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The results concern the fundamental problem of Lyapunov analysis of sliding motions. It
consist first to estimate the useful part of the sliding surface (the so-called “sliding domain™)
and second to estimate the useful part of the state domain that is the domain of all initial
conditions for which the corresponding solutions converge to the sliding domain. The appli-
cation of such results concern the design of a realistic bounded control. Several examples are
exposed in order to illustrate the obtained results.
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1. INTRODUCTION

Sliding mode control has been widely investigated since the first results
given by Andronov [1]. In particular, V.I. Utkin [9, 10] gave a general
framework for such a control based on variable structure system theory
and the leading notion of sliding motions: the control commutes between
two values in order to force the system’s motions to evolve on a desired
surface which is called the sliding surface. The existence conditions of
sliding motions (this is, motions belonging to the sliding surface) given by
Filipov [2, 3] are only local and unfortunately without much of practical
interest from the engineer’s point of view for the following reasons:
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i) in order to obtain global convergence onto the whole sliding surface,
one needs to implement an unbounded control (see for example Section
3.2) which is not realistic due to the physical constraints of the system,

ii) a solution to i) is to implement a saturated control, but in that case what
is the validity of the new control? In particular what are the admissible
initial conditions which ensure the “desired” sliding motion, this is on a
restricted part of the sliding surface?

Let us consider such problems for systems modelled by:

j-j =fit, x) + g(t, ) u, (D

where:

x € R" is the state vector,

x(t; to, xo; u) is the system motion (in short x()),
u € R is the control, -

t € [ty + >[.

Furthermore, the sliding motions are studied for a control defined as fol-
lows:

_ ut(t,x)ifs>0

u (t,x)if s <0

u , with s = s(x). 2)

After some notations in Section 2, Section 3 provides a general frame-
work for the above mentionned problems, that are the estimations of:

—the useful part of a given sliding surface called sliding domain,
—the initial state for which the motions converge to the above estimate
of the sliding domain.

Section 4 gives several results for solving the key problems. These
results are based on the use of two Lyapunov functions, at each step we
relax some hypothesis on the used Lyapunov functions. Some examples
illustrate the results and their different contexts.
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Then, Section 5 gives conditions for the estimation of the domain of
asymptotic stability of the origin. Lastly, Section 6 provides a methodol-
ogy in order to design a bounded control ensuring the desired sliding
properties and asymptotical stability of the origin.

In each section, the obtained results are illustrated with examples.

2. NOTATIONS

In the following, the two vector fields (f, g) are assumed to be smooth
enough (for example satisfy Lipschitz’s condition) and the two controls
(u™ (1, x), u(t, x)) satisty Filipov’s conditions such that the solution of (1)
exists, is continuous w.r.t. time and defined for 7 € [z, + o].

e (), (?), d (.) respectively denote the closure, the interior and the bound-
ary of the set (.).

¢ p, the Euclidean distance.

o N(dA; &) = {x € R™ p(dA; x) < &}, the e-neighbourhood of .

. ; +0)] -
D Voo — eLllf)n Vx(t ); VIx(1)]

, the right-hand time derivative

(Dini derivative).

o V(V; 2), the usual gradient of V with respect to the variable z.

e C*(S, R"), the set of a-times continuously differentiable functions from
S into R*.

e Sgn(x) is the signum function defined as follow:

1ifx>0

Sgn(x) ={ 0ifx=10 .
—1ifx<0

3. FRAMEWORK
3.1. Definitions

The sliding modes approach has been widely investigated (see [9, 10] and
references herein) and, obviously, a tight connection between the study of
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sliding motions and stability theory has been pointed out, which leads to
the definition of sliding domains [9, 10]. Roughly speaking, the sliding
domain (D) is the useful part of the sliding surface: the sliding motions
can only “appear” on D,. For a single input system, D, is defined as
follow:

DeriniTion 1 (see [9, 10] and figure 1) A domain D, of dimension (n —
1) included in the manifold {s = 0} is a sliding domain for system (1) with
the control law u, if assumption P is true:

P:[V&>0,33(e) > 0, such that V x, € N(D,; d), the solution
f(t) = )_c(t; tos Xo; 1) can only leave N(D; ¢) through N (0D )]  (3)

One can notice that assumption P is a stability-like assumption (replace
the end of P by “x(¢) cannot leave N(D,; &)”). Utkin [9, 10] gives results
on the estimate of—DS using Lyapunov function of variable s (the other are
“extra-variables”). As in stability domain theory [4, 6, 7], the estimation of
initial state (x,) such that assumption P is true, is of practical interest,
leading for sliding modes theory to the following notion:

DesintTioN 2 (see figure 1) A domain D,(D;) of dimension n included in

D; (Ds 5 €)

FIGURE 1 Illustration of definitions.
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the state space is the initial domain of sliding motions for system (1) with
the control law u, if:

i) Ve > 0, let D/(Dy; &) be a neighbourhood of D, such that the solution
x(f) can only leave N(D,; ¢) through N(dD; ¢) if and only if x, €
D(Dy; ¢),

ii) D(D,) = 8L>Jo D(Dy; ).

This is to say, that D,(D,) is the set of initial state x, such that assump-
tion P is true.

DeriniTioN 3 A domain E(D;) of dimension (n — 1) included in the
manifold {s = O} (respectively E(D/(D,)) of dimension n included in the
state space) is an estimate of D (respectively D/(D,)) if E(D,) C D,
(respectively E(D(D;)) C D«(Dy,)).

3.2. Practical Interest

One can notice that the classical sliding condition (s%j— < 0) can be ful-

filled using the following control (if V(s; 0" -g(t, x) # O):

V(s;0" - fit, x)
Ueg = — Vf’ “)
(s;x)° - g(t, x)

k

Tl Ty (s;0)" - g(t, x)

leq Sgn(s). )

In that case, it is obvious that the entire sliding surface {s = 0} is a
sliding domain and that the entire state-space is an initial domain of slid-
ing motions. But, unfortunately the control (5) is unbounded, which in
practice is not realistic: this motivates the above definitions and the fol-
lowing results.

4. DOMAINS ESTIMATION
4.1. Problem Formulation

According to Section 3, it comes out that the practical point of view leads
to the following problems:
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—find the efficient sliding surface D, or an estimate E(D,),

—find an estimation of the initial states such that the motions “converge” to
D, and can only leave D, through a neighbourhood of its boundaries:
E(D(D,)).

In the following the sliding surface is chosen as an hyperplan: s = ¢ x.

The vector ¢ is suppose to be a non zero vector. The choice of an hyper-
plan simplifies the development, but the method can be extended to any
differentiable manifold.

As C is a non zero vector, one can find a nonsingular change of coor-
dinate defined as:

w= [C;] x=Fx= [SS*]. (6)

By construction, matrix F is nonsingular and thus system (1) can be
rewritten in the following form:

%v = F[fit, F~'w) + g(t, F~ ' w) u(t, ' w)]. 0

4.2. The Main Results

The first step is to caracterize D, and an under-estimate (S;,) of the do-
main of initial conditions such that the solution x(¢; t,; x, u) tends to D,
and can only leave it through a neighbourhood its boundary: it is to say the
domain D(D,). This is achieved by using two Lyapunov functions:

—one is a function of the variable s (V,) leading to a more general condi-
tion analogous to (s dit’ < 0) ensuring the attractivity of a part of the
“sliding surface” (the sliding domain),

—the other one is a function of all the variables w = [s, s*]" (V,) leading

to an invariance result.

The combination of the attractivity and invariance leads to the desired
result.

THEOREM 1  If there exist two continuous functions V,(s) and V,(w) veri-
fying HI and H2:
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HDHV,:R->R,
s = Vi), with[V,(s) =0 s = 0],

for s # 0: V, is differentiable with respect to s.

V,:R"> R,
w = V,(w),

for s # 0: V, is differentiable with respect to w.
H?2) there exist «; (finite or infinite) and a, such that:
Sy(ay, = {w € R" V,(w) = oy}, a0y >0,
Syay) N fw € R s = 0} # &,
D, = S,(0y) N{w € R": 5 = 0},
Si(a) ={w € R VI(s) = o}, o > 0,
S1(oy) contains a neighbourhood of s = 0,
Salaygs ay) = Si(e) N Sy(ay),

T ds*

V(Vz; S*) N E‘

<0,
V(Vy;8) V(Vy 8) = 0.

ds
w € Sp(oy; o) — D V(Vyss) - @ <0.

Then:

C1) D, is a sliding domain for system (1),

®)

©))

10)

ar)
(12)

13)

(14)

15)

(16)
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C2) Sy(ay; o) is an under-estimate of D(D,), that is for every initial x,

T
condition such that w, = [CN] Xo is in S,(a; @), the solution
x(t; ty, xo; u) tends to D, and can only leave it through its boundary.

]
Proof see appendix.
Remarks
1) Notice that conditions (14) and (15) can be replaced by:
T dW
V(Vyw) - ar <0. 17

2) This result and the following results can be easily extended to non
autonomous Lyapunov functions (V(¢, w)).

Example 1 Let us consider a non-linear system having the following
state-space representation:

dx,

i (x, + %)% xp, (18)

dx,
E = (u + le) (x; + ch)2

Using the following transformation w = Fx = [SS*], with F = H (1)},
leads to:

- (u + s%) 5°, (19)
sk
% = — 5% 5%, (20)

A bounded control law is selected as follow:

{_klfs>0,withk>0. Q1)

kifs <O
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LetV,(s) = s then— V(Vi;s) = s> (u — s%).Using V,(s*) = 15*2

and Theorem 1 leads to the conclusion that D, = {s = 0 and Is*| < k} Is a
sliding domain for system (18) with control defined by (21), and for every
initial condition x, such that w, = Fx, is in S = {Is*| < k} (unbounded set),
the solution x(#) tends to D, and can only leave it through its boundaries.

From the I)revious result we can derive a special case which is very
useful in practice since the two Lyapunov functions depend respectively
on s and s*.

CoroLLARY 1 If there exist two continuous functions V,(s) and V,(s*)
verifying HI and H2:

H)V,:R—> R,
s— Vi(s), with[Vi(s) =0 s = 0],

for s # 0: 'V, is differentiable with respect to s.

VR S R,
% = V,(s%),

V, is differentiable with respect to s*.

H?2) there exist o (finite or infinite) and o, such that:

Sy(a,) = {w € R": Vy(s*) = a,}, oy <0, (22)
Sy(a) N {w € R s = 0} # O, (23)
D, = Sy(ay) N{w € R" 5 = 0}, (24)
S'a) ={w € R: V,(s) = o}, o, >0, (25)
S,(a;) contains a neigbourhood of s = 0, (26)
Siaay; on) = Si(ay) N Sy(ay), (27)

T ds

w € 95" () ) — [0D, U 8S,(a))]: V(Vys s%) - =<0,  (28)
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12 ds
w €S (a;ay) — D V(Vyss) - @ <0. (29)

Then:

Cl) D, is a sliding domain for system (1), -

C2) for every initial condition x, such that w, = [?V] Xp1s in Sy5(ag; ay),
the solution x(t; t,, x,; u) tends to D, and can only leave it through its
boundary. n

Proof it is a direct conclusion from Theorem 1.
Example 2 Let a linear system be defined by the transfert function

Yp) - p+1
Up) p*+p+1

, then a companion form and w = Fx = [Ss*]’ with

|11 .
F=F= L O],leadsto.
g =—s*+u,
ds* . . .
ar = (s — s*), notice that the output variable is y = s. 30)

A bounded control law is selected as follow:

u={—kifs>0

kifs <0 , with k > 0. 31

Thus using Corollary 1 with functions V,(s) = %sz, Vo(s*) = %s*z,
leads to the conclusion that D, = {s = 0 and Is*! < &}, is a sliding domain
for system (30) with control defined by (31), and for every initial condi-
tion x, such that wy, = Fx, is in S = {Isl < k and Is*| < k}, the solution x(¢)
tends to D, and can only leave it through its boundaries. -

It is of importance to obtain sufficient condition for global attractivity of
the sliding surface. This can be achivied in the following result using only
one Lyapunov function of the variable s.
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TueorEM 2 If there exist a continuous function V,(s) and a real a, (finite
or infinite):

ViR-> R,

s = Vi(s),

with [V (s) = 0 & 5 = 0],

such that:
for s # 0: V, is differentiable with respect to s, (32)
Si(a) ={w € R Vy(s) =y}, ¢, >0, (33)
S, (o) contains a neigborhood of s = 0, (34)
w € Sy(a) —{w € R s =0}): V(Vy;5) - % <0. (35)
Then:

Cl) D, = {w € R": s = 0}, is a sliding domain for system (1),

C2) for every initial x, condition such that w, = [%7] Xois in S (o), the
solution x(t; t,, x,, u) tends to D, asymptotically (or hits it and stays
on D,). B ]

Proof see appendix.

Example 3 Notice that, for the model given in example 2 by (30), one
can select an unbounded control such as:

—kifs>0 .
= ¢k
u=-s +{kifs<0,W1thk>O. (36)

Then using Theorem 2 with functions V,(s) defined in example 2, leads
to the conclusions that D, = {w € R": s = 0} is a sliding domain and for
every initial condition x, the solution x(f; t,, Xxy; ) tends to D,. This is in
accordance with Section 3.2. -
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The previous results require strong condition on differentiability of the
Lyapunov functions. In order to relax this condition and to allow the use of
Lypunov function of Hoder norm type such as Isl, we can obtain the
following result:

Tueorem 3 and 4 Conclusions of Theorem 1 (or Theorem 2) holds if the
hypothesis on the differentiability of V; and V, (or V) is transformed into
differentiability of V, and V, (or V,;) almost everywhere and the existence
of their right and left gradients. n

Proof see appendix.

THEOREM 5 [f:

H1) the system (S§*) (7) (which is system (1) rewritten with variable w)
leads to:

LT _ Sencs) CT A, 1 w) + g ' w) e, F™ w)] = A, ),

dr 37)

forw € § — {w € R": s = 0}, with:

SN{weR:s =0} # .

H2) there exists D = ]0, ;] included in S, positively invariant for the

system:
dz
— = h(t, ), 38
& (t 2) (38)
such that:
Lim z (t; ty, zo) = 0, (39)
r—>+% =

where z(1; 1y, zo) is the solution of system (38) for z, € 10, o]
Let us define:

Si(a) ={w € R s € [—ay, o [} (40)
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H3) there exists a continuous function V,(w):

VyyR" - R,
w — Vo(w),

for s # 0: V, is differentiable with respect to w,

and there exists a positive real a, such that:

Sy(ay) = {w € R Vy(w) = o}, o, > 0, 1)
Syap) N {w € R s = 0} # &, (42)

D, = Sy(ay) N {w € R s = 0}, (43)

S0 o) = Sy(aty) N Sy(awy) C S, (44)

for w € 8S),(a2) — [8D, U 3S,]: V(Vy; w)” - %th <0. (45)

Then:

C1) D, is a sliding domain for system (1),
C2) for every initial x, condition such that w, = [ N]] Xoisin Sp(a;; ay),

the solution x(z; 5 Xo; u) tends to D, asymptotically and can only
leave it through its boundary. n

Proof see appendix.

Remark  If (38) has a locally asymptotically stable equilibrium point

{z = 0} with a positively invariant set D containing a neighborhood of
{z = 0} and included both in S and in the domain of asymptotic stability of
{z = 0}, then H2 is satisfied.

Example 4  Let us consider system (30) of example 2 with control given
by (31). Then, one can obtain:
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disl
— = —k+Is*, 46
& s (46)

and thus Theorem 5, with V,(s*) = % s*z, leads to a sliding domain D, for
system (30): D, = {s = 0 and Is*| < k}, and for every initial condition w,
in § = {Isl < k and Is*| < k}, the solution x(#) tends to D, and can only
leave it through its boundaries.

5. DESIGN OF CONTROL

A classical approach for designing a sliding modes control is to separate
the control u into two functions one, Uegs defined when s = 0O (the “equiva-
lent control”) and the other, u.., defined when s # O (most of the time it is
chosen as — k Sgn(s)). Let us recall that u., and u, were assumed to
satisfied Fillipov’s conditions on continuation of solution (see Introduction
or Hypothesis H3 in the following theorem). Evaluating the convenience
of a given designed control, the estimation of the domain of asymptotic
stability for the origin appears as a crucial problem.

THEOREM 6  Let us suppose that:

Hl) D C{w € R" s = 0},

H2) for every initial x, € S, the solution x(z; t,, x,; u) reaches D in finite
time. ' -

H3) u,, € EB{LJ:E)HW u.(w): s; # 0 and w € D}, (the closure of the con-
vexe cone generated by “u..” on D).

H4) the origin {O*} € {w € R": s = 0} C R""’, is locally asymptotically
stable for system:

ds* _

ar [N P 2D + 0 P [ ) (47)

with D positively invariant w.r.t. (47) and included in the domain of
asymptotic stability of {O*}.
Then:

C1) the origin {w = 0} is locally asymptotically stable for system (1),
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C2) S is an estimation of its domain of asymptotic stability. L]
Proof see appendix.
Remarks

1) Obviously, H1 and H3 can be obtained using the preceeding results.

2) H2 can be evaluated by using the dynamics of the s variable. This can
be achieved using for example a special Lyapunov function V,(s) = sl
and theorem 3, 4 or 5 to overvalue the time evolution of the s variable.
One can notice that H2) implies H3) only for points in the set reachable
from S and included in D (and not for the whole set D), thus H3) is not
an extra hypothesis.

3) System (47) represents the evolution of the system on the sliding sur-
face. Thus classical results based on Lyapunov functions are available
to test asymptotic stability of the origin {O*} (see [6, 7]).

4) If one uses the usual decomposition of u into a continuous control,
called “equivalent control” (u,,) and a discontinuous one [9, 10], theo-
rem 6 has a direct application. Moreover, usually u, is unbounded, and
thus u = u,y — k Sign(s) is an unbounded discontinuous control. No-
tice that Slotine propose to smooth the control, changing — k sign(s)
into a saturation function [8], which avoids chattering. Practically, the
global control (unbounded) is not realistic, and thus using theorem 6
(and the previous ones) in order to obtain D, of H1 and S, of H2 in
theorem 6, a bounded control can be designed.

Example 5 Selecting an unbounded control given by (36) for system (30)
of example 2, the use of Theorem 2 leads to D, = {w e R": s = 0} and
S, =R

First, as d_j = —k, s(t) reaches D in finite time #, + s(ty) / k. Sicondly,

obviously the analogous of (47) for system (30) is reduced to %z —s%*,

for which the origin is globally asymptotically stable. Thus Theorem 6
leads to the conclusion that for all initial conditions, the solutions x()
tends to zero and thus the output variable (y) too. -

The last result is stated in a practical form: to check asymptotic stability
of the origin and an estimation of its corresponding domain we need two
Lyapunov functions and that the sliding domain be included in the domain
of asymptotic stability of the origin relatively to the evolution on the
sliding surface.
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THEOREM 7  Let us suppose that:

H1) there exist two continuous functions V,(s) and V,(w), and there exist
o, (finite or infinite) and a, such that H1) and H2) of theorem 1 are
satisfied.

H2) the origin {O*} € {w € R": s = 0} C R"", is locally asymptotically
stable for the following system:

ds*

dr [ ] e £ [ *}) + e F [sq“]) Hegl, (48)

with D, positively invariant w.t. (48) and included in the domain of as-
ymptotic stability of {O*}.

Then:

C1) obviously the conclusion of theorem 1 concerning D, holds,

C2) the origin {w = 0} is locaily asymptotically stable for system (1),

C3) S,,(at;; o) is an estimate of its domain of asymptotic stability of the
origin {w = 0} for system (1). |

Proof see appendix.

Example 6 Let us consider system (30) with a bounded control given
by (22). Using V(s) = > s V,(s*) = %5*2 leads to the conclusion that

= {s = 0 and Is*| < k} and S = {Is| < k and Is*| < k}. Now, obviously
the analogous of (48) for system (30) is reduced to %= —s*, for which

the origin is globally asymptotically stable. Thus Theorem 7 leads to the
conclusion that S is an estimate of the domain of asymptotic stability of
the origin for system (30): any solution x(#) originating in S tends to zero
and the output variable (y) too. N

6. EXAMPLES: DESIGN OF BOUNDED CONTROL LAW

When dealing with sliding mode approach, it is classical to select the
following unbounded control u = Ueg — k Sgn(s) (Theorem 2 implies that
the entire sliding surface is a sliding domain or [9, 10]). This leads to
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select the parameters defining the sliding surface (c;) in such a way that the
origin O* is asymptotically stable: one can design the “sliding modes” via
the c;.

Obviously, such a control is not realistic because it is unbounded, so let
us design a bounded control in the following way:

Ist Step) Compute the equivalent control: u.q is such that $=0 or see
equation (4).
2nd Step) Select the following bounded control:

u = Sat; (u.y) — k; Sgn(s) (49)
The saturation function is continuous and defined as follows:

Ueq If eyl = ky,

Satkl (ueq) = k2 Sgn(ueq) if Iueql > kz.

(50)

3rd Step) Use the previous results in order to prove the existence of a
sliding domain and to obtain an estimation of the domain of asymptotic
stability of the origin for the closed loop system.

Example 7 Consider a second order SISO system described by the fol-
lowing transfer function:

Y(p) p+1
—~=Fp)=—"" (51)
Uy TP T T
The control u is constrained by:
ul < k. (52)

Using a companion form and the transformation w = Fx = [SS*], with

F = [Cl 1] leads to:
1070 '

$=(cl+1)s+(—1—c|(1+c1))s*+u, (53a)
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ds*

o (s — c; 5%), (53b)

y=s+ 1 —c)s*, (53¢)

The design of a bounded control can be achieved with the following
steps:
Ist Step) from (53 a), compute the equivalent control (i, is such that

ds
— =0):
dt )

Ueg = — [(c; + D) s + (=1 = ¢; (1 + ¢) s*]. (54)
2nd Step) Let us define the control as:
u= —k; Sgn(s) + Saty, (ueq), with k; > 0, and k, > 0. (55)
Obviously the control satisfies (52) if:
ki + ky, <k (56)
3rd Step) from (53 b), if ¢, is positive, the sliding motion converge to

zero: it is to say that H2 of Theorem 7 is satisfied: ¢, = 1 (thus s = y, in
that case s = 0 is sufficient to make the output cancel). So ., = 3s* — 2s.

3.1) Obviously, when lu, | < k,, function V,(s) = l52 is decreasing and
. 2
satisfies H1 of theorem 1.
3.2) The function V,(w) = lu.gl = 13s* — 2sl, with o, = k;, satisfies H2
of Theorem 1 if:

sl <k, — 2 k. (57)

Let k, > 2 k,; such that (56) is satisfied, then Theorem 7 leads to the
conclusion that the origin is locally asymptotically stable and an estima-
tion of its domain of asymptotic stability is given by:

S, ={w € R Bs* — 25l < kyand Isl < k, — 2 k;}. (58)



LYAPUNOV ANALYSIS OF SLIDING MOTIONS 19
The sliding domain is:
D, = {3s*| = k, and s = 0}. (59)

Thus, on one hand, an interesting choice is to take k, very small because
for this choice: k, is close to k and the sets S;, and D, are the largest ones
(due to (58) and (59)). And on the other, the higher the parameter k; is, the
faster the convergence onto the sliding surface is. Finally, in order to
choose the two parameters (k; and k,), one has to chose a compromise
solution according to the above related phenomena.

This method can be extended to nonlinear systems for example if the
system is linearizable, or directly as in the following example.

Example 8 Consider a second order nonlinear system described by the
following ordinary differential equation:

?j—J—; =u, (60a)
dy 2
== , 60b
PP (60b)
y is the output. (60c)
The control u is constrained by:
lul < k. (61)

Using the transformation w = FB] = [SS*], with F = [011 H,leads to:

g—j = Cs** (s — ¢ s%) + u, (62a)

*
% = Cs*? (s — ¢, 5%), (62b)

y = s*. (62¢)
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The design of a bounded control can be achieved with the following
procedure:
lrst Step) from (62 a), compute the equivalent control (i, is such that

ds
—=0):
dr )
Uy = —C[s¥* (s — ¢, s%)]. (63)
2nd Step) Let us define the control as:
u = —k; Sgn(s) + Sat; (u,), with k; > 0, and k, > 0. (64)
Obviously the control satisfies (61) if:
ky + k, < k. (65)
3rd Step) from (62 b), if ¢, is positive, the sliding motion converges to
zero: it is to say that H2 of Theorem 7 is satisfied: ¢; = 1. So oy = — [s#2
(s — sM].
3.1) If luy| = k, then the function V(s) = %32 is decreasing and satis-
fies H1 of Theorem 1.
Note that 9 {w € R?: s*? (s* — 5) < k,} is defined by the curves
s=g* ifz—.
5%
3.2) If one select the function V(W) = lug,l = Is*%2 (s* — s)l and

o, = k,, then hypothesis H2 of Theorem 1 is satisfied if:

dVy(w)

Tllueq\=kz = Sgn(ueq) [_ 2 5*3 (S* - S)z —u S*z]l(ucql =k, <0. (66)

(64) and (66) leads to:

dVy(w)

2k
e = = 52 ky (= + 1) — k, Sgn(ug) Sgn(s) |l | = ky  (67)
dr eq =2 g3 ! «q



LYAPUNOV ANALYSIS OF SLIDING MOTIONS 21

AV, (w)

— hg=k <00k >k (68)

Let k, > k; such that (65) is satisfied, then Theorem 7 shows that the
origin is locally asymptotically stable, and an estimate of its domain of
asymptotic stability is given by:

1+ 2k’
S, = {w€R2:Is* (s* — s) = k,and Isl < ———}.  (69)
12 2

1
2k)3

The sliding domain is:

D, = {ls**| < ky and 5 = 0} (70)

As in the previous example 7, in order to choose the two parameters (k,
and k,), one has to chose a compromise solution.

The following figures shows two simulations for the closed loop system
(k, = 1 and k, = 9 for k = 10):

—one with initial value (0.5, 0.5) for which ‘x’ and ‘y’ are indexed by

&1”

—the other with initial value (2, 2) for which ‘x’ and ‘y’ are indexed by
2.

3
Yo

2

1

0. ; X

S T

1 )
- L] 1 ) T 1

0 2 4 6 8 10

FIGURE 2 x and y versus time.
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3 2)
2
1
Wy
. \
-1 r
I
-1 0 1 j2
FIGURE 3 y versus x.
s=0
@) S 12
-4 -2 2 4
DS
-2
-4
FIGURE 4 S5, D, and simulation.
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APPENDIX

Proof of Theorem 1  Let us define A(e) = {w € R™: Is| < &}, and D(e) the
set of strictly positive numbers such that: S;5(a;; a,) N A(s) * .

D(e) is non empty and contains a subset ]0, ssup[: this comes directly
from the definition of S,,(a;; a,), H2 (9):

50'2(012) N{w € R" s =0} # &,

and H2 (12):

S,(o) contains a neighborhood of s = 0.

Let wy € S5(a;; ), thus under the hypothesis on (f; g, u) the solution
x(t) exists is continuous w.r.t time and defined for t = #,. And so is w(?).
" P1) First let us prove that: B

Ve € D(e), Ywg € (S),(ay; o) — Zl(s)), the solution x(f) of (1) can only
leaves the set (Sy5(ct; @) — A(e)) through @ A(e).

If this assumption is false, then, as x(t) is contlnuous

3T = ¢, such that x(T) € 9 (Sqp(ay; a2) - A(s)) — 0 A(g), and for T =
1 = t,, we have x(¢) € Slz(al, a,) — A(e), thus:

Vi(C" x() = V\(a,), and (A1)
V(1) = Vylay). (A2)
But, as x(T) € 9 (Sya(cy: @) — A(e)) — 8 A(e), we have either:
P1i) x(T) € (3 Sy(e})) N Sy(ery) or
P1ii) x(T) € (8 Sy(a)) N Sy(exy).
Suppose we have Pli) then (A1) yields:

Vi(CT x(T + 8)) — V,(C" x(T))
0

>0,for0>0>1t—T, (A3)
thus letting 6 — 0~ in (A3),

D, V,(C" X(T)) >0, (A4)

which contradicts hypothesis H2 (16).
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Suppose we have Plii) then a similar reasoning shows that:
D, V,(x(T)) > 0. (A5)
But hypothesis (14), (15) and (16) in H2 imply that:

TdS

D, Vy(x(T)) = V(Vy; 5) V- B <o, (A.6)

Thus (AS) and (A6) are contradictory.

P2) Ve € D(e), Yw, € (Sio(ay; ) — A(s)), let us define T§up(s; wo) =
to, the supremum time for which the solution w(z) is out of A(e). Let us
prove that T, (e; wo) exists and is finite. B

As wy € (Sqa(aty; @) — A(e)) and as the solution w(f) is time continu-
ous and defined for ¢t = ¢, then for t = ¢, sufficiently closed to t, the
solution w(¢) is out of ZX(s).

If Tsu]Is; wy) 1s infinite, then using function V1, one can construct a
strictly decreasing sequence (use a projection on line spanned by vector ¢
and H2 (16)) on a compact set ({s: V,(s) = «,} —]—e, &]) of R with no
limit, which is impossible.

P3) As, S;(a;) contains a neighbourhood of s = 0, and as §2(a2) N {w
€ R" s = 0} # J, then making ¢ — 0, the conclusions C1) and C2)
follows from P2 and P1.

Proof of Theorem 2 As in the proof of theorem 1, let us define A(e) and
D(e). Let wy € S;(o;), thus under the hypothesis on (f, g, u) the solution
x(t) exists is continuous w.r.t tlme and defined for ¢t = ¢,. And so is w(t)

Ve € D(¢g), Yw, € (S)(a)) — A(e)), let us define Toup(&: wo) = 1o, the
supremum time for which the solution w(f) is out of A(g). A similar
reasoning to the proof of theorem 1 prove—s that T,,,(g; w) exists and is
finite. Thus, as, for 0 < a = al, S;(a) contains a neighbourhood of s = 0,
then letting € — 0, the conclusions C1) and C2) follows.

Proof of Theorem 3 and 4  The proof is essentially the same as for
Theorem 1 (or Theorem 2) except that time-derivatives must be replaced
either by right or left time Dini derivatives, gradients must be replaced
either by right or left gradients. Moreover one must be aware of the use of
Zygmund’s lemma (see [5] p.9).



LYAPUNOV ANALYSIS OF SLIDING MOTIONS 25

Proof of Theorem 5  As in the proof of theorem 1, let us define A(e) and
D(e). .

Let wy € (Sa(ay; o) — Ale)).

P1) Conditions on V, show that the solution cannot cross S,(c,) (similar
reasoning as in the proof of theorem 1).

P2) Using results in [5, 6], as D is positively invariant for system (38)
then it is also positively invariant for (37) and for 0 < Isyl =z, = al, we
have: 0 = Is(f)l = z(f) = «a,. Moreover condition (39) means that for
arbitrary e, there exists a time T(e) such that Iz(f)l = ¢ for t = t, + T(e).
Consequently, s(f) € A(e) for t = 1, + T(e). B

P3) As §2(a2) N{w € R s = 0} # J, then making & — 0, the
conclusions C1) and C2) follows from P2 and P1.

Proof of Theorem 6 Hypothesis H1 to H3 and lemma 2 of [3] imply that
the solution is on D and can be continued to infinity or to the time it
reaches 9 D: the solution is thus described by (47). But, from H4, D is
positively invariant with respect to (47) and is included in the domain of
asymptotic stability of {O*}; therefore the solution tends to the origin.

Proof of Theorem 7 Notice that the notion of D, implies that the solution

in Fillipov’ sense stays on the sliding surface after hitting it (until the

solution reach the boundaries of D,): if not there exists a time (T) such that

the solution is on D, before T and out of D, at time T. Thus using a similar

reasoning as in the proof of theorem 1 one can obtain D, V,(CT x(T)) > 0

or D, Vz(CT x(T)) > 0 which are both in contradiction with Hypotl_lesis H1.
Let wy € S'(a), either:

the solution reaches D, which is included in the domain of asymptotic
stability of {O*} and thus tends to the origin,
or:

the solution never reaches D, and thus classical results on Lyapunov’s
functions leads to the conclusion.



