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We consider the general linear programming problem over the cone of positive semi-definite matrices. We first
provide a simple sufficient condition for existence of optimal solutions and absence of a duality gap without
requiring existence of a strictly feasible solution. We then simply characterize the analogues of the standard
concepts of linear programming, i.e., extreme points, basis, reduced cost, degeneracy, pivoting step as well as
a Simplex-like algorithm.
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1. INTRODUCTION

Optimization with positive semi-definite matrices has been investigated by several
researchers in the last twenty years (e.g. [7]) with many applications, particularly in
Control Theory (see [2]). It seems generally admitted that the interior points methods
originated by Nesterov and Nemirovskii (see [12]) are particularly efficient compared to
gradient-type or cutting-planes-type methods like [8]. However, surprisingly enough, we
are not aware of any Simplex-like algorithm, and to our knowledge, the analogues of the
standard notions of basic solution, basis, reduced-cost, and degeneracy in standard Linear
Programming (LP) have not been investigated.

Our contribution in this paper is to provide:

¢ a simple sufficient condition for absence of a duality gap between the primal and dual
problems. It is not of the Slater-type for it does not require knowledge of a strictly
feasible point as in [2], [12], which can be difficult in many problems.

e As in standard LP, a simple characterization of the extreme points (or basic solutions),
as well as the analogues of reduced cost, basis of a basic solution, and degenerate basic
solutions. Those concepts bring some insight into the structure of the extreme points.
In particular, the number of zero-eigenvalues of a feasible solution is crucial in
characterizing a basic solution as well as degeneracy, pretty much like the number of
zeros in a feasible solution in standard LP. The reduced cost also provides a means to
check optimality as in standard LP.

*A shortened incomplete version has been presented at the 34th IEEE CDC conference in New Orleans.
"Email: lasserre @laas.fr
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e a sufficient condition as well as a necessary and sufficient condition of optimality of a
primal feasible solution. In many cases, those conditions are also easy to check via a
simple traditional linear programming problem.

¢ a Simplex-like algorithm

so that all the basic concepts in standard LP have their analogues in positive
semi-definite programming.

2. NOTATION AND PRELIMINARIES

We introduce the following notation:

e X: the vector space (= RVV+D2

e Y: (= X) its dual.
o (.,.): the usual duality bracket

) of (N, N) symmetric real-matrices.

(x, y) = trace(x-y) V(x,y) E X X Y,

where x-y stands for the usual matrix multiplication (x and y being now considered as
matrices with N? elements).

Z: the vector space (= RM™M*172) of (M, M) symmetric real-matrices.

Iy, I: the identity matrices in X and Z respectively.

P: the (closed) positive cone in X of semi-definite positive matrices.

“>”: the partial ordering in X (same notation in Z) where x > y & x — y € P.
{p(x)}: the r normalized zero-eigenvectors of x € X.

P(x): the (N, r)-matrix whose columns are the r vectors {p,(x)}. P(x) = 0if x € X is
not singular.

e R(x): the eigenprojection matrix associated to the zero-eigenvalue of x € X. R(x): =

> P (X)pr(x). R(x) = 0 if x € X is not singular.
i=
e O(x): the matrix whose columns are the eigenvectors associated with the positive
eigenvalues of x € X.
e |lx|*: the norm of x € X, derived from the scalar product {x, x). Equipped with this
norm, (X, ||.|) is a Hilbert space.
e n,m n. = NN+ /2, m: = MM+ 1)/2.

Thus, in the sequel, when x € X appears with a dot “.” in a multiplication it should be
understood as an (N, N) matrix and not a N(N + 1)/2 vector (the same applies for v € Z).
For some given ¢ € X and b € Z, consider the following linear programming problem

sup(c, x)
IP { Bx <
>

X

b 1)
0
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and its dual

inf(b, u)
IP* § B*u =
P

u

c 03]
0
where B*: Z — X is the adjoint linear mapping defined as

(B*y,x): = (y,Bx)x E X,y E Z

A Lyapunov inequality A”-x + x-A <0, or a Riccati-type matrix inequality A”.x + x.A +
x.CR™' CT.x + Q <0 that can be represented as

ATx+xA | x.C -0l o0

- — | =<| - |-

c"'x | o 0 | R

are examples of such operators B. For instance, if Bx stands for A”.x + x.A then B* y
stands for A.y + y.AT. In our context, since the spaces X, Z are R” and R™ we consider the
usual topology.

IP is said to be consistent if it has a feasible solution. It is said to have finite value if
its optimal value is finite.

In case where b is diagonal and Bx is diagonal when x is constrained to be diagonal, i.e.,
the constraint x >0 becomes x = 0, then IP (and therefore IP*) reduces to a standard LP
problem. We will then show that the notions derived in the sequel reduce to the usual ones
in standard LP.

3. LINEAR PROGRAMMING

In contrast to standard LP, several issues such as solvability, absence of duality gap and
strong duality are not always trivial and must be investigated. Indeed, the cone of positive
semi-definite matrices is not polyhedral, and thus the celebrated Farkas Lemma is true
only under some closedness assumption (automatically satisfied when the cone is
polyhedral) [4], [3], [6] (see [11] for a new Farkas Lemma without this closedness
assumption). In this section, we provide a simple sufficient condition for solvability of
both IP and IP* as well as absence of a duality gap.

We also provide a simple characterization of basic solutions and optimal solutions.
Moreover, we simply derive the analogues of the reduced-cost as well as the basis of an
extreme point (or basic solution) so that all the basic concepts of standard LP have their
analogues in positive semi-definite programming.
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3.1. Existence of Optimal Solutions

Conditions for existence of optimal solutions as well as absence of a duality gap between
IP and IP* have been given in [2], [12]. They are of the Slater-type, i.e., they require
knowledge of a strictly feasible point x in IP or y in IP*. However, note that the
interior-point conditions in [2] are a special case of Theorem 3.13 in [1]. In some
applications, checking this strictly feasibility condition may be as difficult as solving the
original problem.

We exhibit a simple sufficient condition, namely ¢ > 0 and IP consistent with finite
value (not necessarily strictly feasible) that guarantees solvability of IP as well as absence
of a duality gap. This condition is easier to check in practice, and arises in many examples
from Control Theory.

THEOREM 3.1. Assume that ¢ > 0 and IP is consistent with finite value. Then, IP is
solvable and there is no duality gap.

Proof. By using notation from [1] we define the set

D: = {(Bx + z,{c, x))

x, z = 0}

Assume that for a sequence {x,, z,},, the sequence {(Bx, + z,, {c, x,,))} converges to some
d, a), i.e.,

Bx, + z, > d, and {c, x,) > a
Since ¢ > 0, ¢ > aly for some positive scalar a so that for x >0,
(¢, x) = aly, x) = ax|

This because (Iy, x) = trace(x) and

Therefore,

(¢, x,) > a= o|x,|| =2a

for n large enough. Thus, for n large enough the sequence {x,} is in a compact set.
Therefore Bx,, — Bx for some subsequence and thus, z, — z: = b — Bx for that same
subsequence. Since the positive cones in X and Z are closed, x, z = 0. Moreover, {c, x,,)
— (¢, x) = a for the same subsequence. Hence, D is closed. Now, since IP is consistent
with finite value, from Theorem 3.22 in [1], IP is solvable and there is no duality gap.[]

Remark 3.1: A sufficient condition for /P to have a finite value is e.g. to assume that /P*
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is consistent, i.e. has a (not necessarily strict) feasible solution. One may note that “c >
0 and IP* consistent” is also a sufficient condition for absence of a duality gap since it
implies that JP* is strictly feasible (by a careful use of two theorems of the alternative).
However, the optimal value may be —o if IP is not feasible. Thus, ¢ > 0 and feasibility

(not necessarily strict) of both programs ensures absence of a duality gap and solvability
of IP.

3.2. Basic Solutions

What is a basic feasible solution in IP? Let us transform the inequality program IP into
an equality program EP by adding a slack matrix variable z € Z, z > 0 so that Bx > b
& Bx + z = b o T(x, z) = b. The criterion becomes {c, x) + (0, z) and IP and IP* are
now the linear programs

sup(c, x) inf(b, u)
EP{Bx+z =b andEP*{B*u—w =c¢
X, 2 =0 u, w =0

Remark 3.2: Remember that B is an operator, not necessarily in matrix notation. For
instance if Bx stands for A”.x + x.A (where x is understood now as a square symmetric (N,
N) matrix), then in matrix-vector notation, Bx + z: = Sx + z where § is some matrix and
x and z are vectors in X and Z. Similarly, given some matrix R(x), the constraint u.R(x) =
0 can be written R'(x)u in matrix-vector notation, for some appropriate matrix R'(x).

For any feasible solution (x, z) to EP let

D(x,2): = {(u,v) EX X Z|AN >0, (x,2) = Nu, v) = 0,} 3)

and let N(T) be the null space of 7, i.e.,
N(T): = {(u,v) € X X Z| Bu + v = 0}. @)
Then, by definition, (x, z) is a basic feasible solution if and only if

D(x, z) N N(T) = {0}. (5)

ProrositioN 3.2.  If EP is solvable then there exists an optimal basic solution.
This is because V(x, z) € X X Z, D(x, z) N N(T) is always of finite dimension (see e.g.
(D).

3.3. Characterization of a Basic Solution

It is clear that if x and z have no zero eigenvalue then (x, z) is not an extremal point since
it is always possible to find a vector (u, v) such that
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Bu+v=0;(x2 = \Nuv)=0

for \ sufficiently small. Therefore, necessarily, if (x, z) is a basic solution, then x and/or
z have at least one zero eigenvalue.

THeOREM 3.3. X is a basic solution if and only if

Bu+v=0,uRx) =0,vR@) =0=v)=(0,0). (6)

Proof. From (), it suffices to prove that

D(x,z): = {(u,v) €EX X Z| u.R(x) = 0, v.R(z) = 0.}
Equation to be placed

Using the Jordan decomposition,

%0 r
x = [Q()|P()] 00 [Q)|P()]
and u is partitioned accordingly, i.e.,

T
11 412

u T
u = [Q)|P(x)] " [Q)|[P(X)T.

12 Un

Then, x = Au >0 for some \ > 0 if and only if u;, = 0 and u,, = 0. But then, u.P(x) =
0, i.e. all the r zero-eigenvectors of x are also zero-eigenvectors of u which in turn implies
u.R(x) = 0 (and similarly v.R(z) = 0).

Conversely, assume that u.R(x) = 0 and v.R(z) = 0. AsR(x) = 2,;1 p,-(x)p,.(x)T, then

uR(X) = 0= uR@)p;(¥) = 0,i =1, - -r=>[3 (up; ®)p;®)]p; (x) = u.p; (x)

j=1

Thus, the p,(x) are still zero-eigenvectors of x + pu for any scalar p and, by continuity, the
positive eigenvalues of x + pu are still positive provided p is small enough, which implies
x = pu =0 for p > 0 and small enough. The proof is similar for z + pv.[]

Note that this condition is easily verified via checking a rank condition.

Analogy with standard LP. To check the meaning of the characterization (6) in standard
LP, assume that in EP, Bx and b are diagonal matrices when x and z are constrained to be
diagonal matrices so that the constraints x, z 20 reduce to x, z = 0. Let x', z' and b' be now
vectors in RV, R™ and RM that identify the diagonal elements of x, z and b. The constraint
Bx + z = breduce to Hx' + 7' = b' for some (M, M + N)-matrix H (see Remark 3.2). Also,
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the scalar product {c, x) can be written ¢'7 x' for some suitable vector ¢'. Therefore, the
linear program {sup(c, x)| Bx + z = b| x, z >0} reads now

{max ¢” x| Hx' + 7 = b'; x', 7 = 0}. @)

x being diagonal, its zero-eigenvalues correspond to its zero diagonal elements. Therefore,
its eigenprojection matrix R(x) is diagonal. All the entries are zero except the diagonal
elements (equal to 1) corresponding to the zero diagonal elements of x. The same is true
for z. For instance,

x000 0000
0000 ) 0100
x = 0000 , with x;x, > 0 = R(x) = 0010
000x, 0000

Hence, the constraint u.R(x) = 0 amounts to set some columns of u at zero, and similarly
for v.R(z). In the above example the second and third columns of u must be zero. In
addition, to keep the constraint x, z = 0 always valid, the feasible directions (u, v) must
also be diagonal matrices, so that finally, u.R(x) = 0 and v.R(z) = O reduce to x; > 0 = u;
= 0 and z; > 0 = v; = 0. Therefore, the characterization of a basic solution (x, z) in (6)
reduces to

Hu' +v =0,u;=0ifx,=0,v,=0ifz;, = 0= (', V') = (0, 0) )
(where u' and V' are vectors of same dimension as x' and z').
Sinceu; = Oifx; = Oandv; = 0ifz; = Odescribe D(x', '), i.e., the set of directions (u',
v') that preserve nonnegativity of (x', z') = A(u', V') the above relation simply means that
(x', ) is an extreme point.

3.4. Reduced-Cost and Basis of a Basic Solution

Let (x, z) be a basic solution of EP and let S(x, z): = D(x, z) + N(T). In matrix-vector
notation, (6) is equivalent to
u
M(x, 2) [ ] =0
v

with the matrix M(x, z) being the matrix of the system

Su+v=0:Rxu=0;REv=0.

(see Remark 3.2).

Prorposition 3.4. At a basic solution (x, z), for any (y, w) € S(x, 2), the system
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Bu+v =By+w
uRx) =0
VR(z) =0

or equivalently, in matrix notation,

I(y, w)
u
M(x, 2) [v] = 0

has a unique solution (u, v). M(x, z) is called the matrix of the basis at (x, z).

Let T, be the linear operator on S(x, z) that maps (y, w) to the unique solution (u, v),
ie. w,v) =T, @, w). The vectorm € X X Z, w: = (I — T,,)* (c, 0) is the reduced cost
at (x, 2), i.e., (x, 2) is optimal if and only if {m, (y, w)) = 0 for all (y, w) =0 in S(x, 2), i.e.,
—1r is a nonnegative linear functional on S(x, 7).

Proof. We proceed as in [1]. Let (y, w) € S(x, 2), i.e., (;, w): = (¥, wy) + V2, W), (15
wy) € D(x, z) and (y,, w,) € N(T). Then, since (x, z) is basic, from (2), we conclude that
(y;, wy) is the unique solution in D(x, z) to Bu + v = By + w. Thus, (x, z) is the unique
solution of M(x, z)(u, v) = [b, 0, 017 which singles out M(x, z) as the matrix of the basis
at (x, z). Let us see how the change in cost can be expressed when moving to another
solution.

Let D'(x, z) be any direct complement of D(x, z) in S(x, z) and consider any other feasible
solution (x, z) + (', ).

(x', 2) € N(T), so that (x', Z') € S(x, z) and can be written (x;, z;) + (x5, Z,) with (x,,
21) € D(x, 2) and (x,, y,) € D'(x, z). Moreover, Bx; + z; = —Bx, — z,. Thus, by definition
of D(x, 7), (x;, 2;) is the unique solution in D(x, z) to

Bu+v = —Bx, — 2,
uRx) =0
vR(z) =0

Let T,: S(x, 2) = D(x, z), with T, (y, w) = (u, v) where M(x, 2)(u, v) = [T(y, w), 0, O].
The change in cost at this other arbitrary solution (x, z) + (x', 2') is

<(C, 0)’ (xly Z’)> = <(C’ 0)9 (x1’ Zl) + (x2a Z2)>
= <(C, 0)’ (I - Tx:)(x2’ Z2)>

= <(1 - TX:)* (C, O)’ (x2’ Z2)>

= (m, (2, 22))
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Note that 7 is defined only on S(x, z). Let us check that 7 has all the properties of a
reduced cost.

Since N(T) is also a direct complement of D(x, z) in S(x, z) if we note P, the projection
on D(x, z) and P, the corresponding projection on N(7) we also have

(I - T, w) =0,(y,w) € D, z) = (m(y,w) = 0.

and thus (m, Pp(y, w)) = 0, (v, w) € S(x, 7). Moreover (just make (x;, z;) = (0, 0)),

{(c, 0), (y, w)) = (m,(y, w)), (0, w) € N(T) = (m, (y, w)) = (m, P(y, w)), (v, w) E S(x, 2).

so that for all (y, w) € S(x, 2),

((c, 0), Py(y, w)) = (Py(c, 0), (v, w)) = (m, Pp(y, w) + Pp(y, w)) = (m, (p, w)) & T
= Pj(c, 0)
For ease of notation, when (x, z) € X X Z, then (x, z7) >0 means x >0, z >=0.
i) Now, suppose that there exists (x', z') € S(x, z), (x', z') =0 such that (mr, (x', z')) > 0. By

definition of D(x, z) there is some A > 0 such that (x, z) — N(xy, z;) =0, (x;, z;) € D(x,
z) and hence,

(x,2) = NMxp,z) + AN, 2) =0

T((x, 2) — N(x;, 2)) + M, 2) =b

Note that (x,, z;) # (¥, Z) since {(w, (x;, z;)) = 0. In addition

(e, 0), (x,2) = Mxy, 77) + Mx', 2)) = {(c, 0), (x, 2)) + M, (x', 2) = (x1,2))
=((c,0), (v, 2)) + Mm, (x', 2))
>{(c, 0), (x, 2))

and (x, z) is not optimal.

ii) On the other hand, suppose that (w, (y, w)) = 0 for all (y, w) € S(x, 2). If (x', Z') is
some other feasible solution, then ((x, z) — (x', Z')) = a € N(T) so that (x, 2) — a =
(x', Z') € S(x, 2). Therefore,

{(c, 0, (x, 2)) = {(c, 0), (x', 2)) = {(c, 0), (x, 2) — (x', )
=((c, 0), P\((x, 2) — (', 2)))
= (PMc, 0), (%, 2) = (¥, 2)



508 J. B. LASSERRE

=(m, (x,2) — (x,2))
=0

where the last inequality follows from (, (x, z)) = 0, and (m, (x, z)) = 0.[]]

Degeneracy. Degeneracy at a basic solution (x, z) occurs when S(x, z) is only a subspace
of X X Z. This situation is the analogue of degeneracy in standard LP where at least one
variable in the basis is equal to zero. This happens when the number of zero-eigenvalues
of x and z is large enough. In this case, u.R(x) = 0 and v.R(z) = 0 impose more conditions
than needed to ensure N(T) N D(x, z) = {0}, i.e., the matrix M(x, z) is not a square
invertible matrix but a rectangular matrix of full rank. In the Appendix, two examples of
degenerate basic solutions are presented.

On the other hand, to be a basic solution, a minimum number of conditions u.R(x) = 0
and/or v.R(z) = 0 are needed to ensure uniqueness of the solution to Bu + v = a.
Therefore, a basic solution necessarily has a certain number of zero-eigenvalues. Still in
the example in the Appendix, Bu + v = 0 is a (10, 16) system with rank 10. u and v are
(3.3) and (4.4)-matrices respectively. At least 6 additional constraints on u and v are
needed for (x, z) to be basic. At a basic solution with x > 0, if z has a simple
zero-eigenvalue, v.R(z) = 0 imposes only 4 constraints so that necessarily z has at least a
double zero-eigenvalue for which v.R(z) = O provides more than 6 constraints which in
turn implies that this basic solution must be degenerate.

Thus, Theorem 3.3 provides some insight into the structure of a basic solution. The
number of zero-eigenvalues of x and z is crucial in the characterization of basic solution
as well as degenerate solutions, pretty much like the number of zeros in a solution in
standard LP.

Analogy with standard LP. Again, consider the case where EP reduces to the standard
linear program (7) At a basic solution (x, z) corresponds an extreme point (x', z') and
u
Bu+v=0;u.Rx)=0;,v.R(z) = 0= (u,v) = 0. i.e., M(x, 2) I: :I =0= (u,v)=0.
1

To the matrix M(x, z) corresponds a (M, p)-matrix M', obtained from [H|I] be selecting the
columns corresponding to positive x',~ and z, M has full rank and is invertible when square,
i.e., M' is the usual basis in standard LP. The case where M’ is a rectangular (M, p)-matrix
with (p < M) is precisely the case of a degenerate vertex (x', z').

At a vertex (x', 7'), D(x', 7') is the set of (u', v') such that

x;=0=>u;=0;z;~=0=>v;-=0

(see (8)). Thus, S(x', 7)) = RM *Nif M is rectangular. For example, concatenate M' with a
(M, M — p)-matrix Q by adding columns of zero x;s and z;s so that B: = [M'|Q] is a square
(M, M)-invertible matrix and
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[H|I] = [M|QINT = [BIN]
B' is then a basis of the degenerate vertex (x', z'). A straightforward calculation yields

Si,2): = (', V) ERMN | [w + BN V], =0,k=

p+1, . M) =R 9)

Computing w. To compute m, just note that

€ TGy, w)
((c,0), T,. (y, w)) = || O
w

where (&, h, ) solves

B*&+ R(x)h =c
E+R@Y =0

with R(x) (resp. R(z)) being the adjoint of the operator u — u.R(x) (resp. v — v.R(z)), so
that  is just (c — B* &, —§). Non-uniqueness of (&, 4, ¥) is irrelevant since {(&, &, ¥), (T(y,
w), 0, 0)) is constant over the solutions to the above system.

Analogy with standard LP.  Again, consider the case where EP reduces to the standard LP

(7). The reduced cost m is the vector (¢ — B* & —§&). At a vertex (x', z'), the above
computation of £ € R yields

EH =c ifx,>0;6=0ifz, >0 & H +v,=c ifx; =0, &+, =0ifz,=0

where H' denotes the column in H corresponding to the variable x,. As before, partition the
matrix [H|I] into [M'|N'] and denote ¢’,;, the vector of components of ¢' for which x; > 0
and O if z; > 0. Let ¢',,, be the vector of the remaining components. Observe that

gTMv — C‘M‘,

or equivalently ¢ = ¢'I,, M'~" in the non-degenerate case. Partition also 1 into [,/
so that

Ty =0y =ch—cip, M'N (10)
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which corresponds to the definition of the reduced cost in standard LP. In this case, S(x,
2) is just RM*N g0 that if —r is a nonnegative linear functional on S(x, z), we retrieve the
test of optimality of a basic solution in standard LP, i.e., c',{, - c‘},f, M™'N = 0.

In the degenerate case in standard LP, M' is rectangular but can be complemented with
columns of zero x;s and z;s until a square invertible matrix is obtained. The reduced cost
r can still be computed in the same manner. But an anti-cycling rule is then necessary for
the cost might remain constant at the next iteration of the Simplex algorithm (see next
section).

3.5. Finding a Feasible Direction of Improvement

Assume that we are at some basic feasible solution (x, z). From what we have just seen,
it suffices to find (x', z') € S(x, 2), (x', z') =0 such that (w, (x', z')) > 0. This is the analogue
of the Simplex criterion to select a nonbasic variable that will enter the basis. Then, there
will be some N > 0 such that

,w)=(x2 — Nxp;,z) + Mx',2) =0

Ty, w): = T((x,2) — Mx, zy) + AMx', 2) = b
Equation to be placed

with (x,, z;) = Pp(x', Z), so that (y, w) is a new feasible solution with strictly better value.
1. At a non-degenerate vertex

In this case S(x, 7) = X X Z. Let w € X X Z, the reduced cost at (x, z), be written (1,
,) with m, € X, m, € Z. Then (x, z) non-optimal implies 7; %0 or m, %0. Thus, say
,, has at least one strictly positive eigenvalue and its Jordan decomposition yields

AlO
m=0| - -~ |0
0]s

for some nonsingular matrix Q and where A # 0 is a diagonal matrix with only
nonnegative entries and S is a diagonal matrix with only negative entries. If we select x'
as

®0

|=Q - . QT
010

with ® any diagonal matrix with positive entries, then (m, (x', 0)) = (m, x) > 0 and thus,
in the direction (u, v): = (x', 0) — Pp(x', 0) one may strictly improve the objective.
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2. At a degenerate vertex

In this case, S(x, z) # X X Z. A simple characterization of S(x, z) is as follows: S(x, z): =
D(x, z) + N(T) so that

[y = utu

w = v+
O, w) € S(x, 2) © 3(uy, vy), (Uy, v,) s.t. Bu,+v, = 0
u.Rx) =0
| WR(z) =0

or in other words

S(x,2): = {(y,w) ENX Z|(&, By + w)y = 0,i = 1,- - -s}.
where the {(§; h;, )}, i = 1,...s, form a basis of the subspace

B*&+ R(x)h =0
E+ R =0

Hence, finding (x', z') € S(x, z) such that (m, (x', z')) = 0 reduces to solve

max{c — B* £, x') — (§, 7)
P| (&, Bx' +2) =0,i=1, - s
0

xv, Zt >
a small dimension problem in general. Again, the direction (i, v) = (x', 2') — Pp(x', Z) is

a feasible direction of improvement. In the program P above, one sees why the
reduced-cost vector m = (¢ — B* & —&) need not be unique and can be any solution to

B* +Rxh=c;§+R(DQY =0

since (¢, Bx' + ) = 0,i = 1,...s.
Pivoting procedure
Once (x', 7') has been calculated, one moves to (x;, z;): = (x + A* u, z + N\* v) until some

eigenvalue of x; or z; becomes strictly negative. If this does not happen then EP is
unbounded.
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If (x;, z;) is a basic solution, then the pivoting procedure is terminated. If not, then by
Theorem 3.3, there exists («, v) such that

Bu+v = 0
uRx) = 0
V.R(z;)) = 0
(c;cupy = 0

and we can move in the direction (1, v) to another solution without decreasing the
objective and until some positive eingenvalue becomes zero. We end up with a basic
solution in a finite number of this step since the number of zero-eigenvalues strictly
increases by at least one at each step. In the simplex-like algorithm described later, we will
use another feasible direction of improvement.

Analogy with standard LP. Again consider (7). At a non-degenerate vertex (x', z), we
have seen that the reduced cost 1t is [0, c'§. - c}& M' ' N'] (see (10)). Thus, selecting (',
v') >0 in S(x, z) such that {(m, (', v')) > 0 reduces to find a strictly positive component of
C'EI - c'g,[., M} N/, i.e., to select a non-basic variable with positive reduced-cost. The
direction (u, v): = (', v') — Pp(u', V") is given by (—M'~! Nv', v'") and is a direction of strict
improvement.

At a degenerate vertex in standard LP, one avoids considering S(x, z) and looks for a
nonnegative (u', v') in RM*N guch that (m, (u',v")) >0, i.e., exactly as in the non-degenerate
case. However, a strict improvement is not guaranteed and an anti-cycling rule (e.g., the
lexicographic rule) is necessary. The direction of improvement calculated in the
degenerate case and translated in standard LP would yield the following:

At the degenerate vertex (x, z') the matrix [H|I] is partitioned into [B'|N']: = [M'|Q|N']
with B' = [M'|Q] as basis (see previous section). Then, one would compute («', V') in
solving

max{(cy, — ¢3B'NW|[u' + B~'Nv],=0k=p+ 1 - -M;
u',v' =0} (11)

(see (9)). The direction (u, v): = (—B'~! Nv', v") is a direction of strict improvement since
the zero components of (x', ') would increase. In the non-degenerate case, in the direction
of improvement calculated, one would end up at another basic solution since only one
non-basic variable may become positive and at least one basic variable will become null.
In the degenerate case, if g basic variables are null then (u', v') solution of (11) has at most
g + 1 positive components (to the g constraints in (11) we must add a normalizing
constraint) so that in the direction (—=B' ™' Nv', v') we end up at a solution with at most M
positive variables, i.e., still a basic solution. This is a difference with semi-definite
programming, where in the direction of improvement we may end up at a non-basic
solution, in which case an extra step is required. Note that in standard LP, this procedure
would avoid the anti-cycling rule needed in the Simplex algorithm and would guarantee
a strict increase in the objective.
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3.6. Characterization of Optimal Solutions

We have seen one necessary and sufficient condition for optimality of a basic solution (x,
z) through its reduced cost . We also have two other direct characterizations of an optimal
solution without using .

THEOREM 3.5. At a feasible solution (x, z), consider the following linear program P (x, z)

max{c, u)

Bu+v =0
(R(x),uy =0
(R(z),v) =0

Py (x,2) 12)

If the optimal value of P, is O, then (x, z) is an optimal solution.

Proof. 1If the optimal value of P, (x, z) is zero, then by a standard Farkas Lemma, the
system

B*y+ ANR(x) = —c
y + vR(2) =0
v = 0

has a feasible solution (y, A, v). Indeed, Farkas Lemma is valid here for in P, (x, z) we
have an homogeneous system of equalities and inequalities which describe a convex
polyhedral cone. Multiplying both sides by (x, z) yields

(x, B*y + ¢y + Mx, Rx)) =0
(z,y) + v(z, R(z)) = 0
but we know that x.R(x) = 0 and z.R(z) = 0 so that we finally have
(x,B*y +¢)=0,(z.y) = 0.
We also have y < 0 since R(z) = 0 and v = 0. Also, B¥* y + ¢ < 0 since R(x) = 0 and A

= 0. Therefore, (x, z) and —y are two feasible solutions in EP and EP* respectively, and
satisfy

Bx<b,—B*y>c,x,—y>0and{(x,B*y+c) =0, (13)

i.e., complementarity slackness holds, which in turn proves that x and —y are optimal
solutions (see [1]).[]

Remark 3.3: P,(x, z) reduces to a standard LP problem by replacing a constraint {a, x)
with the usual scalar product @’ x for an appropriate a.
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Note that we only have a sufficient condition for x to be optimal. The next
characterization of optimality is a necessary and sufficient condition. We first make the
following assumption

AssumpTION A:  There exists xy > 0 such that Bxy, < b.

THEOREM 3.6. Assume that A holds. At a feasible solution (x, z), consider the following
linear program P.(x, 2):

max{c, u)

p Bu +v =0

DN Ty wP@) = 0 (14)
Pr(v.Piz) = 0

(x, 2) is an optimal solution if and only if the optimal value of P,(x, z) is zero.

Proof. 1) if. Assume the optimal value of P,(x, z) is zero and (x, z) is not optimal. Then
consider any other feasible solution (x', z') with strictly better value.

Obviously, the direction (u, v): = (x' — x,z' — z) satisfies Bu + v = 0 and {(c, u) > 0.
In addition, as the set {) of feasible solutions in EP is a convex set, (x + pu) > 0 and (z
+ pv) =0 for all p =< 1. Now, if P7(x).u.P(x) > 0, it means that one zero-eigenvalue of
x has a negative derivative in the direction u. Therefore, for p > 0 small enough, (x + pu)
Z 0, a contradiction. The same argument holds true for PT(2).v.P(z). Thus, (u, v) is feasible
in P,(x, z) and {c, u) > 0, a contradiction. Therefore, (x, z) must be optimal.

ii) only if. Assume that (x, z) is optimal and the optimal value of P,(x, z) is not zero
(hence +). Any matrix u can be written ™ — u~ with ™ > 0 and ¥~ > 0 and we note
|ul: = u™ + u”. Consider the following perturbation P,(x, z, €) of P,(x, z) (= P,(x, z, 0)).

max{c, u)
Bu +v =0
Py(x,z,€) { P (x).u.P(x) > el (15)
Pl (2).v.P(2) > el,
(L [ul) + (I b = 1

where I; (resp. I,) is the identity matrix of same dimension as PT(x).u.P(x) (resp. PT
(z).v.P(z)) and where the last constraint is a normalizing constraint to avoid an infinite
value. P,(x, z, €) is consistent (i.e., has a feasible solution) for € small enough. Indeed,
under Assumption A, the direction (i, vy): = (xg — X, 2o — 2) satisfies By, + vy = 0.
Moreover, since x, has strictly positive eigenvalues, uy.R(x) # 0 and P7(x).uq.P(x) > 0.
Otherwise, if some eigenvalue of P7(x).u,.P(x) is nonpositive, then in the direction u,, the
smallest eigenvalue will become negative (as a concave function with nonpositive
derivative and because uy.R(x) # 0). Similarly, PT(z).vo.P(z) > 0. Thus, (ug, vy) is feasible
for P,(x, z, €) when e is sufficiently small since then, PT(x).uO.P(x) Zel, and PT(z).vo.P(z)
Zel,.
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P,(x, z, 0) (with a normalizing constraint) has a finite positive optimal value 8. In
addition, the feasible set being compact, P,(x, z, 0) has no duality gap so that for a small
perturbation of the right-hand side, its optimal value (well-defined since P,(x, z, €) is
consistent) is still positive, i.e., P,(x, z, €) > 8/2 for € small enough. Pick (, v) in P,(x,
z, €) with {c, u) > 8/2. In the direction (&, v), (x + pu, z + pv) is still feasible for p small
enough since P’(x).u.P(x) > 0 and P’(z).v.P(z) > 0. In addition, one may strictly improve
the criterion, a contradiction with (x, z) optimal.["]

Remark 3.4: In Py(x, z), the constraint PT(x).u.P(x) >0 states that the derivatives (in the
direction u) of the zero-eigenvalues of x are nonnegative (see [13]). Thus, one may replace
PT(x).u.P(x) by R(x).u.R(x) since these derivatives are also the eigenvalues of R(x).u.R(x)
in the subspace R(x)X (see [10], [13]). This fact will be used later.

4. A SIMPLEX-LIKE ALGORITHM
In this section we first describe a conceptual Simplex-like algorithm for positive
semi-definite programming. By Simplex-like we mean that with this algorithm one moves
from one vertex to another one like in the standard Simplex algorithm.

Assume that we are at some current basic solution (x, z).
Step 0. Compute the reduced cost m = (¢ — B* § — &) where (&, h, ¥) solves:

B* + R(x)h = c: £ + Ry = 0.
If {m, (x', 2)) = 0 for all (x', z) > 0 in S(x, z) then STOP. (x, z) is optimal.

Step 1. compute (x', z') = 0 in S(x, z) such that (m, (x', 7)) > 0 and a feasible direction
of descent (u, v): = (x', z') — Pp(x, 2), i.e., solve

Bu+v=20 Bu' +Vv =Bx'+ 7
uR(x) = ¥*Rx) | v Rx) =0
v.R(z) = V'.R(2) VR =0

which has a unique solution.

Step 2. Move in the direction (&, v) until some eigenvalue of (x;, z;): = (x + N*u, z +
N* v) becomes strictly negative. Check if (x;, z;) is basic. If basic then set (x, 2): = (x,,
zy) and go to Step 0. Otherwise go to Step 3.

Step 3. Compute (u, v) such that

Bu+v =
u.R(x))
v.R(z))
(c, u)

o
o O © O

v
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If (u, v) = (0, 0) then (x,, z,) is basic and go to Step 0. Otherwise, move in the direction
(u, v) until some positive eigenvalue of (x; + pu, z; + pv) becomes zero (the zero
eigenvalues remain zero). Set (x;, z;): = (x; + pu, z; + pv) and go to Step 3.

Note that the inner loop in Step 3 stops after a finite number of iterations since the
number of zero-eigenvalues strictly increases by at least one at each iteration.

One may also simply replace Step 0 and Step 1 by the single step:

Step 0—1. Compute a direction (u, v) that solves

max{c, u)

Bu + z =0
Pyx,2) 4 P'(0).u.P(x) > 0

PT(2).v.P(z) = 0

(I, lul) + Iz, V) = 1

If the optimal value is zero STOP, (x, z) is optimal. If not then go to Step 2.

(In fact compute (u, v) with the perturbed version P,(x, z, €) as in (15) to ensure a strict
increase of the criterion). Note that the feasible direction problem P,(x, z, €) is of the same
type as the original problem except the matrices PT(x).u.P(x) and P'(z).v.P’(z) are of much
smaller size, i.e., r and r', the respective numbers of zero-eigenvalues of x and z.
Moreover, optimality in P,(x, z) is not required since a feasible direction (i, v) with {c, u)
> 0 is sufficient.

Convergence of the Simplex algorithm. In contrast to standard LP, only asymptotic
convergence might be expected since the number of extreme points is not finite in general.
In addition, the above algorithm requires some care for at a point (x, z) where x (and/or
z) has r (> 1) zero-eigenvalues, the matrix P(x) (as well as P(z)) is not continuous in
general. On the other hand, the total projection for the 0-group Xi~) R,(x') is continuous
in a neighborhood of x (see [10]) (when the r zero-eigenvalues of x split into 7' (eventually
multiple) eigenvalues). In the direction u, the derivatives of the r repeated zero-
eigenvalues of x are the repeated eigenvalues of PT(x).u.P(x), but also the repeated
eigenvalues of R(x).u.R(x) in the subspace R(x)X. (see [10]).

The above algorithm may not converge due to the lack of continuity of P(x). One might
have a sequence of iterates (x,, z;) converging to some (x, z) but (x, z) not being optimal.
For instance, the number of zero-eigenvalues of x; and z;, might be p and p + 1 for (x, 2).
The corresponding positive (p + 1)th eigenvalue of x, or z, decreases to zero, but the
direction of descent at (x,, z;), computed in P,(x;, 7;) is such that a zero eigenvalue of x;
or z; increases a little and becomes again zero, whereas the (p + 1)th decreases slowly.
The stepsize is smaller and smaller and one remains stuck to a nonoptimal solution (x, z).

To avoid a jamming phenomenon, one should replace the above step 0—1 by the new
steps:

Step 0: sete = €, > 0.

Step 1: Let N(x), k = 1,..N (resp. \i(z)) denote the eigenvalues of x and define the sets:
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N = (NG| M) = €. M2 = (M@ N(2) = €}

Let Ri(x) be 2’1 R,(x) where the {R,(x)} are the eigenprojections of the (eventually
multiple) eigenvalues A\ (x) € A\ (x) (with same definition for R.(z)).

max{c, u)

Bu + z = —e(aBly + Bl
Pyx,z,€) & R.(x).u.R(x) = 0

Ri(2).v.R(2) = 0

(I, [ul)y + Iz V) = 1

If {c, u) > € go to step 2 otherwise set €: = €/2 and go to step 1.

As in Theorem 3.6, one may show that if (x, z) is not optimal, then P;(x, z,0) as well
as Plz(x, Z, €) have positive value for € small enough. The o and 3 parameters are chosen
according to [7], e.g., & = |[A(x) " "||/jul|* where A(x) is the diagonal matrix of the positive
eigenvalues of x. Since |[u/| and ||[v|| are bounded in P,(x, z, €) it sufﬁces to take o and B
large enough. Then, from e.g. [7], (x + yu + y’aly, z + yv + V* Bl 20 along this
trajectory for vy small enough. Thus, from a solution (u, v) in Pz(x, z,€), Bul2t +
(e/2%aly) + (vI2¥ + (e/2%)B1,) = 0 so that when 2 is large enough, x": = x + (e/2%u +
(€2%aly, > x + (€/2%u + (e/2%*aly >0 and {c, x') > {c, x) (since {c, u) > 0). Thus,
P;(x, z, €) provides us with a feasible trajectory along which one strictly improves the
criterion.

TueoReM 4.1.  Assume that EP has finite value and there exists x, > 0, such that Bxy <
b. The above Simplex-like algorithm converges asymptotically to an optimal solution.

Proof. Consider a sequence (x*, z°) generated by the above algorithm and let €, be the
corresponding value of € at the end of step 1. The sequence of associated costs increases
monotonically and is bounded from above so that it converges to some value g*.
Moreover, as ¢ > 0, ¢ >vly for some scalar vy so that x* is bounded. Consequently, z* is
also bounded. In addition, the optimal solution (u,, v,) in P5(x*, %, €) is also bounded.
Thus, let (x*, z*), (u*, v*), 1 be any accumulation point of the sequence {(x*, 25, (u;, v,),
€.}, (r, r') being the number of zero-eigenvalues of (x*, z*).

We first prove that = 0. Indeed, assume not, i.e., there is some subsequence still
denoted {(x*, z°)} such that €, — m > 0. We may assume that 7 is still small enough so
that R/ W(x*) is the eigenprojection corresponding to the r zero-eigenvalues of x* (and
51m11arly for z*), i.e., N\, (x*) contains only the r zero-eigenvalues of x*. For k large
enough, the elgenvalues in A\, (x) correspond to the r zero-eigenvalues of x* (and
similarly for z*). Thus, by a contmulty argument (the total eigenprojection of the 0-group
is continuous), u* is feasible in P;(x*, z*, m). Then, for some integer p, x* + (n/2°)u* +
(M12P)aly > x* + (M/2°)u* + (n/2F)*aly >0, and thus, again by a continuity argument,
X+ (€/2Pu, + (€/2’)aly > 0 (and similarly for z¥) for k large enough in the
subsequence, so that the step-size is bounded from below in the subsequence considered,
a contradiction with the convergence of the sequence.

Hence, €, — 0 for a subsequence still denoted {e,}. Assume that the optimal value of
P;(x*, z*, 0) is positive, say 8. With similar arguments as in Theorem 3.6, Plz(x*, z*, 0) has
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no duality gap so that the optimal value 3, of P,(x*, z*, €) satisfies 5_ = /2 for € small
enough. As soon as € < € (for some € > 0) and x* is close enough to x*, the eigenvalues
in )\e(xk) correspond to the r zero-eigenvalues of x* (and similarly for z*). Thus, by a
continuity argument (remember that the total eigenprojection of the 0-group is continu-
ous), the optimal value of P,(x*, Z*, €) = /4 for all € < € and k large enough which implies
that €, is bounded from below, a contradiction.

Thus, the optimal value of P;(x*, z*,0) is zero, which in turn implies that (x*, z*) is
optimal (see Remark 3.4).[]

5. CONCLUSION

We have presented analogues for positive semi-definite programming of the basic
concepts in standard LP. For practical purposes and in comparison with other existing
methods like cutting planes or interior point methods as in e.g., [8], [12], the efficiency of
the Simplex-like algorithm remains to be proved, and is a topic of further research beyond
the scope of this paper.
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APPENDIX

Below is an example in Control Theory, to illustrate various notions explored in the paper.
This example is taken from a Tutorial workshop Convex Optimization Techniques in
Robust Control, held at the IEEE-CDC conference, San Antonio, 1993.

Consider the problem
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minimize trace(x)

ATx+xA+xBB'x+0<0

with

-1-2 1 1 1 -1 O
A= 3 2 1|B=|0{|Q0g=|-1 -3-12
1-2-1 0 0—-12 —36

or equivalently
minimize {7, x)
ATx + xA xB _ -Q00
B'x o) \ o1

where x is a (3, 3) symmetric real-valued matrix.

Provided that (A, B) is stabilizable, the solution x* is the stabilizing solution of the
algebraic Riccati equation

ATx + xA + xBB'x + 0 = 0.
(see [2]). As the optimal solution x* is negative definite, we may also solve equivalently
maximize (/, x)
ATx + xA xB 00
B'x 0 ‘7 \o-r1
x,z =0

If we now write the above program in matrix notation with x a vector in R® and z a vector
in R'® we have to solve

max (I, x)
Hx—2z =b
x,z =0

with now
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-2 6 20 0 O 1
-2 1-23 1 O -1
1 1-20 3 1 0
1 0 10 0 O 0
y— 0-4 04-4 0 b= -3
0 1-21 1-2 —12
0 1 00 1 O 0
0 0 20 2-2 —36
0 0 10 0 1 0
0 0 00 0 O -1

1- Basic solutions, basis and reduced-cost

Consider for example the feasible solution

5.3714 4.5281 —2.7642
x = 4.5281 4.2145 —3.1901
—2.7642 —3.1901 3.8641

9.8976 9.7671 9.7217 2.6072
9.7671 14.5059 15.3528 1.3380
9.7217 15.3528 16.3631 1.0998
2.6072 1.3380 1.0998 1.0000

where trace(x) = 13.4500. z has one double zero-eigenvalue with corresponding (rank 2)
eigenprojection matrix

0.1992 —0.1136  0.0140 —0.3826
—0.1136  0.5781 —0.4781 0.0487
0.0140 —0.4781 0.4317 0.1285
—0.3826 0.0487 0.1285 0.7911

R(z) =

ie, Rz = P, (2 PT @ + P,@®@ Pg (z) where P,(z) and P,(z) are the two zero-
eigenvectors of z.

—0.0231 0.4457

0.7287 —0.2171
—0.6570 —0.0027
—0.1920 —0.8685

[Pl (2), Pz @] =
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The condition v.R(z) = 0 reduces to v.P,(z) = 0 and v.P,(z) = 0, or in matrix notation Sv
= 0 with

™ —0023 0.728 —0.657 —0.192 0 0 0 0 0 0
0 —0.023 0 0 0729 —0.657 —0.192 0 0 0
0 0 —0.023 0 0 0729 0 —0.657 —0.192 0
0 0 0 —0.023 0 0 0729 0 —0.657 —0.192
$= 0.446 —0.217 —0.003 —0.868 0 0 0 0 0 0
0 0446 0 0 —0217 —0.003 —0.868 0 0 0
0 0 0.4460 0 —0217 0 —0.003 —0.868 0
| 0 0 0 0446 0 0 —0217 0 —0.003 —0.868 __|

Hence, the basis at the solution (x, z) is the (rank 16) (18, 16)-matrix

H| -1
Mx,z2)=1| - - -
0] s

The subspace S(x, z) is easy to characterize. It suffices to look at the conditions on (y, w)
to ensure that the system

y=xtxyu=z+z2;Hx,—2,=0;S7, =0
has at least a solution (x;, z,), (x,, z,). The conditions are simply
hER,H STh=0=h"Sw=0

or equivalently WSw = 0 where the rows of W span the subspace {h € R® | HT ST h =
0}.

To compute the reduced cost (see Section 3.4), find any solution to the system

H ¢
—£+8h =

I
o

and the reduced-cost 7 is just the vector (¢ — H' &, &) = (0, &). The equivalent of the
simplex criterion reduces to find (y, w) such that

(0, 8), (y, w)) > 0; WSw = 0;y,w >0

and (u, v) = (y, w) — Pp(y, w) is a direction of strict ascent. Pp,(y, w) is the projection on
D(x, 7) of (y, w), i.e., the above (x;, z;) in the decomposition of (y, w) (guaranteed to exist).



522 J. B. LASSERRE

A solution (x, z) with x > 0 and where z has a single zero-eigenvalue is not a basic
solution since the corresponding matrix M(x, z) will be (14, 16) and will have rank less
than 16. This is the case for example at the solution

5.1935 4.4068 —2.3644
x= 4.4068 4.2061 —2.6182
—2.3644 —2.6182 3.8641

10.3247 9.7486 10.3384 2.8291
9.7486 12.6703 14.9953 1.7885
10.3384 14.9953 18.3065 1.4996
2.8291 1.7885 1.4996 1.0000

=

where trace(x) = 13.2636. Indeed, one can find a direction (u, v) such that M(x, 2)(u, v)
= 0 and trace(u) > 0 which yields to the previous basic solution.

A nondegenerate basic solution will have a square invertible matrix M(x, z) which could
be the case if for example, the conditions u.R(x) = 0 and v.R(z) = O yield 6 constraints
on the variables # and v and the matrix M(x, z) is invertible.

One may also check that at the optimal solution

6.3542 5.8895 —2.2046
x* = 5.8895 6.2855 —2.2201
—2.2046 —2.2201 6.0770

17.2194 15.2267 16.0696 4.1496
15.2267 13.4644 14.2101 3.6694

* —
¢ 16.0696 14.2101 14.9966 3.8724
4.1496 3.6694 3.8724 1.0000
with trace(x*) = 18.7168, the matrix z* has a triple zero-eigenvalue so that the

corresponding matrix M(x*, z*) has rank 16 which proves that (x*, z*) is also a basic
optimal solution.



