)[Hk+ 1;0)P
(k + 1lk; ®) HT (k; ®) R (k)] . (58)
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State Estimate Update:-

R*h+1Uk+1;0)=2¢(k+1k0)+K*k+1;0)[Z(*k+ 1) — h& K+ lk; ©),
k+1;0)]. (59)

Error Covariance Update:-

Pk+1k+1;,0)=[I—-Kk+1,0)HKk+1,0)] P (k+ lik; O). (60)

The above equations take different form depending upon the specific problem at hand
and the approximation one wishes to include. For the LIDAR system, we consider here
two cases. If the problem is treated without multiplicative noise, then the system equations
become simply scalar since only one state requires estimation. In that scenario, we can
define the following (based on the discussion in section II):

Fk) =1, (61)
H(k + 1;0) = Oexp (x, (k + 1; ©)), (62)
h(xk+ 1;0)) = Ozexp (x; (k + 1; O)). (63)

The next level of complexity introduces an extra state to account for the speckle returns
to be estimated. The problem now becomes two-dimensional, with the first state
representing the signal as previously and the second the speckle term. For measurements
with speckle, the following definitions apply as they can be used in the EKF algorithm:

10
F (k)= [00], (64)

Hk+1;0) = [0k, (k + 1;0) exp (x; (k + 1; ©)) O exp (x, (k + 1; ON]].

h(xk+1;0) =0y, (k+ 1;0) exp (x; (k + 1; O)). (66)
With the above definitions, the EKF and ALEF algorithms can now be readily applied.
B. Augmented EKF

Before we leave the discussion on identification filters, we draw some attention to the use
of an adaptive scheme as an alternative to the partitioning approach. Although sometimes
adequate, the adaptation to the real parameter values is often slow and it is no match to
the partitioning theory reviewed earlier. A direct comparison between the two will be used
in a subsequent section for identification of the uncertainties existing in the measurement
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equation. It is noted that for unknown structures that contain state dependent noise terms,
the technique is not applicable and more elaborate schemes have to be used.
Let as assume a vector of unknown parameters can be defined as follows:

0,
e=1|--.1 (67)
Oy

Then the actual state problem of equation (52) can be augmented to accommodate the
unknown vector as follows:

x, (k+ 1) =[x, (k+1)0 (k+ DT, (68)

k 1
%m+U=Pg%q+[way (69)

Equations (68) and (69) can be used with equation (53) of the measurements to jointly
estimate the unknown parameters of the vector ®, which is treated as a static noiseless
state, and the actual states of interest, which remain as before. As mentioned before, the
approach suffers when the unknown parameter is a state dependent noise term since the
augmentation is not clear to perform.

6. PERFORMANCE EVALUATION

We now present an overview of the results obtained in the current study. We assume that
the unknown parameters occur as discussed in section II, that is, as an uncertainty that is
noise dependent (and the EKF is simply mismatched) and as an uncertainty that appears
in the measurements (where the EKF can be augmented and made adaptive). In either
case, the EKF approach was compared vis a vis the partitioning theory based methods. We
consider first the case of the unknown noise covariance for both the speckle and no
speckle schemes, resulting to a scalar and a two-dimensional state space representation,
respectively. Then we investigate the uncertainty that exists in the measurements, again for
both the cases of speckle present or speckle absent.

é. L)og Power Estimation Without Speckle: Unknown Noise Covariance
1(k

In this example, the problem considered is the estimation of the log power given
measurements contaminated by additive noise but without multiplicative noise; thus the
speckle is neglected and the example has the application of a direct detection system.
Signal sequences, containing 200 data points were generated using equation (5), and
observation series using equation (2). In equation (2) we set ®, = 1. The signal noise
covariance @, is the only unknown, assumed to be varying between 0.0005 and 0.05
uniformly. The uniform distribution corresponds to the worst case scenario to demonstrate
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LOG POWER ESTIMATION WITHOUT MULTIPLICATIVE NOISE
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Figure 1 Simulated Log Power with Mismatched EKF and ALEF Estimates (R = 300). Unknown Q.

no a-priori knowledge of the unknown parameter’s probability distribution. The space
span for the noise variance @, was chosen based on values from real measurements of
LIDAR returns found in [42]. Usual EKF techniques cannot be applied here since the
model is not completely known. The need for an adaptive filter is apparent.

The EKF was used as a simple nonlinear estimator without any inherent mechanism for
estimation of the unknown parameters. In other words, the filter does not know the exact
dynamics of the model because the signal noise variance has a uniform distribution.
Furthermore, since the unknown is a state dependent noise term, the simple adaptive EKF
scheme examined in the previous section cannot be used. The recursive algorithm starts
with an initial estimate, £(010) = 8.1, and initial error covariance, P (010) = 0.09. The
ALEEF is designed with three EKFs in parallel, each one matched to a specific value of O,
to cover the entire range of the assumed distribution of Q;. The approach becomes a
multi-model estimator that simultaneously tries to track the state trajectories as well as the
unknown parameters. The first model was designed with Q; = 0.05, the second with Q,
= 0.001, and the third with @, = 0.0005. The estimates given by the EKF and ALEF are
shown in Figure 1 along with the true state of the system. It is obvious that the ALEF
estimator tracks the true trajectory much closer than the mismatched EKF. In order to
assess the performance of the above filters, the mean square error, averaged over 50
Monte-Carlo runs, was used and the results for both filters are depicted in Figure 2. The
improvement in the error performance is found significant.

B. Log Power Estimation With Speckle: Unknown Noise Covariance Q,(k)

The simulation discussed above is extended to include the multiplicative noise so that the
signal measurements are generated using equation (7) with ®, = 1. To simulate lower
order speckle, x, (k) is generated assuming chi-square statistics of order 14 (see [40]). The
speckle is decorrelated between successive measurements and this justifies the approxima-
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LOQG POWER ESTIMATION WITHOUT MULTIPLICATIVE NOISE
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Figure 2 Mean Square Error of the Mismatched EKF and ALEF. Unknown Q,.

tion given in equation (6). All the other terms are similar to those of the previous example
and the results for this example are given in Figures 3, 4, and 5. The ALEF multi-model
estimator shows a successful detection of the model that most closely relates to the actual
system. In Figure 6, the histogram (30 bins) of the speckle power estimates is shown to
verify the chi-square statistics used in the data generation. The frequency distribution of

the filter estimates shows the expected probability density function for the low-order
speckle.

LOQ POWER ESTIMATION WITH MULTIPLICATIVE NOISE
9.8 T T T T T - T T T
Aoctual Data:

ALEF: ..........

LOG POWER RETURN
~
N o

2 " " " 1 " " 2 L
s'so 20 40 (1) 80 100 120 140 160 180 200
TIME SAMPLES

Figure 3 Simulated Log Power with Mismatched EKF and ALEF Estimates (R = 300). Unknown Q.
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LOG POWER ESTIMATION WITH MULTIPLICATIVE NOISE
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Figure 4 A-posteriori Probability Values for the ALEF Blocks. Unknown Q;.

C. Log Power Estimation Without Speckle: Unknown Matrix H(k)

Here we shift our attention to the unmodeled measurement equation, assuming that the
exact structure of the matrix H (k) in the linearized equation (62), which we denote by ©_,
is unknown. The unknown parameter is assumed to be taking any of the discrete values
0.1, 1, and 10, to model a possible attenuation/amplification that may occur as the
measurements arrive at the receiver. The noise covariance Q; (k) is now set to 0.001 and
held constant.
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Figure 5 Mean Square Error of the Mismatched EKF and ALEF. Unknown Q;.
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HISTOGRAM OF THE SPECKLE ESTIMATES (CHI-SQUARE, ORDER 14)
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Figure 6 Histogram of the Speckle Estimates to Verify Chi-Square Statistics of Order 14 Used in the Data
Generation. Unknown Q.

Signal sequences, containing 200 data points were once more generated using equation
(5), and observation series using equation (2). Usual adaptive EKF techniques can be
applied here since the unknown is not a state dependent noise term. One can augment the
system to include the unknown parameter as an additional state. Then the filter will
adaptively try to converge to the real value of the unknown parameter. The initial value
for the state to identify the parameter was set to unity, the middle point of the three discrete
values that the parameter can assume in the actual generation of the data.

LOQ POWER ESTIMATION WITHOUT MULTIPLICATIVE NOISE
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7.8

LOG POWER RETURN

s 1 s L 2 L 1 s A
so 20 40 (] 80 100 120 140 160 180 200
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Figure 7 Simulated Log Power with Adaptive EKF and ALEF Estimates. Unknown H.
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LOG POWER ESTIMATION WITHOUT MULTIPLICATIVE NOISE
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Figure 8 Mean Square Error of the Adaptive EKF and ALEF. Unknown H.

The recursive algorithm starts with an initial estimate, £(0/0) = 8.1, and initial error
covariance, P (010) = 0.09. The ALEF is designed with three EKFs in parallel, each one
matched to a specific value of @, to cover the entire range of its assumed distribution. The
estimates given by the EKF and ALEF are shown in Figure 7 along with the true state of
the system. The performance of the above filters is assessed by their mean square error
averaged over 50 Monte-Carlo runs, and the results for both filters are depicted in Figure
8. The filtering capacity of the ALEF estimator is shown to be much superior than the
adaptive EKF. The reason is the failure of the latter to converge to the correct value of the
unknown parameter, which results in the introduction of significant bias.

LOQG POWER ESTIMATION WITH MULTIPLICATIVE NOISE
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Figure 9 Simulated Log Power with Adaptive EKF and ALEF Estimates. Unknown H.
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LOQ POWER ESTIMATION WITH MULTIPLICATIVE NOISE
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Figure 10 Mean Square Error of the Adaptive EKF and ALEF. Unknown H.

D. Log Power Estimation With Speckle: Unknown Matrix H(k)

The last simulation to be discussed is extended to include the multiplicative noise so that
the signal measurements are generated using equation (7) with fixed Q; (k) = 0.001 in
equation (5). To simulate speckle in equation (6), x, (k) is again generated assuming
chi-square statistics of order 14. All the other terms are similar to those of the previous
example.

The results for this example are given in Figures 9 and 10. The comparison is made
between the augmented EKF and ALEF. We call the augmented EKF adaptive since it is
now capable of adjusting to the unknown parameter and is no longer mismatched. The
ALEEF is significantly superior to the adaptive EKF as demonstrated by our findings in
both log power estimation and error performance.

E. Discussion

We have shown that the partitioning approach as a means of model selection when
uncertain environments exist can perform extremely well and much better than
conventional means of estimation for the simple cases of independently unknown time
invariant parameters. The performance improvement over mismatched or slowly adaptive
schemes is expected to extrapolate itself for more realistic scenarios where the unknowns
can be time varying. The degree of approximation that is needed is dependent upon the
time and computational requirements to efficiently implement the parallel structures of the
partitioning theory.

7. CONCLUSION

The adaptive Lainiotis extended filter (ALEF) has been shown to be an efficient estimator
for LIDAR applications, and, in particular, far more superior than the widely used
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Table 1 Error Comparison for the Simulation Cases Studies

Simulation Examined EKF MSE ALEF MSE Percent Improvement

No Speckle, Unknown Q, 0.41 0.14 192%
Speckle, Unknown Q, 0.38 0.09 322%

No Speckle, Unknown H 0.29 0.03 866%
Speckle, Unknown H 0.32 0.08 300%

extended Kalman filter (EKF). Through extensive computer simulation studies, it has been
established that the ALEF can offer up to 300% improvement over the conventional EKF
for LIDAR problems involving multiplicative noise or speckle.

Unknown parameters play an important role in the overall estimator performance. The
simulations show that the EKF develops a significant bias error from imperfect knowledge
of the signal noise covariance. The ALEF estimator adjusts to changes in the noise within
a few time steps and eliminates the significant bias error developed by the mismatched
EKF. When an adaptive scheme was used for the EKF, by augmenting the states to
accommodate the unknown parameters, the conclusion remained the same. The ALEF
multi-model estimator still outperforms its single model augmented counterpart, primarily
because of the slow adaptation response the latter exhibits. Due to the highly decoupled
structure of the Lainiotis approach, the time required to realize the filter remains
essentially the same as with the simple EKF. Important results of this work are
summarized in Table 1.
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