MPE — Volume 2, pp. 401-434 © 1996 OPA (Overseas Publishers Association)
Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands
Photocopying permitted by license only under license by Gordon and Breach Science
Publishers SA

Printed in Malaysia

EIGENVALUES OF BOUNDARY VALUE PROBLEMS
FOR HIGHER ORDER DIFFERENTIAL EQUATIONS

PATRICIA J. Y. WONG

Division of Mathematics, Nanyang Technological University, Singapore

RAVI P. AGARWAL

Department of Mathematics, National University of Singapore, Singapore
(Received 23 October 1995)

We shall consider the boundary value problem
YNy Y ) = NPy Y - YT n = 2,0 €0, 1),
yY0)=0,0=<i=n-3,
"0 - By" "0 =0,
w2 + 8Py = o,

where A > 0, a, B, v and d are constants satisfying ay + ad + By>0,8,8=0,B +a>0andd +y>0
to characterize the values of \ so that it has a positive solution. For the special case A = 1, sufficient conditions
are also established for the existence of positive solutions.
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Kevworps: Eigenvalues, positive solutions, differential equations

1. INTRODUCTION

In this paper we shall consider the nth order differential equation

YO HNQE . Y - YD) = NPy, Y - YD), EE (O, 1), (1.1

together with the boundary conditions

yX0)=0,0=i=n-3, (1.2)
ay""2(0) — By"P0) =0, (1.3)
AW + ") =0, (1.4)

where n = 2, A > 0, o, B8, 'y and & are constants so that
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402 P. WONG AND R. AGARWAL
p=ay+ad+ By=>0, (1.5)

and

B=0, =0, B+a>0, d+vy>0. (1.6)

We remark that condition (1.6) allows « and <y to be negative.
Further, we assume that there exist continuous functions f: [0, ) — (0, =) and p, p,,
q, ;- (0, 1) > R such that

(Al) fis nondecreasing;
(A2) for u € [0, =),

o, u, uy, - - uy_s) P(t,u,up - o u,_y) - )
@ =q,®, p@)= @ =p(®;

(A3) g() — p,(r) is nonnegative and is not identically zero on any subinterval of (0, 1);
(A9 [ (B + ond + (1 = Dllgy(t) ~ pO)dr < .

q(t) =

We shall establish upper and lower bounds for A\ so that the boundary value problem
(1.1)—(1.4) has a positive solution. By a positive solution y of (1.1)—-(1.4), we mean y €
c™©, 1) N ¢ V[0, 1], y satisfies (1.1) on (0, 1), y fulfills (1.2)—(1.4), and y is
nonnegative on [0, 1], positive on some subinterval of [0, 1]. If, for a particular \ the
boundary value problem (1.1)—(1.4) has a positive solution y, then we shall call A an
eigenvalue and y a corresponding eigenfunction of (1.1)—(1.4). Throughout, we shall let

E = {\ >0/ (1.1)=(1.4) has a positive solution}.

We note that E is the set of eigenvalues of (1.1)-(1.4).
Next, for the special case A = 1, we shall investigate the existence of positive solutions
for the boundary value problem (1.1)—(1.4), assuming further that

(AS) fis either superlinear or sublinear.

To be precise, we introduce the notations

fo= limf(—u), [ = limf—(u—).

u—0 U u—x U

The function f is said to be superlinear if f, = 0, f.. = %, and f is sublinear provided f,
= o0, fx = 0.

The motivation for the present work stems from many recent investigations. In fact,
when n = 2 the boundary value problem (1.1)—(1.4) arises in various physical phenomena
such as gas diffusion through porous media [3], thermal self ignition of a chemically active
mixture of gases in a vessel [7,18,21], catalysis theory [10], chemically reacting systems
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[25], as well as adiabatic tubular reactor processes [9]. For the present work we refer
particularly to [6,8,15-17]. In all these papers, eigenvalue characterizations for particular
cases of (1.1)—(1.4) are discussed. For example in [16], Fink, Gatica and Hernandez deal
with the boundary value problem

Y MO =0,1€(0,1),

y(0) = y(1) = 0. 1.7)

Their results are extended in [17] to systems of second order boundary value problems. In
[6] and [15], the authors tackle a different boundary value problem

Y=Y M0 f(6) =010, 1),

Y(0) = y(1) = 0. (1.8

Recently, Chyan and Henderson [8] have studied a more general problem than (1.7),
namely,

Y+ NOf) =0,t €O, 1),

' 1.9
YO0 =y"2(1)=0,0<i=n-2. (42

Our results not only generalize and extend the known eigenvalue theorems for (1.7)—(1.9),
but also complement the discrete analog studied by Wong and Agarwal [29], as well as
include several other known criteria offered in [1].

In the special case that A = 1, applications of (1.1)-(1.4) and its discrete version have
been made to singular boundary value problems by Agarwal and Wong [2,27]. Other
particular cases of (1.1)-(1.4) and their discrete analogs have also been the subject matter
of several recent publications on singular boundary value problems, e.g., see
[1,11,20,22,23 and the references cited therein]. Further, in the particular case that n = 2,
(1.1)—(1.4) arises in applications involving nonlinear elliptic problems in annular regions,
for this we refer to [4,5,19,26]. In all these applications, it is frequent that only solutions
that are positive are useful. We are particularly motivated by the work of [12-14], and our
result is a generalization and extension of theirs. We further remark that other than the
differential equation (1.1) considered is more general, the conditions on the coefficients in
the boundary conditions are also weakened, and we allow some coefficients to be negative.
Our work also complements naturally the discrete problem considered in [28].

The plan of this paper is as follows: In Section 2 we shall state a fixed point theorem
due to Krasnosel’skii [24], and present some properties of a Green’s function which will
be used later. In Section 3 we define an appropriate Banach space and cone so that the set
E can be characterized. Finally, in Section 4 we consider the special case A = 1 and apply
the fixed point theorem from [24] to yield a positive solution for (1.1)—(1.4).
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2. PRELIMINARIES

Tueorem 2.1.  [24] Let B be a Banach space, and let C C B be a cone in B. Assume (1,
O, are open subsets of B with 0 € 0,0, C Q,, and let

S:CN@Q\)—C

be a completely continuous operator such that, either

(@) || = |l y € C N 3y, and ||Sy| = |y, y € C N 39,, or
) ISyl = bl y € € N aQ,, and |ISy| = bl y € € N o9,

Then, S has a fixed point in C N (Q,\Q)).

To obtain a solution for (1.1)-(1.4), we need a mapping whose kernel g(z, s) is the
Green’s function of the boundary value problem

_y(n) =0,
y%0)=0,0=i=n- 3,
" 2(0) - By" "0 =0,

Y2 + 8" = 0.
It can be verified that

n—2
G, s) = Wg(t, s)

is the Green’s function of the boundary value problem

aw(0) — Bw'(0) = 0,

yw(l) + dw'(1) = 0.

Further, we have [2]

2.1)

Gl = 1B+ +y1 -] r=s=1"

1{(B+as){8+v(l—t)],05s5t
p

We observe that the conditions (1.5) and (1.6) imply that G(z, s) is nonnegative on [0, 1]
X [0, 1], and positive on (0, 1) X (0, 1).
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Lemma 2.1, For(t,s) €[1/4,3 /4] X [0, 1], we have

G(t, s5) = K G(s, s),

where 0 < K < 1 is given by

K= mi 4B8+a 45+vy 4B + 3a 48 + 3y
TILB ) 4B ) 4B+ 4Dty

Proof. For 0 = s =< ¢, using (2.1) the inequality (2.2) reduces to

3+ vy(1 - =K[d+ v — s)]

In order that (2.4) holds, it is sufficient that K satisfies

min 3 +y(1 — )] =K ma); 8 + vy — sl
13

te [z,z] se [O'Z]

If vy = 0, then (2.5) gives

8+ L= K+ ) k= R*ty
4= Voo R ety
If v < 0, then it follows from (2.5) that
6+3 >K(8+1) <48+3'y
4= 2V A ey

Next, for t = s = 1 the inequality (2.2) becomes
B+ at=K(PB + as).
Again, it suffices to find K such that

min (B + af) = K max (B + as).
IE[Z,Z] SE[Z,I]

If o = 0, then from (2.8) we obtain

1 48 + «
B+Za2K(B+a), or K=

If & < 0, then (2.8) yields

T4B+ )

405

2.2)

(2.3)

2.4

2.5)

(2.6)

2.7

2.8)

2.9)
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+3 ~ K +1 <4B+3a (2.10)
B 40L— B 4a, or T .
Taking into account (2.6), (2.7), (2.9) and (2.10), we immediately get (2.3).
Lemma 2.2. For (t, s) € [0, 1] X [0, 1], we have
G, 5) = LG(s, ), (2.11)
where L = 1 is given by
L= 1 B o 2.12
= max ’B+a’6+’y' (2.12)
Proof. For 0 = s = ¢, using (2.1) the inequality (2.11) can be written as
S+vy(1 —H=L[B+vy1 -] (2.13)

In the case that y = 0, it is clear that we may take L = 1 in (2.13). If y < 0, in order that
(2.13) holds it is sufficient that L satisfies

max [ +y(1 — )] =L min [d + y(1 — s)],
1€[0,1] SE[0,1]

which provides

L=—— (2.14)
Next, for t = s = 1, using (2.1) the inequality (2.11) reduces to

B+ at <L + as). (2.15)

If & = 0, then we may take L = 1 in (2.15).
If o < 0, then as before it suffices to have

max (B + af) =L min (B + as),
t€[0,1] s€[0,1]

which yields

™

(2.16)

™
+
Q
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The expression (2.12) is immediate from (2.14) and (2.16).
LemMa 2.3. ForO=i=n— 2and(t, s) € [0, 1] X [0, 1], we have

_ ai _ tn—2—i
0=— g(t s) = L G(s, s) —'2—_1—)—'
In particular, for (¢, s) € [0, 1] X [0, 1],
< << L
O0=gt s = Y G(s, 5).

Proof. We note that for 0 =i =n — 3,

L5 = [ Lo gtm, span

Hence, we find

n_

at"‘3

gt s) = f G(t, s)dt = f L G(s, s)dtr = L G(s, ) t,

where we have used Lemma 2.2. It follows from (2.19) and (2.20) that

(;t:%g(t, s)=f é%;g('r s)d1'<f L G(s, s) 1dt = L G(s, s)ﬁ—

407

(2.17)

(2.18)

(2.19)

(2.20)

Continuing the process, we obtain inequality (2.17) from which (2.18) is immediate.

We shall need the following notations later: Let

v(t) = q,() — p(®), and u(@®) = q(®) — p,®).

For a nonnegative y on [0, 1], we denote

1 1
0= fo G(s, s)v(s)f(y(s))ds, and T = fo G(s, s)u(s)(y(s))ds.

In view of (A2) and (A3), it is clear that 8 = I" > 0. Further, we define the constant

_ KT
=T

It is noted that 0 < £ < 1.
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3. MAIN RESULTS

Let the Banach space

B={yec”0,)Nc" "0 11|y?0)=0,0=<i=<n-3)}

with norm |b| = sup,cro.q; [y~ (9], and let

C={y€EB| y"“2(t) is nonnegative and is not identically zero

on [0, 1J; min y"~2(1) = g}.
"€lz3]

It is noted that C is a cone in B. Further, we let

Cy={yECl|y|=m}
LemMma 3.1. Lety € B. For0 =i =n — 2, we have

—2-i

() p| <
ly (t)|_(n—2—

In particular,

()| =

bl € 10, 11

(n—2)!
Proof. Fory € B, we have

0 = [y sas, re o, 1,
which implies
b 2@l = b, + € [0, 1.

Next, since

Y00 = [y Ssds, 1€ 10,13,

on using (3.3) we get

o1 Ivll, £ € [0, 1.

3.1

3.2)

(3.3)
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o=90) = [ spllds = L 0,1
b0l = [ slylds = 5 bl € 10, 11

Continuing in the same manner we obtain (3.1) and also (3.2).

Lemma 3.2, Lety € C. For0 =i = n — 2, we have

Y =0r€(01 (3.4)
and
o= (-2 ppre|L 6s)
Y=g n—2— PSPy '
In particular,

Proof. Inequality (3.4) is obvious from the fact that

¥y = f ; Y D(s)ds, t €10,11,0<i=<n — 3.

To prove (3.5), we note that

w0 = [y e = [laplas = (-5 e [33] 6
1

Next, on using (3.7), we find

J ) = f ; Y I(s)ds = f }: &bl (S - %) ds

=( -t

Continuing the process we obtain (3.5). Inequality (3.6) is immediate from (3.5) by taking
i = 0 and substituting t = 1 / 2 in the right side of (3.5).

Remark 3.1. Ify € C is a solution of (1.1)—(1.4), then (3.4) and (3.6) imply that y is a
positive solution of (1.1)—(1.4).

To obtain a positive solution of (1.1)—(1.4), we shall seek a fixed point of the operator
AS in the cone C, where S: C — B is defined by
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Sy(r) = fol g(t, HIOG, ¥, 'y - - y(n—Z))

= P(s,y,¥y - Y V)ds, t € [0, 1]. (3.8)

In view of condition (A2) we get

Uy(t) = Sy(r) = Vy(®), t € [0, 1], 3.9
where
1
Uye) = [ &t 9uf osds, (3.10)
and
1
v = [ gt 9w oo @3.11)

Since for ¢ € [0, 1],
- 1 n— U n—
920 = [ 6N 3.y ") = P,y ¥ s,

U200 = [ Gt sus)f (s,

and

"2 = [ G s o,

using (A2) again gives

U™ 2(t) = (Sy)" 2 = (V)" P, t € [0, 1]. (3.12)

We shall now show that the operator S is compact on the cone C. Let us consider the
case when u(f) is unbounded in a deleted right neighborhood of 0 and also in a deleted left
neighborhood of 1. Clearly, v(?) is also unbounded near 0 and 1. For m € {1, 2, 3,...},
define u,,, v,,: [0, 11 - R by

Up(D) = 4 u(n),

(3.13)
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o
g

and the operators U,,, V,,: C — B by

Valt) = 4

m+1
L o= ™ 3.14
+1° T m+1 G.14)
m

=r=1,
m+1

U® = [ st (s ()i,

Vo) = [ 8, s 0s)ds.

It is standard that for each m, both U,, and V,, are compact operators on C. Let M > 0 and
y € Cy,. Then, in view of (2.18) and (3.2), we find

[V, — Vy(2)|

= [ 8t 9lvns) = v(o) £ 5

- f 6:‘—1 8(t, 9|v,u(s) — V()| £ ((s))ds

1
+ [ 890, — vl F00)ds

=G 52)!f((n 542)!) [f(;n_lﬁ G(s, 8)|v,u(s) — v(s)|ds

v (m’fll- 1) — V()

+ J'IL G(s, 8)|v,(s) — v(s)[f(y(s))ds]

_1
= —Lz)!f((n 5/[2)!) [fé"” G 5)

+ [

m+1

ds

i <m—i—1) Ve

f(y(s))ds].

The integrability of G(t, 1)v(¢) (condition (A4)) implies that V,, converges uniformly to V
on C,,. Hence, V is compact on C. Similarly, we can verify that U,, converges uniformly
to U on C,, and therefore U is compact on C. It follows from inequality (3.9) that the

operator S is compact on C.

TueoreM 3.1. There exists a ¢ > Q such that the interval (0, ¢] C E.

Proof. Let M > 0 be given. Define
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c= M{% f ((7—_1”7),) f 01 @ + as)d + y(l — s)]v(s)ds}_l. (3.15)

Lety € Cy,and 0 < N = ¢. We shall prove that ASy € C,,. For this, first we shall show
that ASy € C. From (3.12) and (A3), we find

WS D@ =\ f 01 G(t, S)u(s) f (y(s))ds = 0, t € [0, 1]. (3.16)

Further, it follows from (3.12) and Lemma 2.2 that

920 = [ 6 9ws) f s

=L f o1 G(s, s)v(s) f (¥(s))ds, t € [0, 1].

Therefore,

Il = L [ Gts. s3v5) £ (ts2yds = Lo, (3.17)

|

k)

Now, on using (3.12), Lemma 2.1 and (3.17), we find for ¢t € [

|-
W

A0 =\ [ Gl uts) £ (s

= \K fol G(s, s)u(s) f (y(s))ds
= MKT = Ng[Sy| = &[[ASy].

Hence,

min (ASy)™~2(t) = £|ASy||. (3.18)
<l

It follows from (3.16) and (3.18) that ASy € C.
Next, on using (3.12), Lemma 2.2, (3.2), (2.1) and (3.15) successively, we get

sy 20 =\ [ 66, sy (s)ds
1
=L\ f o G(s, s)v(s)f(y(s))ds

=L\ fol G(s, s)v(s)f ((n——M2)') ds
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1
- % fo B+ as)[d +y(1 — S)]V(S)f((n_ilf)_!) ds
=M, t€[0,1],

which implies
NSy = M.

Hence, (\S)(C,p) C C,;. Also, the standard arguments yield that AS is completely
continuous. By Schauder fixed point theorem, AS has a fixed point in C,,. Clearly, this
fixed point is a positive solution of (1.1)-(1.4) and therefore N\ is an eigenvalue of
(1.1)—(1.4). Since 0 < N\ = c is arbitrary, it follows immediately that (0, c] C E.

The next theorem makes use of the monotonicity and compactness of the operator S on
the cone C. We refer to [16, Theorem 3.2] for its proof.

Tueorem 3.2. [16] Suppose that A\, € E. Then, for each 0 < A < Ay, A € E.
The following corollary is immediate from Theorem 3.2.

CoroOLLARY 3.1. E is an interval.
We shall establish conditions under which E is a bounded or unbounded interval. For
this, we need the following results.

TueorReM 3.3. Let A be an eigenvalue of (1.1)~(1.4) and y € C be a corresponding
eigenfunction.

(a) Suppose that 3 =B =0andy = a = 1. If

Y0 =v (3.19)
for some v > 0, then \ satisfies
v -1
a(v)v [f(—)] =\ =a(y[fO)]}, (3.20)
(n— 1
where
a(z) = {fol a- s)z(s)ds}". 321D

(b) Suppose that & > 0, B = 0 and (3.19) holds for some v > 0.
(i) If vy = 0, then \ satisfies

-1
b(v)v(y + 9) [f( )] =\ = by + O, (3.22)

(n — 1!

where
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1
b(z) = {fo [y(1 —s) + 8]z(s)ds}_1.

(ii) If v < 0, then \ satisfies

v v
c(u,v,f,O,m> v('y+8)s7\Sc<v,u,f,m,O> v(y + 9),

where

1 1 .
¢ 0,00 = 1w @) [ (1 = syzrds + 7@y [ wisyds {7

(c) Suppose that 8 = 0 and § > 0. If
YO =p YO =
for some y, v > 0 such that ap = Bv, then \ satisfies

H " v
n=2) (-1

-1
a(v) (u +v) [f( )] =N=<a@) @+ VO],

where a(-) is defined in (3.21).

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(d) Suppose that & > 0, B > 0 and (3.26) holds for some u, v > 0 such that oy = Bv.

(i) If y = 0, then \ satisfies

-1
u v
b) [y(u + v) + 3v] [f((n it s 1)!)]

= N=b) [y +v) + WIFO],
where b(-) is defined in (3.23).

(ii) If v < O, then \ satisfies

u v
c (u,v,f,O,(n__z)! +(n— 1)!> [y + v) + dv]

B v
-l (n—1)

S)\ﬁc(v,u,f, ,0)['y(;,z+v)+8v],
(n !

(3.28)

(3.29)
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Proof. (a) In this case, the boundary conditions (1.2)—(1.4) reduce to

y0)=00=<i=n-2,

y(n—z)(l) =0 (3.30)

For m € {1, 2, 3,...}, we define f,, = f * m,,, Where m,, is a standard mollifier [8, 16]
such that f,, is Lipschitz and converges uniformly to f.

For a fixed m, let \,,, be an eigenvalue and y,,, with yf,'l’_l)(O) = v, be a corresponding
eigenfunction of the following boundary value problem

y(n) + N Qm(ts Yo y;,,, ) 53_2)) = )\um(t’ Vs y;m ) yﬁ:: 1))’
t€ [0, 1], (3.31)

yY0)=0,0=<i=n-2,

— (3.32)
Y A =0
where Q,, and P,, converge uniformly to Q and P respectively, and
t, 2,21, ¢ s Zpy— -P 1, 2,21 0 n—
u () = Ont, 2,4 ) Ptz 5 Zn-1) _ . (0) (3.33)
Jn@)
(see (3.13) and (3.14) for the definitions of u,,(f) and v,,(?)).
Clearly, y,, is the unique solution of the initial value problem (3.31),
Y0)=0,0=i=n-2,
('l 1)(0) =, (3.34)
Since
YO = NPty Y Y = s Vo) = Colls Y Y+ 55V )]
=0,
we have y”~Y is nonincreasing and hence
(n=1Drn — (n—1) —
Ym D=y, O)=v,1€][0,1] (3.35)

Using the initial conditions (3.34) and (3.35), we find for ¢ € [0, 1],



416 P. WONG AND R. AGARWAL

YD) = f Y (s)ds < f ; vds = vt.

This in turn leads to

Yoo ) = f Y- D(s)ds < f vsds = 2,, t€ [0, 1].

Continuing the process we obtain for ¢t € [0, 1],

n—1 v
I =V =S C (3.36)

Now, from (3.31), (3.33) and (3.36) we get for ¢t € [0, 1],

Nt (0) < =Y0U8) < N, (D, ( Y ) (3.37)
n—1!

An integration of (3.37) from O to ¢ provides

&, =YV = dy(0), t € [0, 1], (3.38)
where
30 = v =Ny () J vatords,
and

by(H) = v — \,.f,(0) f; u,(s)ds.

Again, we integrate (3.38) from 0 to 7, and subsequently change the order of integration,
to obtain

da(1) = Yo = b0, t €10, 1], (3.39)

where

bs(0) = vt = Moo (G20) S = swaoras,

and

bu(t) = vt — N, £.(0) f (= Sy (s)ds.
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From inequality (3.39), in order to have yﬁ,’,’_z)(l) = 0 (see (3.32)), it is necessary that

d3(1) =0, and oy (1)=0,

or equivalently,

-1
A = a0V, [fm <(n - 1)')] : (3.40)

and

A = a(u,)v [£,(0)] 7. (3.41)

A combination of (3.40) and (3.41) yields

-1
aw, v [fm <(n Y 1)!)] =\, = atu,)v [0 (3.42)

It follows from (3.38) that { yﬁ,’,"“};=l is a uniformly bounded sequence on [0, 1]. Using
the initial conditions (3.34) and repeated integrations, we find that {y"}>_,,0 = i =

m
n — 1is a uniformly bounded sequence. Thus, there exists a subsequence, which can be

x

relabelled as {y,,};_,, that converges uniformly (in fact, in C"~"-norm) to some y on [0,
1]. We note that each y,,(f) can be expressed as

1 ’ _
Iul® =\, f o 8t S, Y Yt + 2 ”
= P8, Yy Yo - Y D)ds, t € [0, 11. (3.43)

Since {\,,} is a bounded sequence (from (3.42)), there is a subsequence, which can be
relabelled as {\,,}, that converges to some \. Then, letting m — « in (3.43) yields

1
y0 = [ gt 9106, .y - -y
- P(S, Y, y"' ) y("_l))]ds, te [0, 1]

This means that y is an eigenfunction of (1.1)-(1.4) corresponding to the eigenvalue A.
Further, y"~(0) = v, and inequality (3.20) follows from (3.42) immediately.

(b) Here, the boundary conditions (1.2)—(1.4) reduce to

y20)=0,0=<i=<n-2,
W2 + 8" V(1) = 0.
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Using a similar technique as in case (a), for a fixed m we let \,, be an eigenvalue and

Yo With Y2~ (0) = v, be a corresponding eigenfunction of the boundary value problem
(3.31),

YW =0,0=<i=n-2,
44
P W)+ 8y W) =0 G4

It is obvious that the eigenfunction y,, is the unique solution of the initial value problem
(3.31), (3.34). As before we get the inequalities (3.38) and (3.39).
If v = 0, then

vbs(t) + 3b, () = vy 2 (1) + Sy TV (1) = v, (1) + 3y (D). (3.45)
If v < 0, then (3.38) and (3.39) lead to
() + 8, (1) = vy (1) + YV (1) = vy (1) + db,(1). (3.46)

Since y,, satisfies yy" 2 (1) + 3y" D (1) = 0 (from (3.44)), in inequality (3.45) it is
necessary that

vYb3(1) + 3d;(1) =0, and vyb,(1) + d3dy(1) =0,

which provide

-1
by + B) [fm <(n . )] = A = by + O, 017,y =0.
(3.47)
Likewise, in inequality (3.46) we must have
Yb4(1) + 3d (1) =0, and yds(1) + 8d,(1) =0,
which give
0 L +dN=\N= ; 0
c um’ vm’fm’ ’ (n _ l)' V('Y ) - Mm = 4 vm’ um’fm’ (n _ 1)|’

X v(y +9),y <0. (3.48)

Using a similar argument as in case (a), we get y,, converges to y (satisfying (3.19)), \,,,
converges to \, and y is a eigenfunction of (1.1)—(1.4) corresponding to the eigenvalue \.
Further, inequalities (3.22) and (3.24) follow from (3.47) and (3.48), respectively.
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(c) In this case, the boundary conditions (1.2)—(1.4) become
Y(0)=0,0=i=n-3,
YR =
ay™"(0) — By""(0) = 0

For a fixed m, let \,, be an eigenvalue and y,,, with y(" 20) = p, y(" Vo) =
v,oau = PBv, be a corresponding eigenfunction of the boundary value problem (3.31),

YW =0,0=<i=n-3,
(n 2) (1) _

ay, 2 (0) — By(” YO=0

349

Clearly, the eigenfunction y,, is the unique solution of the differential equation (3.31),
together with the initial conditions

YWy =0,0=i=n-3,

(n 2)
= (3.50)

mle—v

As in case (a), we see that y(" Dis nonincreasing and hence (3.35) holds. In view of the
initial conditions (3.50) and (3.35), we find

“”m—y+fy““mm5y+ﬁhm=y+wJewJL

It follows that
2
Y3 () = .WzNgas "+ vs)ds = ut + vh r € [0, 1.
0 20

Continuing the process we obtain for ¢ € [0, 1],

72 7! u v
+v = + .
(n—2)! =1 =2 @m—D

YD) = 3.51)

Now, it follows from (3.31), (3.33) and (3.51) that for ¢ € [0, 1],

) H v
Nt (O (0) = =y (O = N, (D, ( =) + =D !>. (3.52)
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An integration of (3.52) from O to ¢ gives

bs(1) = Y7V (1) = ), t € [0, 1], (3.53)

where

bs() =v — N\, f, ((n £ 2)! + n - 1)!) f(: V(8)ds,

and
t
b =v — N\, f,,(0) f o u,,(s)ds.
Once again, we integrate (3.53) from O to ¢, to get

(1) = Y72 (1) = dby(0), t € [0, 1], (3.54)

where

&0 =p+vi =N (G Aot 1) f; (t = $)v,(s)ds,
and
by(t) = p + vi — N, £, (0) f (= S (s)ds.

Since y,, satisfies the boundary condition yf,'l'_z) (1) = 0 (see (3.49)), in inequality (3.54)
we must have

$,(1) =0, and (1) =0,

or equivalently,

u v -
A = a(V,) (u + V) [fm <(n_ TR 1),>] , (3.55)

and

N, = au,) (u + V[ £,0)]". (3.56)

Again, using a similar argument as in case (a), we find that y,, converges to y (satisfying
(3.26)), \,, converges to \, and y is a eigenfunction of (1.1)-(1.4) corresponding to the
eigenvalue . Further, inequality (3.27) follows immediately from (3.55) and (3.56). (d)



BOUNDARY VALUE PROBLEMS 421

For a fixed m, let \,, be an eigenvalue and y,,, with Y20) = 1, y"V0) = v,au =

m m

Bv, be a corresponding eigenfunction of the boundary value problem (3.31),
YW©0)=0,0=i=<n-3,
a2 (0) = By, (0 =0,
Y (D) + 8y (1) =0.

It is obvious that the eigenfunction y,, is the unique solution of the initial value problem
(3.31), (3.50). As in case (c), we get the inequalities (3.53) and (3.54) which lead to

(1) + dbs(®) = vy P () + STV (1) = yby(r) + ddg(D), Yy =0,  (3.57)
and

vbg(t) + 3bs(H) = v 2 (1) + &IV (1) = yby(1) + ddbe(r), y <0.  (3.58)

Since y,, satisfies the boundary condition yyf,’,’_z) ) + Syf,',"” (1) = 0, in inequality
(3.57) it is necessary that

Yo,(1) + 3bs(1) =0, and ydg(1) + ddg(1) =0,

which reduce to

-1
u v
o v+ v+ o0 |1, (Lo 2 )|
=\, = b(u,) [y(u + v) + V][, O],y = 0. (3.59)
Likewise, in inequality (3.58) we must have
Ybg(1) + 3ds(1) =0, and yb,(1) + ddg(1) =0,

which provide

g4
n—2) (n

c (um, Vo fn 0 fl),> (¥ + v) + 8v]

u
(n—

S}\,,,Sc‘(\’m, um9fma 2)' +(n-1]1)|’0> [‘y(/,l+v)+8v],

v <O0. (3.60)
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Once again, using a similar argument as in case (a), we find that y,, converges to y
(satisfying (3.26)), \,,, converges to \, and y is a eigenfunction of (1.1)—(1.4) correspond-
ing to the eigenvalue \. Further, inequalities (3.28) and (3.29) follow immediately from
(3.59) and (3.60) respectively.

TueoreM 3.4. Let N\ be an eigenvalue of (1.1)~(1.4) and y € C be a corresponding
eigenfunction. Further, let n = |ly|. Then,

-1
A= % {f<(n = 2)!) fol B+ a9 +vyd - S)]V(S)dS} : 3.61)

Also, there exists a ¢ > 0 such that

ne Ve Y -1
A Sﬂc_'n) {J"/‘ (8 + i) B+ as)u(s)ds} . (3.62)

Proof. We observe that y™ is nonpositive and hence y""~2 is concave on [0, 1]. This,

together with the fact that y""~ is nonnegative, implies the existence of a unique 7, € (0,
1) such that

n =yl =y
To prove that (3.61) holds, we use (3.12), Lemma 2.2, (3.2) and (2.1) sucessively, to get
n ="t = A" (1)

1
=\ f o G(ty, S)vV(s) f (¥(s))ds

=\L f 01 G(s, s)v(s) f (¥(s))ds

=\ fol G(s, s)v(s)f ((_11:]—2)') ds

_ AL mn 1
= f<m> I1 @ + as)s + 31 = v

The inequality (3.61) now follows immediately.
Next, to prove (3.62) we shall consider four cases.
Casel 3=B=0,y=a=1
Here, y"~2(0) = y"~2(1) = 0. By the concavity of y"~?, we find

tnt, t € [0, ]
0= ’
—— (1 =1, E [t 1]
1 - to

=yl — 1), t € [0, 1]. (3.63)
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Thus, on using (1.2) and (3.63) we get for t € [0, 1],

Y* ) = J' Y (s)ds = f ns(1 — s)ds = 7 (_ _r

Continuing the integration process we obtain

y®&) = ¥(@), t €0, 1], (3.64)
where
B tn-—l _ 2 ﬂ
v = n—1D! “ar

We note that

S A L2
YO =T n—1

n—1

is nonnegative for t € 1 = [O, ] Hence, in particular {s(¢) is nondecreasing for

11
teJ = [Z, 5] C I. It follows from (3.64) that

yt)=cn, t € J, (3.65)
where
O o O B (3.66)
A VY e RbTHES :

Now, in view of (3.12), (3.65) and (2.1), we find

=) -or )

=\ f 0‘ G (% s> () ((s))ds
=\ f <2, S> u(s)f (y(s))ds
=\ f < ) u(s)f (cm)ds

= —f (em) 1//4 <8 1) (B + as)u(s)ds
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from which (3.62) follows immediately.

Case2 8>0,=0
In this case, y"~2(0) = 0, y"~2(1) # 0. Hence, for t € [0, 1],

Y20 = y" P 1= y"P(1) 11 - o). (3.67)

Using a similar technique as in Case 1, it follows from (3.67) and successive
integrations that

y(1) = y" (1) ¥(2), t € [0, 1]. (3.68)

This leads to (3.65), where

(n—2)
yo o) 1 2
= - |>o. 6
‘T [4"‘1(;1— o w70 (3.69)

The rest of the proof is similar to that of Case 1.

Case3 8=0,B>0
In this case, y"~2(0) # 0, y"~2(1) = 0. Thus, for ¢ € [0, 1],

R GRS ON N ES L O R CE)) (3.70)

Again, as in Case 1 it follows from (3.70) and successive integrations that

y(1) = y"2(0) (1), t € [0, 1]. 3.71)

Inequality (3.71) implies (3.65), where

PO ! _ 2 0s0 (3.72)
T e |7 ‘

The rest of the proof is similar to that of Case 1.

Case4 3>0,B>0
Here, y"~2(0) # 0, y"~2(1) # 0. Let

m = min{y"~?(0), y""2(1)}.

Then,

YD) = m = m(1 — 1), 1 € [0, 1]. (3.73)
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Once again, it follows from (3.73) and successive integrations that

y®& =m (@), 1 € [0, 1],

which in turn leads to inequality (3.65), where

_m 1 B 2 -0
TRl m o A ‘

The rest of the proof is similar to that of Case 1.
This completes the proof of the theorem.

THeOREM 3.5. Let

fl f_ is bounded for u € [0, oo)}

{ hm— = O}

F, =1 f|lim —

. = im— =0\,
)

(a) If f € Fpg, then E = (0, c) or (0, c] for some ¢ € (0, »).
(b) If f € F,, then E = (0, c] for some c € (0, ).
(c) Iff € F,, then E = (0, ).

Proof. (a) This is immediate from (3.62).
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(3.74)

(3.75)

(b) Since F,, C Fj, it follows from case (a) that E = (0, ¢) or (0, c] for some ¢ €(0, =).

In particular,

c=supkE.

(3.76)

Let {\,,},,—; be a monotonically increasing sequence in E which converges to c, and let

{¥n}m=1 in C be a corresponding sequence of eigenfunctions. Further, let ,,, =

[l,/|- Then,

(3.61) implies that no subsequence of {m,,},—, can diverge to infinity. Thus, there exists
M > 0 such that v, = M for all m. In view of (3.2), we find that y,, is uniformly bounded.
Hence, there is a subsequence of {y,}, relabelled as the original sequence, which

converges uniformly to some y € C.
Noting that A,,Sy,, = y,,, we have
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cSy, = Xc— Yo (.77

m

Since {cSy,,} -, is relatively compact, y,, converges to y and \,, converges to c, it follows
from (3.77) that

cSy =y,

i.e., ¢ € E. This completes the proof for case (b).
(c) This follows from Corollary 3.1 and (3.61).

Example 3.1. Consider the boundary value problem

¥+ {¢<r ¥, y) + x } o +5y
e (7 —t— 1)+ 57

=MLY, Y) ¢ +5), 1€ (0, 1),
¥(0) =0,
-2y'(0) — 7y"(0) = 0,
14y'(1) +y"(1) = 0,

where A > 0,0 = r < 1, and &(¢, y, y') is any function of ¢, y and y'.
Taking f (y) = (y + 5)", we find

oy, y) _ , 2t
R T e
and
P, y,y,y") ,
) =, y, ).

Hence, we may take

t
q() = o, y,y) + —1-P+5

2t
[#7 —t— )+ 5]

q, () = &t y,y) +

and
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Since f € F.., by Theorem 3.5(c) the set E = (0, *). As an example when A = 12, the
boundary value problem has a positive solution given by y(r) = #7 — t — ).

Example 3.2. Consider the boundary value problem

YA {d)(t, y+ } O +3)=r(t,y) 0 +3), €O, D),

[t1 — 0+ 57
¥(0) —2y'(0) = 0,

y() +2y'(1) =0,

where A >0,0 = r<3 / 2, and &(t, y) is any function of ¢ and y.
Taking f(y) = (y + 3)’, we find

oty 1
R T Tk
and
P(t,y,y) _
) o, y).

Hence, we may choose

q®) = &, y) + q,(H) = &, y) +

2[t(1 — 1) + 51" [ta1 -0 +51"

and

p(0) = pi(1) = &, y).
Casel 0=r<1

Since f € F., by Theorem 3.5(c) the set E = (0, ). For example when A = 2, the
boundary value problem has a positive solution given by y(f) = (1 — ) + 2.

Case2 r=1
Since f € Fg, by Theorem 3.5(a) the set E is an open or half-closed interval. Further,

we note from Case 1 and Theorem 3.2 that E contains the interval (0, 2].
Case 3 1<r< %

Since f € F,,, by Theorem 3.5(b) the set E is a half-closed interval. Again, it is noted
that (0, 2] C E.
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4. SPECIAL CASE: A\ = 1
THEOREM 4.1.  Suppose that (A1)-(AS) hold. Then, (1.1)~(1.4) has a positive solution.

Proof. To obtain a positive solution of (1.1)-(1.4), we shall seek a fixed point of the
operator S (defined in (3.8)) in the cone C. We have seen that S is compact on the cone
C. Further, we observe from the proof of Theorem 3.1 that S maps C into itself. Also, the
standard arguments yield that S is completely continuous.

Case 1 Suppose that f'is superlinear. Since f;, = 0, we may choose a, > 0 such that f ()
= € u for 0 < u = a,, where € > 0 satisfies

2) ' f G(s, s)v(s)ds = 1. “.1)

= a,(n — 2)!. Then, from (3.2) we have |y(t)| < a,, t € [0, 1].
Hence, applying (3.12), Lemma 2.2, (3.2) and (4.1) successively gives for ¢ € [0, 1],

920 = [ 6 ws)f os)ds
1
=L fo G(s, s)v(s)f (y(s))ds
= Le f 01 G(s, s)v(s)y(s)ds
1
=Le fo G(s, s)v(s) ﬁ,— [vllds =< |lyl-

Consequently,

[ISY = [I¥ll (4.2)

If we set

Q, = {y €B||py| < ayn -2},

then (4.2) holds for y € C N 91},.

Next, since f,. = %, we may choose a, > 0 such that flu) = Mu for u = a,, where M
> 0 satisfies

4-,;%(”1”_—2)! 76 (4 s) usras= 1. (4.3)

Let

4" -2 _
a, =max {2a\(n — )\, ———a, ¢,

3
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and let y € C be such that |ly|| = a,. Then, from (3.6) we have

- € Y7 -2 13
[vll = %0 — 2)1 £ G=a5t€ [2, 4]-

T Y

Hence, f(y(f)) = My(t) for t € [%, %]. In view of (3.12), (3.6) and (4.3), we find

1 1
Sy (5) =['c (5, s) u(s)f (/(s))ds

%4 1
= v G (f’ s) u(s)f (y(s))ds
%

=M G (%, s) u(s)y(s)ds

Ya

Y% 1 g
=Mj G (z’ S) uS) =2, = 21 P ds = D]

Therefore,

lisyll = Il 44)

If we set

0, = {y€€B|hll<ay},

then (4.4) holds for y € C N 9Q),.

In_view of (4.2) and (4.4), it follows from Theorem 2.1 that S has a fixed point y € C
N (Q,\,), such that

ay(n — 2! =|p| = a,.

This y is a positive solution of (1.1)-(1.4).

Case 2 Suppose that f is sublinear. Since f, = %, there exists a; > 0 such that f{u) = Mu
for O < u = a3, where M > O satisfies

_ " )
Zn—_'z(g—’jw_—z)‘i '/: G (E’ s) u(s)ds = 1. 4.5)

Let y € C be such that |[y| = a;(n — 2)!. Then, from (3.2) we have |[y(t)| < a5, t € [0, 1].
Hence, on using (3.12), (3.6) and (4.5) successively, we get
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1 1
(Sy)™? (5) > f 01 G (7, s) u(s)f (v(s))ds
% 1
> fl , G (5, s) u(s)f (y(s))ds

— (% 1
=M f% G <§, s) u(s)y(s)ds

— % 1 £
=M fvz G (i’ s) u(s) T Ivll ds = ||y]l-

from which the inequality (4.4) follows immediately. If we set

Q= {y €B| | <astn -},

then (4.4) holds fory € C N 41},.

Next, in view of f,. = 0, we may choose d, > 0 such that {u) < & u for u = a,, where
€ > 0 satisfies

Le 1
(11——2)—! fo G(s, s)v(s)ds = 1. 4.6)

There are two cases to consider, namely, f is bounded and f is unbounded.

Case (i) Suppose that f is bounded, i.e., iu) = R, u € [0, ) for some R > 0. Let

_ \ LR 1
a, = max {2a3(n - 2)!, w=2 fo G(s, s)v(s)ds},

and let y € C be such that |ly|| = a,(n — 2)!. For ¢ € [0, 1], from (3.12) and Lemma 2.2,
we find

920 = [ 6. s s)ds
=R fol G(t, s)v(s)ds

1
=<ILR fo G(s, s)v(s)ds
=a,n—2)! = |p|\
Hence, (4.2) holds.

Case (ii) Suppose that f is unbounded, i.e., there exists

a, > max {2a;(n — 2)!, a,},
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such that flu) < fla,) for 0 <u < a,. Let y € C be such that |[y|| = a, (n — 2)!. Then, from
(3.2) we have |y(®)| < a,, t € [0, 1]. Hence, applying (3.12), Lemma 2.2 and (4.6)
successively gives for ¢ € [0, 1],

920 = [ 6, s (s
1
=L fo G(s, s)v(s)f (y(s))ds
=L f 01 G(s, s)v(s)f (as)ds
=L fol G(s, s)v(s)€ a, ds

= a,(n = 2! = ||

from which (4.2) follows immediately.
In both Cases (i) and (ii), if we set

Q, = {y €B| || < ayn— 2},

then (4.2) holds for y € C N 9Q2,.
Now that we have obtained (4.4) and (4.2), it follows from Theorem 2.1 that § has a
fixed point y € C N (2,\(2,), such that

as(n — D! = |y = ay(n — 2)!.

This y is a positive solution of (1.1)—(1.4).
The proof of the theorem is complete.
The following two examples illustrate Theorem 4.1.

Example 4.1. Consider the boundary value problem

YO+ 106y, ¥,y + “ O +1y
A [FO—-t—7A) + 11

=¢ty,y,y) )+ 1D, t€(O,1),
y(0) = y'(0) = y"(1) = 0,

-y"(0) — 3y?(0) = 0,

3
where 0 = r< 2 and ¢(t, y, ¥', y") is any function of ¢, y, ¥' and y".
Taking f(y) = (y + 1)” (which is sublinear), we find



432 P. WONG AND R. AGARWAL

0@,y y") _ . 24
and
P(t’ y’ y" y"’ y(a)) — { "
ﬂ'y) ¢(t5 y5y5y )'

Hence, we may choose

q(t) = ¢(ts y’ y" y") + [t2(9 — = tZ) + l]r’

24
Q) =&Y+ BT T AT

and
p(®) = pi(1) = &, 5, ¥, y".

All the conditions of Theorem 4.1 are fulfilled and therefore the boundary value problem
has a positive solution. One such solution is given by y(t) = (9 — t — £%).

Example 4.2. Consider the boundary value problem
"+ {0y + o1 + ) =dt,y) y+7)V,t€(0,1)
y R — o =6ty O ; > 1),

—y(0) — 3y'(0) =0,

4y(1) +y'(1) =0,

4
where 0 = r< 5, r # 1, and (¢, y) is any function of ¢ and y.

Taking f (y) = (y + 7)" (which is superlinear if » > 1, and sublinear if r < 1), we find

oy _ 61
RS T T &

and
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P(t,y,y")

) = &(t, y).

Hence, we may take

q(t) = (b(ts }’) + r ql(t) = ¢'(t’ }’) +

t t
(10—t —P) (10—t — 1)’

and

p@®) = pi(D) = o1, ).

Again, all the conditions of Theorem 4.1 are satisfied and so the boundary value problem
has a positive solution. Indeed, y(t) = 3 — ¢t — £ is one such solution.
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