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This paper deals with stochastic stability of systems with Markovian jumps and Brownian
motion. Mainly, we present sufficient conditions for quadratic stabilization of Ito type sto-
chastic linear and nonlinear systems with Markovian jumps and Brownian motion using state
feedback control. We also prove the guaranteed cost property of the proposed control strategy
for the linear case.
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1 INTRODUCTION

Due to the need for modeling real world dynamic systems which may
experience abrupt changes in their structure and parameters caused by
component failures or repairs, changing environmental disturbances and
subsystem interconnections, linear systems with Markovian jumping pa-
rameters have received recently a remarkable attention (see for example Ji
and Chizeck [1], Wonham [2], Sworder [3], Mariton and Bertrand [4],
Mariton [5, 6], Boukas [7] and references therein). For systems with
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Brownian motion, there exists in the literature many references dealing
with the stochastic stability, see for example the works of Florchinger [8],
Kushner [9], Willems and Willems [10], Khasminskii [11] and the refer-
ences therein.

Most of the presently used analysis and design tools for feedback con-
trol systems presuppose that a sufficiently linear model of the process to be
controlled is available. This model is not the true representation of the
physical system under study since we always make a trade off between the
model accuracy and the model complexity. The next step should be the use
of a robust control law which enables the designer to explicitly consider
the discrepancies between the model and the real process. Theoretically,
this approach allows the designer to get results that are not only valid for
the approximate model but do hold with certainty for the real process also.

In the control literature, the uncertain systems has received much atten-
tion. The quantity of papers and books dealing with this type of problem
justifies from the practical point of view the interest of this topics. The
Brownian motion, known also as Wiener process is the most studied and
the most fascinating process. Many results for linear systems with Brown-
ian motion exist. But to the best of our knowledge no results for linear
systems with jumps and Brownian motion exists. OQur primary aim is then
to study the stochastic stability of this class of systems.

The main idea of this paper consists to use the Lyapunov function
techniques to establish a sufficient condition of stability for systems with
Markovian jumps and Brownian motion. In linear case, we prove that if
the diffusion coefficient is upper bounded by a positive definite matrix (i.e.
for two matrices C and D, when we say that the matrix inequality C < D
holds, this means that C — D is a nonnegative matrix) then the system
under consideration is stochastically stable. We state and prove the guar-
anteed cost property of the proposed control policy for linear system. We
also establish a stochastic stability result for nonlinear system.

The paper is organized as follows. In section 2, we consider the linear
system. Three theorems are presented and proved. Theorem 2.1 gives suf-
ficient condition of stability of the system under consideration. Theorem
2.2 is an application of Theorem 2.1. Theorem 2.3 establishes the guaran-
teed cost property. In section 3, we consider the nonlinear system. A sto-
chastic stability result is given. The contribution of the paper is summa-
rized in section 4.
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2 LINEAR SYSTEM

In this section, we will give a description of the class of systems under
study. We will also state and prove the stochastic stability results.

2.1 Problem Statement

Let us consider a class of linear systems with Markovian jumps and Brown-
ian motion described by:

k
dx(1) = [A(E(0))x(2) + B(&())u()] dr + ;} &i&D)x(0)dW; (1

x(0) = x, @)

where the vector x(¢) € IR" is the state of the system and the vector u(z) €
IR™ is the control, and the vector W), (i = 1,..., k) denotes the distur-
bance, assumed to be standard Brownian motion. The term Ef;l g(&)x
() dW; represents the system uncertainty. The parameter &(¢) represents a
continuous discrete-state Markov process taking values in a finite set B =
{1, 2,..., s} with transition probability, Pr{&(t + &) = B|&(t) = a}, given
by:

8 + o(31), ifa#
Prig(t + 81) = BE() = o} = ?“i ;:;SOt( J:)O(Bg,a if S g ©®

In this relation, g,g stands for the transition probability rate from mode o
to mode 3 and satisfies the following relations:

Goup =0 4)
Qo = E an (5)
BeB,a#B

In Eq. (1), A(&(?)), B(&(t)) and g,(&(¢)) are appropriately dimensioned ma-
trices. These matrices are constant for a given value of (7).
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In this paper, we will assume that the Markov process &(f) and the noise
processes W,(¢) are independent. We also assume that perfect state infor-
mation is available for feedback.

In order to control the system described by Eq. (1), we use the optimal
control approach. The optimization problem consists of minimizing the
cost function, J defined by:

J= Elf X' (DQEM)x(r) + u' (DR(E@))u(r)dt (6)

0

subject to the constraints (1)~(2).

In relation (6), the cost weighting matrices R(&(7)) and Q(&(¢)) are sym-
metric with R(&(7)) positive definite and Q(&(7)) positive semi-definite for
each &(1).

In the following, we will refer to the jump linear systems described by
the following differential equation:

dx(r) = [A(E()x(r) + B(&(t)u(1)ldt (M
x(0) = x, ®)

as a nominal system of system (1).

Let x(t, xy, o, u) represent the corresponding solution of system (1) at
time ¢ when the control u(.) is used and the initial conditions are respec-
tively x, and a.

The stability is always the first requirement for any control design. For
our class of systems, we will use the concept of mean square stochastic
stability given by the following definition:

Dermnirion 2.1 The system (1)—(3) is said to be stochastically stabilizable
if, for all finite x, € IR" and a € B, there exists a state feedback control
with finite constant matrix K(a), i.e. u(t) = — K(o)x(t), such that the
following relation holds:

T
%inl E,, {f X' (1, xg, €ct, WX(t, Xg, 0, u)dtl Xo, f =< x4 P x, )
.
0

with P is a symmetric and positive-definite matrix
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In the remainder of this paper, we assume that the nominal system
described by Eq. (1) is stochastically stable and the first component of the
state vector, i.e. x(f) in each mode is assumed to be available for feedback.

It was established (see Ji and Chizeck [1] (1990)) that the solution of
the optimization problem without the disturbance, W(?), is given by

u(a, t) = — Ly(a)x(t), when &(f) = o (10)
where
Ly(a) = R™'(a)B' (a)K () a1

The matrix Ky(o) is the solution of the following coupled algebraic
Riccati equations:

A'()Ky(a) + Ky(a)A(o) — Ko(a)B(a)R_l(a)B’(a)KO(OL) + gooKo(at)

+ Y 4upKo(B) + Q(a) = 0,Va e B (12)
B=1B#«

In the rest of this section, we will construct the control law that stabi-
lizes the system when the disturbance is upper bounded and also discuss
the guaranteed cost property.

2.2 Main Results

In this subsection, we first give a theorem which states the condition for
the mean square stability of the system described by Eqgs. (1)—(3).

TreEOREM 2.1 If there exist positive definite matrices Q(o) and R(o) such

that the following nonlinear coupled matrix equation has a positive defi-
nite solution K(a),

A'(0)K(a) + K(a)A(a) — K(o)B(a) R Y(a)B'(a)K(ax) + oo K(ar)

k R
+ ; g ()K(a)g(a) + s%# 4osK(B) + Q(0) =0, eB  (13)
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Then the system (1)—(3) is stochastically stable under the feedback control
law u = —L(a)x(t) with

L(e) = R™()B' (@)K (c) (14)

Proof Let the Lyapunov function V(x, o) be:
Vix, o) = x'(£)K(a)x(t) (15)
Consider weak infinitesimal operator A of the joint process (&(f), x(2))

which is the natural analogue of the deterministic derivative of the
Lyapunov function and is defined as follows:

AV(x, @) = lim 3 [BVOE + ), &+ D), &)
= o] — Vix(r), €0 = o] (16)
The weak infinitesimal operator is then given by:
AV(x, ) = x/<t>{[A<a) ~ B(e)R™!()B' ()K(c)] K(cx)

+ K(a)[A(et) = B()R™'()B'()K(et)] + ﬁgB anK(B)}X(t)

k
+ x’(t)LElg’i(a)K(a)gi(a)}x(t) (17)
It is easy to see that
AV(x, @) = x'(1]Q(at) + L' ()R(et)L(e)}x(7) (18)
Therefore,

AV o) NulQ@) + K()B(R™ (@)B'()K(w)]
Vix, ) N ax(K(t))

19)

Then by Dynkin’s formula and the Bellman-Gronwall lemma for all a €
B. it follows that:
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EV(x, )] = exp(—yD)V(xp, ) (20)

where

, [Mm[Q(a) + K(Ot)B(a)R—l(a)B'(a)K(a)]}
Y = min

21
Vol K(0)] @h

«€B

Thus, after some manipulations (see Ji and Chizeck [1]) the Eq. (20) gives:

lim E{ f zx’(t)K(a)x(t)dt

0, £0) = a} = —il—x(')K(a)xo (22)

Since K(a) > 0 for each a € B, thus

] T , K(a)
?_}nl E[fo x'()x(0)dtx,, £(0) = a] =X, 1’233)( mxo (23)
which proves the theorem. O

Notice that Eq. (13) is nonlinear and its solution is not easy to obtain.
Next theorem gives a sufficient condition that avoids the solution of Eq.
(13).

THEOREM 2.2  Let Ky(a) denote the solution of the coupled algebraic
Riccati equation (12). If the nominal system (7) is stochastically stable and
there exists a positive definite matrices Q*(a) such that the following
relation holds:

~

gie)K(a)ga) = Q*(ar) (24)

i=1

Then the system (1) is stochastically stable.

Proof Let Ky(o) be the solution of the coupled algebraic Riccati equa-
tions (12), with Q(a) = Q*(a) + €Q,, where Q; is a positive definite
symmetric matrix and € is a positive number. It is easy to see that Ky(o) is
solution of the following equation:
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A'(a)Ky(a) + Ky(a)A(a) — KO(OL)B(OL)R_1(0L)B/(OL)K0(OL) + GuuKo(®r)

k s
+ 2 &l (@Ky(gle) + X 9apKo(B)
Pt p=1p%a

k
= —eQ, — | O¥(a) — ; gl (W)Ky()ga)|, a€B (25)

Notice that eQ, + Q*(a) — f;l g/ (@)K (aw)g(aw) > 0, and Eq. (25) is
an equation of type (13), therefore from theorem 2.1 the result follows.O

Remark The control law, u(a, (x(#)) = — Ky(o)x(t), stabilizes both the
nominal and the uncertain systems.

The following theorem states the condition for the guaranteed cost prop-
erty.

THEOREM 2.3 Assume that the system described by the state equation
(1)—(3) is governed by the control law u = — L(a) x(t) with L(«) given by

(13), then the value of the performance index (6) for the system is given by
the function:

S(x, £(0) = @) = xoK(a)x, (26)
where K(o) is the matrix solution of equations (12).

Proof Using Lyapunov function (15), the value of the performance index
(6) for the system (1)—(3) may be estimated as follows:

E [ [} ooeonn + u'(t)R(ga))u(z)]dt]

I

{7 1 Q&) + K(ea)BEm)R™ E0)B E)K(ED) ()]

IA

~ 7 avto, o
= £ [ = tim - {E{ v + ), €0+ i, €0, W)

— V(x(0), e(t»}dt
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= B~ tim 0 EIVOk + DREGE + D), €6, W)

= V(x(kh), &(kh)) ]
= — E{V(x(t = =), §(t = =)lxg, £(0) = o)} + V(xp, @) 27)

From inequality (19) the first term on the right-hand side of (27) is zero.
Thus since the left-hand side of inequality (27) is the cost to go from (x,,
&0) = a) for the system (1)-(3), and the right-hand side equals the
Lyapunov function:

Vixg, £0) = ) = xy'K(e)x, (28)

The Theorem 2.3 is then proven. o

3 NONLINEAR SYSTEM

In this section, we will discuss the stochastic stability of nonlinear sys-
tems. Unlike the linear system, the main difficulty here is how to construct
the desired control law.

3.1 System and Assumptions

We consider the class of nonlinear systems described by:

k
dx(t) = [A(x(?), &(1)) + B(x(1), &())u(D))dt + 21 gi{x(1), &(1))dw;
. (29)

where the vector x(¢) € IR" is the state of the system and the vector u(?) €
IR™ is the control. A(x, &) and B(x, &) are vectors of appropriate dimen-
sions. g(x(?), &(?)) is a n-dimensional vector. Wi(¢), (i = 1,..., k) are inde-
pendent Brownian motion. &(f) represents the continuous discrete-state
Markov process taking values in a finite set B = {1, 2,..., s} with transition
probability, Pr{é(t + 8¢) = Bl&(f) = a}, given by (3).
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In the rest of this subsection, we will give some assumptions which will
allow us to state the sufficient condition for the the stochastic stability of
the class of nonlinear systems with Markovian jumps and Brownian mo-
tion. Our first assumption is introduced to guarantee the existence of so-
lutions of the state equations.

AssumptioN 3.1.  For each o € B, A(.), B(.), and g;(.) are Lipschitz con-
tinuous in (x, a), and g;(.) is a predictable process.
Let the stochastic Lyapunov function V(o, x) be defined by

Via, x) = x'P(a)x (30)
where P(a) is a symmetric positive definite matrix.
AssumpTiON 3.2.  Let the weak infinitesimal operator of the process {&(t),
x(t), t € [0, T]} (where x(t) is the solution of the nominal model) be defined

by:

AgV(a, x) = ViV(o, )A(x, o, 1) + dugV (B, X) (31)
BB

where V\ denotes the transpose of gradient operation. We also require that
there is a constant y; > 0 such that

AV, x) = =y, V(a, x) (32)

The next assumption is about the boundedness of the diffusion coeffi-
cients.

K &x(t), K (a)g(x(1), o)
[B (x(2), @)V, V(a, x|

AssumpTiON 3.3. Assume that the quantity

satisfies the following:

=1 g(x(r), aK(0)g(x(1), @) [= y(x, o, 1), if |B'(x(r). @)V, V(ax, )| # 0
|B'(x(1), )V, Ve, x)F = 0 if [B'(x(1), )V, V(ew, )" = 0

(33)

Y (x, o, t) is a nonnegative function of x, o and t.
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3.2 Controller Construction and the Concept of Stability

In this section, we proceed with the construction of the control law u*(.)
which will later be shown to guarantee the stochastic stability of the class
of systems under study.

For each a € B, let us choose any nonnegative function y(x, c, ?) that is
continuous in (x, 7) and satisfying the following:

_ 2o x(n), )K(@)g (x(0), @)
YD B (x(1), )V (e, )|
= 0 otherwise

when ||B’ (x(7), @) V, V(e, x)”2 #0
(34)
We define the controller by the following expression:

u*(x, a, 1) := — y(x, a, )B'(x, o, )V, V(v X) (35)

3.3 Main Result

In this section, we will prove that the control law given by Eq. (35)
stabilizes the class of nonlinear systems with Markovian jumps and
Brownian motion under study.

THeOREM 3.1.  With assumptions 3.1 and 3.3, and the control law (35), the
stochastic nonlinear system with jumps (29) and (2) is stochastically

stable.

Proof Consider the weak infinitesimal operator A of the process {£, x(t),
W{(#), ¢t € [0, T]}, which is given by (see Kushner [9]):

AV(a, x) = V. V(o x) {Ax, o, 1) + Blx, o, u | + 3 q,gV(B, x)
geB
k
+ 21 gi(x(t), a)K(a)gi(x(1), @)

= A V(a, x) — V. V(a, x)B(x, &, £)y(x, o, )B' (x, e, 1)V V(ax, x)
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k
+ E g’,(x(t), a)K(a)gi(x(t)’ OL)

i=

= A Vo, x) = y(x, o, D||B' (x, &, )V V(ex, x)|*

k
+ ; 8i(x(1), a)K(a)g(x(1), o)
=AW, x) = — v V(a, x) (36)

Then by the same argument of the end of the proof of Theorem 2.1, the
proof of this theorem is completed. O

CONCLUSION AND FUTURE DIRECTIONS

In this paper we have proposed a stabilization procedure for the class of
linear and nonlinear systems with Markovian jumps and Brownian motion.
We designed a control strategy which ensures both stability and guaran-
teed cost property for the class of linear systems with Markovian jumps
and Brownian motion, we also designed a control law which guarantees
the stability of the class of nonlinear systems. The results have been ob-
tained under the assumptions that the continuous Markov process &(f) has
a finite state space and the perfect observability of the continuous state x(f)
in each mode. Other problems can be investigated for instance the design
of a robust controller, the case of imperfect state, the case with uncertainty
on the jumps.
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