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A technique is developed for evaluation of eigenvalues in the solution of the differential
equation

dyldr* + (Ur)dyldr + N — )y = 0

which occurs in the problem of heat convection in laminar flow through a circular tube with
slip-flow (B > 1). A series solution requires the expansions of coefficients involving ex-
tremely large numbers. No work has been reported in the case of B > 1, because of its
computational complexity in the evaluation of the eigenvalues. In this paper, a matrix was
constructed and a computational algorithm was obtained to calculate the first four eigenval-
ues. Also, an asymptotic formula was developed to generate the full spectrum of eigenvalues.
The computational results for various values of B were obtained.

1. INTRODUCTION

In the solution of the problem of forced convection heat transfer in a
circular tube in laminar flow, the following ordinary differential equation
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is obtained after applying the separation-of-variables technique to the gov-
erning partial differential equation [1]:

d>yldr* + (1/ndyldr + N*(B — )y =0 (1.1)

The interval for the solution of Eq. (1.1) is 0 = r = 1, and the boundary
conditions are:

y(©0) =1 (1.2)
y1)=0 (1.3)

The first boundary condition arises from the physical condition that the
temperature must be finite at the centerline of the tube, and the second
boundary condition arises from the assumed boundary condition that the
temperature at the tube-wall is uniform.

The solution of Eq. (1.1) that satisfies the condition (1.2) may be found
by the method of Frobenius to be:

YN =Y ap* (1.4)
k=0
where the coefficients have the following recursion relationship:

4a+ Mg — a5 =0 (1.5)
The first two coefficients have the values:
ay=1, a, =—-\NB/4
To satisfy condition (1.3), the parameter A must take on an infinite set of

values (the eigenvalues for the Graetz Problem). The eigenvalues are
evaluated from the following relationship:

VLA =D g\ =S dN* =1+dN+d\ +d\ +..=0
k=0 k=0
(1.6)

where d, is the coefficient of A** by rearranging the terms of a,.
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One of the procedures used by previous investigators to determine the
eigenvalues for the case with B = 1 was to evaluate the coefficient g, to
some relative large value of k, and then to evaluate the coefficients d;. The
eigenvalues were then found as the solution of the resulting polynomial
equation obtained by truncating Eq. (1.6) at the appropriate term. This
technique has definite computational disadvantages, particularly in evalu-
ating the eigenvalues beyond the first two or three. The algebraic com-
plexity of the coefficients g, increases rapidly as k increases. Approxi-
mately, 5n terms are needed in Eq. (1.6) to determine the accurate value of
N, i.e., 20 terms would be required to determine \,. For the case with
= 1, Graetz found the first two eigenvalues only in 1883[2]. Later,
Abramowitz found the first five eigenvalues by using a rapid converging
series in 1953[3]. Sellars et al. obtained an asymptotic formula for the
larger eigenvalues in 1956[4] by using the WKB approximation [5] and
had generated the full spectrum of the eigenvalues.

For the case with 8 > 1, no work has been reported. The purpose of this
paper is to formulate a computationally effective technique for the calcu-
lation of eigenvalues for the case with 3 > 1. An asymptotic formula for 3
> 1 has been developed for large eigenvalues. Unfortunately, for 3 > 1, the
asymptotic formula will not give approximations with error less than 1
percent until n = 5. However, a computational algorithm has been spe-
cially developed for evaluating the first four eigenvalues. The combination
of the two formulas yields a full spectrum of eigenvalues for 3 > 1.

2. ASYMPTOTIC FORMULA FOR LARGE EIGENVALUES

In this section an asymptotic formula for the case with 3 > 1 is developed
by using the WKB approximation.
Let

y = e 2.1)

where g(r) satisfies the following differential equation
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g +g’+ %g’ +NB-r)=0 2.2)
An asymptotic solution is sought in the form

g=MAgy+g +N g+ .+ N Vg + (2.3)

So we have
g =N\g +g +N g . HN"Dg

gu — )\gou + 81” + )\—*lgzlr +.+ )\—(n-l)gn// + ..

Substituting g’ and g” in Eq. (2.3)

gy + g + N lg +..) + {INAg)? + (g,)F + N gy)? +..]

+2(N\gy'g) + 8’8 + )\_lgo’g3’ +..) + )\_lgl’g2' +...}

1 _
+ - {hgo g+ e+ ENB - =0
Comparing the coefficients of the same order of A, we have

g =iV -7 (2.4)

n 1 ! 1 !
Nogy' 12808 +'r‘g0 =0

therefore,
11 &
&' =50+ =) (2.5)
ro &
And since
Fir r
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therefore,

, 1.1 r
o' =5+ —— 2.6)
" (g))
By integrating Eq. (2.6), we obtain
g = —InVg'r 2.7

When A\ is large, the remaining terms in Eq. (2.3) are neglected. Substitu-
tions of Egs. (2.4) and (2.7) in Eq. (2.1) yield

y= eg(r) — e)\go+g|

= i Ve-gaero+—inVen

= MO VB=Ed) (VD
2B 4 g

V&o'r

or

Aen\f;VB-gzdg + Be—n\f;\ Bt

\/; (B_rz)m

(2.8)

where A and B are complex constants.

Eq. (2.8) is the WKB approximation and is valid for 0 < » = 1 and large
n. Now the coefficients A and B must be determined so that Eq. (2.8) will
correspond to the regular Eq. (1.1), where r is small. For small r, Eq. (2.8)
can be approximated by

NVBr —iNVBr
R= Ae\/_ * Bez — 2.9)
r@—r)
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When r is small, )\2([3 — rz) — )\2[3, the classical solution to the Eq. (1.1)
is given by Jo()\r\/ﬁ). On the other hand, for large Ar (r is small), the
asymptotic expression for JO()\r\/E) is

2 ™
JyArVB) = cos(r VB = ) (2.10)
BN 3

and thus for small r but large Ar, asymptotically, we have

) - Aen\\Er n Be—n\\Er
cosA\r VB — —) = (2.11)
Ve VB 4 Vrg =AY

A=@@— A | 2 i 2.12)
TAF \@

B o (B — r2)l/4 Leiﬂ'/“ (2.13)
V ’IT)\V\/E

Therefore,

and forO<r=1

2 r s
(r) = 4| cosn | VB — £ dE——) (2.14)
w 'rr)\r\/g fo 4

The boundary condition y(1) = 0 leads to

cos()\f;\/B—gzdg—g):O

and thus an asymptotic formula of the eigenvalues for large n is given by

NB = E T Ve - Eag frnoe @19

Let
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@ = [, Ve-ea 216)

The numerical result is shown in Table I. This asymptotic formula will not
give satisfying approximations until n = 5. This will be discussed later.

3. COMPUTATIONAL ALGORITHM FOR SMALL EIGENVALUES
In order to use Eq. (1.6) to evaluate the small eigenvalues, a method for
the evaluation of the coefficients d, is developed in this section. This

method involves the generation of a matrix and works out for cases B = 1
and 3 > 1 respectively.

(3.1) Expansion of a,

The coefficients a, can be determined from Eq. (1.5) for the case with § =
1 first as follows:

a, = —\N/2YD17
a, = [N*22 + \29921))

~IN@7 + 47 + \Y2P3?

as

a, = [N'2767 + \°(2° + 47 + 67) + N[22 W)

TABLE I  The first five eigenvalue for different 8 by asymptotic formula Eq. (2.15)

K, B 1B) Ai(B) Aa(B) As(B) AdB) As(B)
(0.00)  (1.00) (0.78521)  (3.001)  (7.002)  (11.003)  (15.004)  (19.005)
0.02 1.08 0.8408 2802  6.539 10.275 14.012 17.748
0.04 116 0.89037 2646  6.175 9.703 13.232 16.760
0.06 124 0.93641 2516 5.871 9.226 12.581 15.936
0.08 1.32 0.9798 2.405 5.611 8.818 12.024 15.230
0.10 1.40 1.02103 2308  5.385 8.462 11.538 14.615

0.12 1.48 1.06044 2222 5.184 8.147 11.110 14.072
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as = —{\°[2%6° + 827 + 4] + \¥(2* + 47 + 67 + 8)
+ NP (517

ag = {\*2%6710° + N*[2°67 + 87(2° + 47) + 10°(2° + 47 + 67)] + \'(2?
+ 42 4.4 105 + N[220

a; = —(\[2%6710° + 127[2%6 + 8%(2° + 47)]] + \'°[2°6" + 8°(2* + 47)
+ 10522+ 42+ 65 + 122 2> + 42 + 62 + 8H)] + N1222 + 42 + ..
+12%) + N 2P0 7))

ag = (\%226710°14% + \'°[2%6710% + 122[2%6* + 8*(2> + 47)] + 147[2%6°
+ 8727 + 47 + 10727 + 47 + 67)]] + \[2°67 + 8%(2° + 4)
+10°2° + 42+ 67) + 12°(2° + 47 + 67 + 8%) + 14727 + 47 +..,
+10%)] + N42% + 4% +..+ 14%) + NOYRP®’HY (3.1

(3.2) Matrix of A

The coefficients in Egs. (3.1) that multiply A, to a given power of 2k may
be collected and arranged in a matrix form, as shown below.

j 1 2 3 4 5 6 7
i aY \ Y " (\" M
1
1 - 0 0 0 0 0 0
4
4 1
bl — —_—
2 & o 0 0 0 0 0
—20 —1
3 pE— —
0 2304 2304 0 0 0 0
144 56 1
4 0 147456 147456 147456 0 0 0
—1424 -120 -1
5
0 0 14745600 14745600 14745600 0 0
6 0 0 14400 7024 220 1 0
2123366400 2123366400 2123366400 2123366400
7 0 0 —219456 —~24304 —364 -1
416579814400 416579814400 416579814400 416579814400
3 0 0 2822400 1596160 67424 560

106542032486400 106542032486400 106542032486400 106542032486400

It may be represented by a matrix A as follows:
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ay 0 0 0 0 0
) %) 0 0 0 0
0 a3, A33 0 0 0
A= 0 a4y &3 g 0 0 (3.2)
0 0 a3 A4 As; 0
- 0 0 %3 Ay s 8gg - o=

« o

It can be seen that the coefficients along the diagonal of the matrix A are
coefficients of Bessel function Jy(A7).
From the matrix and the expansions a; we observe that

_
4= 2(2)(1)(1 !)2
_ (=1
Qo= 55 5

- 2292

|
_ 2 _ @42 _ 21 2
yy = ay,2° = 0y, 29017 = 0,290 3 (s5))

5=1

(G0

% T

2
a3y = ay3 (21 + 49 = 0332707217 + 29 = 433200 3 (s))°

s=1

__ (=
a4‘4 - 2(2)(4)(4!)2

;= ay, (2*+ 4 +6) = a,, 270 + 22 + 3

3
=a,, 270017 +2° + 3% = ¢,, 290 T (5))

s=1
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gy = ag4 (2°6%) = a,, 204793712

s,—1

2
= a4,4 2(2)(2) [ zl (S2 + 1)2[ 2 (s1)2]]

5=1

where we define the summation for upper limit of zero as follows:

0
S (5 =0

s=1

From these observations we can deduce a formulation to calculate a;
directly related to the index without the expansions of each term a,. Thus,
the diagonal elements are given by:

(G
i o 3.3)
’ 22I(l~!)2
and for i < k
k sy—1
ik = i 2% D (satA- DRI (5p—y + A — 2)?
si=A sy=A-1
531 $—1
[..[ 22 (s, + 1) gl (s,211...01 (3.4)

where A = i — k, and then the coefficients in eigenfunction can be written
as

2%
d, = Zk a; 3.5

Example 1.

3 s—1
as3=ass 22T (s, + DT 570
$,=2 5=1
Gl VAP SN SR SO
2O T AT ST
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=1 412212 | 42012 | A2
= - == + 4217 +
14,745,600 23 4a 21

_ —142
14,745,600

Example 2.

s3—1 s,—1

ags = dag. 22(8 3 E (s3+2) [2 (s, + + 1Y 512]]

5=1

8 3-1 51 4-1 s~ 1
(=D

22(8)(8!)2 $7=2 5=1 5,=2 s=1

s5—1

+722(s2+1)[2 5,71

s;=1

e 2SR 62[3 1P+ 42317 + 20) + 713°1° + 4717

210(8')2
+ 29 + 5% 1% + 22 + 3]}

_ 1,596,160
106,542,032,486,400

7S (5 + DS s 1+ 65 (5, + DAY 57

85

These two examples illustrate that the formulation (3.4) is effective and
correct.
For the case with B > 1 the corresponding expansions of a, are as
follows:

ay

a

a

asz

ay

=1

I

— )\2‘3/[2(2)(1)(1 1)2]

IN22 + N*BH/R2PP 21

—IN*B2% + 4%) + NS Y2PD31)?

2262 + NOB2(2% + 47 + 6%) + ABY/[2P W)
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as = —(\°B[2%6” + 8%(2% + 4)] + NP2 + 47 + 67 + 8
+ NP5
ag = {A\°2%6°107 + \3B*[2%6% + 82(2% + 4%) + 10%(2> + 4° + 69)]
+NOBYQR% + 47+ 4+ 10%) + N2BOH2P (61
a; = —{(\*B[2%6°107 + 1272767 + 8°(2” + 47)] + N'/B’[2%6” + 8%(2?

+4%) +10°27 + 47 + 6) + 12727 + 47 + 67 + 8)] + B2’
+ 47 +..+ 125 + N4BTIRPDTH
ag = (\*226°10714% + \'9B7[2%6°10° + 12%[2%6° + 8%(2% + 4%)]
+ 14712767 + 8%(2% + 4%) + 10°(2° + 4* + 6)]] + N"*BU[2%6°
+ 822+ 4H) + 1002+ 42+ 6 + 12222+ 4+ 6%+ 8))
+ 1472 + 42 +..+ 109)] + N2 + 42 + ..+ 14

+ N B RO 3.1

rewritten in matrix form as

fa,,B 0 0 0 0 0 5
a1 32‘232 0 0 0 0
0 a3,2B 33,383 0 0 0
A =] 0 ay 214,3[32 314,4[34 0 0 (3.2)
0 0 as3Basp’asp> 0
L0 0 gy agBlagsBagB’ - -
Let
ay = a,p (3.6)

then
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4 = ay 3.7)

4. NUMERICAL RESULTS

The asymptotic formula and computational algorithm presented in the pre-
vious sections have been applied numerically to the evaluation of the
eigenvalues of the Graetz Problem in slip-flow.

(4.1) The first four eigenvalues calculated by the
computational algorithm

Since the sensitive coefficients a;, in Eq. (3.2) are becoming very small
for large k because of the factorial (k!)? in the denominators, but they are
essential for evaluating the eigenvalues, a scaling factor g was introduced
in the calculation, that is,

%

YN = SN =1+ N4+ N+ N+

k=0
< ’ d/ d’z d:
! k ’ 1 ! ! 3
=Y WNe¥ 5 =1+ N’ + W'+ N’ — +..
k=0 4 8 4 g
=S N*d, =1+ Nd, +\'dy + \d; +..= 0 4.1
k=0

Thus N = N'g and d'k = g**d,.

In order to assess the accuracy of the computation of Eq. (3.4), a com-
parison of the first ten d, using Mathcad 5.0 was made, as shown in Table
II. In the table, the data in the second column are the computational coef-
ficients d,, (with g = 10) using Eq. (3.4); the data in the fourth column are
the exact coefficients d, calculated by expansions using the symbolic pro-
cessor in Mathcad 5.0; the third column gives the equivalent decimal
values of the fourth column.

From the comparison we can see that the coefficient d;, computed by Eq.
(3.4) are always a little larger than that by Mathcad but the differences are
rather small. Based on the comparison we are convinced that the compu-
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TABLE II  Comparison of Coefficients d; (g = 10)

k Eq. (3.4) Simulation by Mathcad Version 5.0
Numeric equivalent Svmbolic solution
0 1.0000 1.00000 1
1 —18.7500 —18.750000 E-02 —3/16
2 79.2101  79.210069 E-04 73/9,216
3 —144.043 —144.04297 E-06 —59/409,600
4 145080  145.07980 E-08 603,793/416,197,814,400
5 —92.6715 —92.67144 E-10 —555,379/59,929,893,273,600
6 40.8619  40.861856 E-12 4,266,870,481/104,421,846,039,920,640,000
7 —13.1812 —13.181156 E-14 —37,217,872,147/282,356,671,691,945,410,560,000
8 3.24941  3.2451315 E-16 41,377,942,693,441/127,507,755,229,335,476,282,327,040,000

9 —0.646315 —0.62971547 E-18 —9,281,940,782,645,851/14,739,896,504,511,181,058,237,005,824E+6

tational results should have enough accuracy for accurate determination of
the eigenvalues for the first four eigenvalues.

A comparison of the eigenvalues for the Graetz Problem (B = 1)[3]
obtained in this study with those obtained previously by other researchers
is given in Table III. The agreement between the first three values in this
study and those obtained by Abramowitz is excellent.

Figure 1 shows the plot of eigenfunction with 25 terms. There are six
eigenvalues shown in the plot. The first four ones are correct, but the last
two is somewhat inaccurate due to the truncation of the eigenfunction
expression. Figure 2 shows the behavior of the eigenfunction vs. the num-
ber of coefficient terms. The eigenvalues and the convergency of the
eigenfunction are sensitive to the accuracy of the coefficients d,.

Figure 3 shows the plots of eigenfunction vs. various 3 (or Knudsen
number) for slip-flow. It shows that the eigenvalues decrease as 3 in-
creases. For 3 > 1 the plots appear unstable after the fifth root so that only

TABLE III  Comparison with previously known eigenvalues for § = 1

Sellar et al. [4] Jakob [6] Abramowitz [3] Present paper
n Ao Ao Ao \n
1 2.667 2.705 2.7043644 2.704
2 6.667 6.66 6.679032 6.679
3 10.667 10.3 10.67338 10.670
4 14.667 14.67* 14.67108 14.761
5 18.667 18.66987 17.255

“Attributed to Lee, Cherry, and Boelte.
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5 k=25g=10

05

FIGURE 1 The eigenfunction with 25 coefficient terms for 3 = 1, k = 25, and g = 10.

y(&')

FIGURE 2 Behavior of the eigenfunction vs. the number of coefficient terms for B = 1, k
= 25, and g = 10.
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Y(A')
1.0

LAAS RARAL RARAS RARAE RAALSE RARAS RAA/

;
i
;
;

AI
FIGURE 3 The effect of 3 on the eigenfunction.

the first four values are reliable. The possible cause for the instability is
that the truncation errors are magnified by the factor ' on a;, in the
modified matrix A. Values of the coefficients d’, are listed in Appendix for
B from 1 to 1.36 for k ranging from zero to 25, with a scaling factor of g
= 10. Table IV shows the eigenvalues for slip-flow with different (8 for the
first five values.

Figure 4 shows the plot of eigenfunction (1.4) vs. eigenvalues with 3 =
1; Figure 5 shows the case with = 1.08.

TABLE IV Eigenvalues for various 8

B Ay A, A Ay As

1.00 2.704 6.679 10.670 14.761 17.255
1.08 2.578 6.320 10.071 13.851 16.576
1.16 2.468 6.013 9.561 13.099 15.836
1.24 2.371 5.747 9.120 12.560 14.646
1.32 2.284 5.513 8.737 11.963 14.573
1.40 2.206 5.305 8.396 11.514 13.938

1.48 2.136 5.119 8.096 11.074 14.273
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y(rd)
1.0

0.5

0.0

OS5k o o )
0.2 04 0.8 0.8 1.0

FIGURE 4 Eigenfunction (1.4) with B = 1 for n = 4.

y ()
1.0
Y1i8=1.08
05
00 f————————=A——— N ————
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 5 Eigenfunction (1.4) with = 1 and 1.08 for n = 4.
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(4.2) Comparison of the eigenvalues by the asymptotic
formula and the computational algorithm

Table V shows the differences between the eigenvalues by Eq. (2.15) and
by Eq. (3.4). It shows that for the second values the maximum difference
is 3.5 %, for the third values the maximum difference is 2.0 % and for the
fourth values the maximum difference is only 1.4 %. That means the
maximum differences of the eigenvalues for n = 5 may be less than 1 %.

5. CONCLUSION

This paper presents a computational technique for evaluation of the eigen-
values of the Graetz Problem in slip-flow, which arises in convection heat
transfer in laminar flow in a circular tube. Prior to this work, because of
the computational complexity in the techniques used to evaluate the eigen-
values, the previous investigators have discussed the eigenvalues for the
case with B = 1 only. For the case with 3 > 1, no work was reported. The
formulation and asymptotic formula presented in this work yield a tech-
nique that is both computationally effective and relatively simple to apply.
Values for the first four eigenvalues for various values of 3 (> 1) can be
calculated by using the computational algorithm and the approximate
eigenvalues for n = 5 can be calculated by using the asymptotic formula.

Acknowledgement

The authors appreciate the comments and suggestions from the Associate
Editor and the anonymous referees.

TABLE V  Differences between the eigenvalues by Eq. (2.15) and by Eq. (3.4)

Kn B A,(B)% Ay (B)% A5(B)% A B)%
(0.00) (1.00) (11.0) (4.8) 3.1 (1.6)
0.02 1.08 8.7 3.5 2.0 1.4
0.04 1.16 7.2 2.7 1.5 1.0
0.06 1.24 6.1 2.2 1.2 0.2
0.08 1.32 53 1.8 0.9 0.5
0.10 1.40 4.6 1.5 0.8 0.2
0.12 1.48 4.0 1.3 0.6 0.3

*Au(B) = Ma(B) — Nal/A,
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APPENDIX

COEFFICIENT D' OF EIGENFUNCTION FOR DIFFERENT f

k 1.00 1.08 1.16 1.24 1.32

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 —18.7500 —20.7500 —22.7500 —24.7500 —26.7500

2 79.2101 98.2656 119.321 142.377 167.432

3 —144.043 —201.296 —271.689 —356.553 —457.224

4 145.080 229.024 344.257 497.614 696.594

5 —92.6715 —165.560 —277.502 —442.200 —676.202

6 40.8619 82.7280 54.757 272.024 454.598

7 —13.1812 =30.2737 —63.2459 —122.683 —224.130

8 3.24941 8.46654 19.7575 42.3029 84.5014

9 —0.646315 —1.88363 —4.88729 —11.5310 —25.1684

10 0.124692 0.363041 1.00579 2.57510 6.10308
11 —3.58121E-02 —7.81416E-02 —0.196144 —0.505606 —1.25918

12 1.48968E-02 2.45660E-02 4.68932E-02 1.02985E-01 0.243432

13 —5.81835E-03 —9.07529E-03 —1.47620E-02 —2.62552E-02 —5.21826E-02
14 1.82761E-03 2.97430E-03 4.78575E-03 7.83189E-03 1.34943E-02
15 —4.58083E-04 —7.98782E-04 —1.34809E-03 —2.23449E-03 —3.71120E-03
16 9.33666E-05 1.75660E-04 3.16460E-04 5.51241E-04 9.39192E-04
17 —1.57875E-05 —3.21078E-05 —6.20691E-05 —1.15009E-04 —2.05969E-04
18 2.25303E-06 4.95574E-06 1.02964E-05 2.03759E-05 3.86913E-05
19  —2.75302E-07 —6.55009E-07 —1.46339E-06 —3.09708E-06 —6.25517E-06
20 2.91544E-08 7.50298E-08 1.80276E-07 4.08225E-07 8.77967E-07
21 —2.70262E-09 —7.52384E-09 —1.94436E-08 —4.71180E-08 —1.07959E-07
22 2.22204E-10 6.68238E-10 1.85579E-09 4.81032E-09 1.17395E-08
23 —1.57586E-11 —5.16599E-11 —1.55104E-10 —4.31820E-10 —1.12584E-09
24 1.17557E-12 4.04916E-12 1.28004E-11 3.75388E-11 1.03039E-10
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COEFFICIENT D' OF EIGENFUNCTION FOR DIFFERENT (3

k 1.00 1.08 1.16 1.24 1.32

25 —3.96765E-14 —1.63832E-13 —6.01195E-13  —2.00029E-12  —6.12443E-12




