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A point mapping analysis is employed to investigate the stability of periodic systems.
The method is applied to simplified rotorcraft models. The proposed approach is
based on a procedure to obtain an analytical expression for the period-to-period
mapping description of system’s dynamics, and its dependence on system’s parameters.
Analytical stability and bifurcation conditions are then determined and expressed as
functional relations between important system parameters. The method is applied to
investigate the parametric stability of flapping motion of a rotor and the ground
resonance problem encountered in rotorcraft dynamics. It is shown that the proposed
approach provides very accurate results when compared with direct numerical results
which are assumed to be an “exact solution” for the purpose of this study. It is also
demonstrated that the point mapping method yields more accurate results than the
widely used classical perturbation analysis. The ability to perform analytical stability
studies of systems with multiple degrees-of-freedom is an important feature of the
proposed approach since most existing analysis methods are applicable to single
degree-of-freedom systems. Stability analysis of higher dimensional systems, such as
the ground resonance problems, by perturbation methods is not straightforward, and
is usually very cumbersome.

Keywords: Poincaré map; Periodic solutions; Stability; Bifurcation; Rotorcraft

1. INTRODUCTION

Many problems of rotorcraft dynamics are described by differential
equations with periodically varying coefficients. This class of systems
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is of great theoretical and practical importance because of its many
applications in various fields of science and engineering. Stability
analysis and bifurcation studies predicting emergence of new periodic
solutions while varying system’s parameters (bifurcation analysis), are
among the most important topics of research for this class of systems.

A variety of analysis methods have been applied to stability analysis
of periodic systems. They include Hill’s infinite determinant method
[21,29], various perturbation methods [22], the averaging methods
[4,22,29], and Floquet theory combined with numerical integration
[8,11-13,23,27]. It is well established that Hill’s method is not
convenient for numerical computations. This is because it requires
computation of large determinants to determine the transition between
stable and unstable regions in the parameter space. Perturbation
methods are also limited in application since they are based on
expanding the solution in terms of a small parameter that multiplies
the periodic terms. When the parameter is not small the accuracy of
the solution is very poor. Moreover, increasing the order of approx-
imate solution is usually difficult and does not guarantee uniform
convergence to the true solution. Averaging methods are also restricted
to systems that possess small parameters and slowly varying ampli-
tudes, and suffer from similar drawbacks in accuracy as those of
perturbation methods, see [23]. Several methods have been proposed
to study stability of periodic solutions using numerical integration.
These methods are based on approximating the periodic function by
special functions, for example step functions, Fourier expansion, or
Chebyshev polynomials. An alternative integration procedure usually
employs various predictor—corrector methods to obtain the transition
matrix from which stability conditions are derived numerically. The
limitation of this approach is that analytical dependence on parameters
is difficult to obtain and, therefore, it is usually not computed.
Derivation of parametric dependence requires symbolic inversion of
large matrices which is impractical for systems with a large number of
degrees-of-freedom (see [27]).

In this paper, a point mapping approach is used to derive analytical
conditions for stability and bifurcation of periodic equations describ-
ing rotorcraft dynamics. The idea of point mapping was first intro-
duced by Poincaré [25]. It is based on expressing system’s dynamics in
terms of a period-to-period mapping, thus converting the periodic
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system into a set of time-invariant discrete-time equations. In the
discrete-time representation of the system dynamics, conditions for
stability and bifurcation of solutions are expressed in terms of
algebraic equations, see [2,18]. The difficulty of applying point
mapping method lies in obtaining an analytical expression for the
discrete-time representation of a general periodic system. The method
of obtaining a point mapping for systems used here was first proposed
by Flashner [9], and Flashner and Hsu [10]. The method was modified
to include dependence on parameters and applied to the analysis of
both autonomous and nonautonomous systems, see [15,16].

In the present study, we use symbolic manipulation to obtain a
discrete-time representation of rotorcraft dynamics problems of one
and two degrees-of-freedom in an analytical form employing the
algorithm given by Flashner and Hsu [10]. The matrix determining the
stability characteristics of the system is obtained by matrix multipli-
cation performed symbolically resulting in an analytical expression for
the dependence of the matrix on system’s parameters. Consequently,
analytical expressions for stability and bifurcation can be derived using
well-known results for discrete-time systems, see [20]. An advantage
of the proposed approach is that the formalism applies equally well
to multiple degrees-of-freedom systems for which analytical stability
and bifurcation conditions are difficult to derive using other methods
of analysis.

The paper is organized as follows. In Section 2, the theory of point
mappings, and conditions for stability and bifurcation of periodic
solutions of discrete-time systems are presented. The method is applied
to study flapping motion of a rotorcraft in Section 4. Stability
and bifurcation conditions to various periodic solutions are derived
and compared to other methods of solution. In Section 5, stability and
bifurcation conditions for a two degrees-of-freedom ground resonance
model are derived. Concluding remarks appear in Section 6.

2. POINT MAPPING ANALYSIS

Consider a dynamical system described by a set of N ordinary
differential equations

(1) = £(1,x(1),5), (1)



332 H. FLASHNER AND R.S. GUTTALU

where 1 € R* denotes time, x € RY is the state vector, s € R” is a
parameter vector, and f:R* xRV xRY—R" is analytic in the
components of x and of s. In addition, f is periodic in ¢ with period
T, ie. f(t,x(?),s)=1(t+ T,x(¢),s). Define the dynamic relationship
between the state of the system at the beginning of a period to the state
at the end of the same period. This relationship is given by a set of
difference equations, called a point mapping or the Poincaré map,
expressed as follows

Xnt+1 = G(X,,,S), (2)

where x,,,; and x,, are the states of the system at t=(n+1)7T and
t=nT, respectively. Note that since f is analytic, the equations in (1)
satisfy Lipschitz conditions and therefore G is one to one for a fixed
value of s.

21. Periodic Solutions

Given a fixed parameter vector s € S*, a periodic solution of period
KT, K € ", of the dynamical system (1) is given by the function
x*(t;8): R — R satisfying the following equations:
x*(t;8) = f(z,x*(¢;8),8) V>0,
(3)
x*(t;8) = x*(t + KT;s).

Define z(f) =x(¢) — x*(¢;s) as the perturbation of the state x about
the periodic solution x*. Then, the equations of motion (1) can be
written as

z(t) = f(z,2(1),s;x")

= A(t,8)z(t) + irk(t,z(t),s; x*), 4)
k=2

where the matrix A(7) € R¥*" is given by

of(t, x,s)]

Al = | )

and ri(¢,z(2),s; x*) is a vector of all polynomials of degree k in the
components of z(z). It is clear that A(¢) is periodic in ¢ of period KT.
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In order to analyze these periodic solutions using point mappings,
the notion of a P-K solution is employed. A P-K solution of the
point mapping (2) for some s € S* € R, consists of K distinct
points xj’f(s), j=1,2,...,K, such that

X;+l(s) = G(Xj(s)’s)’ .]= 1929' .. 5K_ 1;

. . (6)
X;(5) = G(xk(s).9).

It is assumed that P-K solutions satisfying (6) exists Vs € S*. Finding
a P-K solution of a point mapping in Eq. (2) is equivalent to finding
a periodic solution of the corresponding continuous-time system in
Eq. (1) that satisfies Eq. (3). It should also be noted that, provided
one can determine the point map G(Xx,s), finding a P-K solution
requires solving a set of N algebraic equations in N unknowns given
in Eq. (6). This is in contrast to finding periodic solutions using the
original continuous-time description which requires a search for a
time-dependent function x*(¢;s) in the space of periodic functions.
Note also that an equilibrium point x* of (1), i.e. a point that
satisfies f(z,x* s*)=0 for all 1> t*, t* € R™", is clearly a P-1 solution
of the corresponding point mapping (2).

As in the case of continuous time equations, the point mapping
(2) can be expressed as a perturbation about a given periodic solution.
Let x; be a point that belongs to a P-K solution. Then, Eq. (2) can be
written as

o0
Zmi1 = H(S)z +Zqi(zm,s; x;), m=12,... (7)

=2
where z, = x((K+m)T) —x; and ¢;(z»,s;X;) is a vector of all
polynomials of degree i in the components of z,. The matrix

H(s) € RY* " is given by

H(s) = Hg(s)Hg-1(s)Hg—2(s) - - - Hi (s), (®)
where
e - [ ©)



334 H. FLASHNER AND R.S. GUTTALU

2.2, Stability and Bifurcation Conditions

Stability of a P-K solution can be expressed in terms of the
eigenvalues \;(H(s)), i=1,..., N, of the matrix H(s) as follows:

(a) A P-K solution of (2) is asymptotically stable if and only if
|Mi(H(s))| <1, foralli, i=1,...,N. (10)
(b) A P-K solution of (2) is unstable if
[Ai(H(s))| > 1, forsomei, i=1,...,N. (11)
(c) Linear stability analysis is inconclusive if

[Ai(H(s))| =1, forsomei, i=1,...,N. (12)

Let condition (12) be satisfied for some s =s,. If, in addition,
SvEE)I| >0 (13
ds'™’ s—so

holds, then the given P-K solution looses stability.
From implicit function theorem, it follows that if for some s € S
there exists an integer M such that

det(I — HM(s)) = 0, (14)
then a bifurcation of a P-K solution to a P-MK solution may occur.
Equivalently, a bifurcation from a P-K solution to a P-MK solution
may occur if for some i, i=1,2,...,N,

IN(HE)M =1, (15)

where J; is an eigenvalue of H(s).
Using Eq. (14), the following conditions are obtained:

(a) Bifurcation of P-K — P-K:

det(I — H) = 0. (16)
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(b) Bifurcation of P-K— P-2K:

det(I + H) = 0. (17)

(c) Bifurcation of P-K— P-MK:

det(I+HM/?) =0, M even, M/2 even,
detI—-H+H?-—H®... + HM?2-1y =0, M even, M/2 odd,
detI+H+H?+H>-.. + HY 1) =0, M odd.

(18)

It should be noted that for two-dimensional Hamiltonian systems
(N=2), Eq. (14) is satisfied for all z. Therefore, a P-K solution
cannot loose stability via bifurcations to P-MK solutions with
M >2. The mechanism of stability loss for Hamiltonian systems is
only via bifurcations to a new P-K or to a P-2K solutions.

3. DERIVATION OF POINT MAPPING REPRESENTATION OF
SYSTEM DYNAMICS

The procedure to obtain approximate point mappings used in this
study was first introduced by Flashner [9] and Flashner and Hsu
[10]. For a modification of this procedure see [15]. The underlying
philosophy and the proposed procedure are presented in the
following.

3.1. Jets and Truncation Operation

Since the function f(z,x(?),s) is analytic, it can be expressed by a
series of the form

4
f(r,x,8) =p(t,x,8) = Y _ b, (x;- - x, (19)

where p(¢,x,s) denotes a vector homogeneous polynomial of degree
P in the state variables x;, i=1,2,...,N. The symbol ZP denotes
summation over all sequences ij,...,i, with 0<i;<N for each j,
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Zj'.:l ij=r and r=1,2,...,N. In other words, a homogeneous
polynomial of degree P contains terms with sum of the powers of x;
(for i=1,2,...,N) less than or equal to P. To abbreviate notation,
denote this set of indices ij,...,i, by E, Then we denote the
coefficients of the homogeneous polynomial in Eq. (19) by the sym-
bol bgf )(t). These coefficients, in general, can be functions of the
parameter vector s.

The numerical algorithm for obtaining a point map is based on
approximating polynomial functions by truncating at some degree k.
Let p(z,x) be a polynomial of degree greater than k. Define the
truncation operation at degree k denoted by

p(t, x) = p(t,x) ZbE, O3y X, (20)

to be the polynomial formed by taking only those terms whose
degree is k or less. Let p(z,x) and q(z,x) be two vector polynomials,
then the truncation operation obeys the following rules (Poston and
Stewart [26]):

pra =pF+gk, (21)

pa-=p"q". (22)

If q(¢,x) does not contain terms that are free of the components of x
then

patx) =P @ () - (23)

If the function f(¢,x,s) is not a finite order polynomial but is
analytic for all x (and for a given s), it can be represented by a
Taylor series as an infinite polynomial (P — oo in (19)). In this case
f(¢,x,s) can be approximated by a k-jet denoted by j*f, that is, by a
Taylor series expansion about a point X, truncated at degree k. In
terms of this truncation notation we can express the k-jet’s behavior
with respect to sums, products and composition (the jet analog of
the chain rule). For analytic vector functions p(z,x) and q(¢,x), the
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following equalities hold (Poston and Stewart [26]):

i*(p+q) =j*p +j*q, (24)
ik e 25
7 (p*q) =j*p*jkq, (25)
ik — 7k o kq" 2
J*(poq) =j*pojkq . (26)

3.2. Computation of Point Mappings

The computational algorithm for evaluating a point mapping is
based on the fact that the operations of truncation and telescoping
on polynomials can be interchanged. Moreover, the Runge—Kutta
method of integration can be expressed as a sequence of polynomial
telescoping and truncation operations which finally results in a
truncated polynomial expression for the point mapping G(x,s) of
Eq. (2).

To integrate Eq. (1), the algorithm uses the Runge—Kutta method
which can be formulated as follows (see Shampine [28]):

X(ty +h) =x(t,) + h idmkm(t, X), (27)

m=1

where M is the order of the Runge—Kutta method, 4 is the time
step, and d,, are certain constants determined by the Runge—Kutta
method. The vectors k,, for the differential Egs. (1) are given by

ki (t,x) = f(t, + ham, x(t,) + cmkm-1,8), m=1,2,...,M. (28)

The constants a,, and ¢, are given by the particular Runge-Kutta
method to be used with a¢; =0 and ¢; =0.

To derive the algorithm, the period T is divided into N, sub-
intervals of length A= T/N,. We are interested in computing a k-jet
of the point mapping G in (2). Let m=1 in Eq. (27) and let
X(t,)=x(nT+({— Dh)=x with 1 <i<N, If f(¢,x,s) is vector poly-
nomial in x given by (19) (possibly with P — o00), then the k-jet of



338 H. FLASHNER AND R.S. GUTTALU

the function k(z, x) is given by

k
Ma(ix) =3O8 %, x;, = pi(is ), (29)
where
mgl) =1, r=1,2 k
. E, ] IRt RAS]
‘%$={, (30)
Ogg,  i=2,...,N; r=12,...,k

The coefficients )3z are defined in Eq. (36). The vector pi(i;x) is a
homogeneous vector polynomial of degree k. To evaluate the k-jets
of k,,, m=2,3,..., M, we note that

k
X(tp) + cm(l)km—l (i; X) = Z(I)OZ(E':‘)X,‘]' - X,
_Gx), m=25..,M, (1)

where
(i) p (m=1)
. emby, 7, r#1,
Dol = . (32)
e, by, r=1 i =12...,N
and
e, =[00--010 --- 00, (33)

where ¢;, is a column vector such that all of its entries are zero except
the i,th entry which is one. Here, r}’(i;x) denotes a homogeneous
vector polynomial of degree k. Using Eq. (28) and identity (26), we
have

T x) = TG = D+ hamy 1 (5 %))

= B (i %). (34
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Evaluation of the coefficients (i)b(E'") involves ‘telescoping’ of poly-
nomials. This can be done in many different ways, for example, by
using the multinomial theorem (see Flashner and Hsu [10]). The
‘telescoping’ operation can be carried out by using only one procedure
that performs multiplication of two scalar polynomials. This approach
is very efficient computationally and allows inclusion of parameter
dependence. It also gives sufficient freedom to allow various
truncation schemes to be explained later. To evaluate the k-jet at
t=nT+ h, consider Eq. (27) and observe that

M k
JX(tp +ih) = x+ Y hdwp} (%) = OB xi+ - X3y = Qi(6;X),
m=1

(35)

where Q(j; x) is a k-degree vector polynomial whose coefficients are
given by

RSM  d, Db r# 1,
OB, =

(36)
e, +hSM d, (")b(':’), r=1; i,=12,...,N.

Using the relations given in Eqs. (29)—(34) and (36) one can
calculate the coefficients Gz, in terms of the coefficients VbY) of
k-jet of differential equation given in (19). Substitution of these
coefficients in (35) results in the k-jet approximation of a point
mapping over the time interval A.

Computation of the coefficients of a k-jet of the point mapping
over the period T is done by repeating (N,— 1) times the sequence
given in Egs. (29)—(36) to get

x((n+1)T) = Qu(Ng (Qe; — T; (Qe (N, — 2 (- Qu(1; (Qe (0: %))

k
= E YE Xiy* * * Xi,

= j*G(x,s), (37)

where Q;(0;x)=x. As in computation of the coefficients of the
mapping Q(i;x), evaluation of the coefficients g, involves ‘tele-
scoping’ of polynomials. Therefore, the same algorithm of evaluating
the coefficients used in Eq. (34) can be employed here.
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In summary, the numerical algorithm for computing coefficients
of the vector polynomial for the point map involves the following
steps:

(i) Divide the period T into N, subintervals of length 4 and set i=1.
Choose P, the order of polynomial truncation required.
(ii) Compute the coefficients (i)b(E!r) for r=1,2,..., P using Eq. (30).
(iii)) For m=2,3,..., M:
(a) Compute the coefficients (i)a%’:’) for r=1,2,...,P using
Eq. (32).
(b) Compute the coefficients (")bgt') for r=1,2,..., P according
to Eq. (34) using the telescoping algorithm.
(iv) Compute the coefficients g for r=1,2,..., P using Eq. (36).
(v) Compute the coefficients )y of the expression

P
Qi Quli = 1;x)) = > Vg, xip- - ;. (38)

The computation of these coefficients is done using the telescop-
ing algorithm used in (iii).

i) If i=N,, v, = (i)%:,, stop. Otherwise, set i=i+1 and repeat
steps (i1)—(Vv).

3.3. Dependence on Parameters

The algorithm devised here can separately keep track of the powers
of the components of the parameter vector s and state vector x. We
assume that the coefficients of the polynomial given in Eq. (19)
consist of powers of the components of the vector s. Alternatively,
we can assume that these coefficients are analytic functions of the
components of s and then we can take the p-jet of the coefficients
with respect to the powers of s;, j=1,2,..., L, as follows:

P
b(E{)(t) = ZUEr(t)Sjl' Sy (39)
q

where the symbol Z’; denotes summation over all sequences
Jis---»jr with 0<j, < L for each v, Z,f‘:, =gq,and ¢=1,2,...,p. In
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short, we define the coefficients of the function f(z,-,-) in set
notation as o,, ,(¢). Using this notation convention, the k-jet in the
components of x and p-jet in the components of s for the given
system can be written as

xj{v’ = Z Z OE,, E, ()i - - xiy it Sjp - (40)

In order to keep track of the powers of the components of x and in
order to perform the appropriate truncation with respect to s, the
polynomial telescoping routine is only slightly modified. Since
telescoping in the proposed algorithms is performed by simple
multiplication, an internal multiplication scheme operating on the
powers of s is implemented and appropriate truncation is performed.
As explained before, in perturbation analysis the truncation on the
parameters is carried out up to low order. Therefore, separate
truncation of parameter powers significantly speeds up computation.

3.4. Point Mappings of Linear Systems

As stated before, the conditions for stability and bifurcation depend
only on the linear terms of the point mapping (7) (that is, on the
matrix H(s)). Noting that the two properties of the point mapping
G, mentioned above, namely, (a) the operations of polynomial
truncation and telescoping can be interchanged, and (b) the lowest
order polynomial in (4) is of degree one, and that there is no term
on the right hand side of Eq. (4) that is not a function of the
elements of the state vector z, then for stability analysis it is
sufficient to obtain the point mapping of the linearized system:

(1) = A1, 8)z(1). (41)

Using (28), for the system in Eq. (41), it can be shown that the
vectors k,,, are given by

m |
k,, = [A(tp + hay,s) + Z HhciA(t,, + hai_y,8)|z(tp).

=1 i=2
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Using (27), we obtain the following:

2(tp+1) = @(tp,8)z(1p), (42)
where
R m 1
O(tp,8) =T+h>_ [dmA(t,, + ham,s) + ) Hhc,.A(z,, + ha;_1,8)|.
m=1 =1 i=2 (43)

Dividing the period KT (with K and T given) into N, intervals and
successively applying (42) by using p=0, ..., N,, yields

N;
z(to + KT) = {1‘[ a(1,, s)}z(to). (44)
p=1

Using Egs. (43) and (44) results in the following expression for the
matrix H(s):

N, R m_ 1
= H{I +hY dn [A(t,, + hay,s) + ) [ [ heA(t, + ha,-_l,s)] }
=1 m=1

I=1 i=2
(45)

Note that Eq. (45) involves only multiplications and additions of the
matrix A(z,s) evaluated at different time instances. Collecting powers
of the components of s for every element of H(s) and truncating at a
required power P yields a matrix Hp(s) in which every element consists
of homogeneous polynomials of the elements of s up to order P.

The algorithm for point mapping has been implemented using the
symbolic algebra packages REDUCE and MATHEMATICA, and a
specially developed FORTRAN program to perform symbolic vector
polynomial operations. The point mappings for the rotorcraft
problems were derived using both the REDUCE program and
FORTRAN. The same programs were used to obtain analytical
expressions for bifurcation conditions by evaluating Egs. (16)—(18).



STABILITY OF PERIODIC SYSTEMS 343
4. PARAMETRIC STABILITY OF FLAPPING MOTION OF A ROTOR

The differential equation of flapping motion of single gimballed
rotor blade or of a two-bladed teetering rotor may be approxi-
mated by

2

(46)

where [ represents the blade flap angle, ¢ is the azimuth angle of
the blade, p is the blade advance ratio, y is the Lock number for the
flow, wy is the natural frequency of the system, and p=1 for a
gimballed rotor, and p=0 for a teetering rotor (see Johnson [19]). In
state-space form with vector x = [, B]T, we have

x = A(¢)x, A(p+ T) = A(¢), T=2m, (47)

0 1
A(¢p) = s
2 —w}—%(usin2¢+%cos¢) —7(1+%2sing)

(48)
where the superposed dot represents the derivative. Since the system is
linear in the state variable x, it follows from the discussion in Section 3
that the corresponding point mapping G is also linear in x but depends
in a nonlinear way on the parameters wy, 1 and 4. For a given value of
p, the point mapping can be expressed as follows:

X(n+ 1) = G(x(n); wo,p,7) = H(wo, p,7)x(n), n=12,... (49)

The approach for obtaining the truncated point mapping intro-
duced in Section 3 was used to evaluate the matrix H(wy, ,y) using
Eq. (45). Two separate cases of p=0 and p=1 are considered
below. For each case fixing P = 50, coefficients of the various powers
of wlp/v*, i+j+k<P, i=0,1,2,...,P, j=0,1,2,...,P, k=
0,1,2,..., P, in the elements of the matrix H were obtained, with
K=1, ty=0, T=2m, N,=100, resulting in a time step of ~»=27/100.
The result is a matrix H(wg, 4,7y) Whose elements are homogeneous
polynomials in wy, u and v, order P=50, and the matrix Hp is said
to be of order O(w3f uf~?¥).
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4.. Teetering Rotor (p=0)

For ease of presentation, the coefficients of each term in H(wy, u,7)
are identified as rational fractions of powers of 7. Let H; be the
components of the matrix H. The resulting leading coefficients of
the matrix are

_ 1572y w342\ ,
Hu=1~ (377 201 )

3 4.2 543 114 2
_(hz_u Ty my Ty )sz

6 "9 1920 489

2 4 5 6.2 4 2 8, .8
+(L_E_’Y+”7>w (_7“__7’_7>wg+”‘”0+

3 15 240 45 105 315

7T2’7 7T3’)’2 7!'4’)’3 7r5,y4
Hyp = 21— 7 _
2= 2T = TR T 68 +15360

- (ilfi_z"_u o S| )

3 6 ' 80 1440)%°
4> 7oy wly 87 wly\ ¢ Tl
+<15 -0 420)‘” (ﬁ_iﬁ)w°+7o9+"'
7{.2,72“2 7.‘.2,), 7.[.3,72 7T'4’)’3 )
Hor =561 <2”_T+ 8§ 768 )“’0
5

15 30 315

24,2 3 3 2 3
™, Ty vy 15n%y  my 2
o =1 =+ 5~ 54 +6144+( 377 201 )“

(2T ) (g B

3 4.2 5~3 117(47/"’2
(o2 T T ™ 2
(“ 3 T3 T 40 T a9 )
271.4 5,.), 6 2 4
+<T_ 0" 120)‘”0
B _7r___ 4’ 271' w0+
25 315

(50)

It is seen from the expressions in (50) that higher order terms of H
possess considerably smaller magnitude of coefficients. In order to
assess the accuracy of the point mapping expression, we consider the
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determinant of H, a closed-form expression for which is readily
known for this example.

Undamped case (v=0) For this case, the dynamical system given
by (47) is Hamiltonian (or area-preserving) and therefore,

det H(wg, p, 0) =1. Evaluating the determinant of H given by (50),
we obtain

det H(wo, 1, 0) = 1 — 8.89 x 10~ (7rwp) ® + 4.44 x 1075 (7)) ®

+3.91 x 1072 (mwp)'? — 3.91 x 1072 (mwp)

+9.76 x 107 (7uwp)®

—1.15 x 107 () ® + - - - (51)
Observe that in (51), only the parameters wy appears and all the
terms have negligible coefficients which decrease with increasing
powers of wy. The magnitude of these coefficients depends primarily
on the size of time step 4. For example, when % is reduced by half,
determinant of H contains only the following five terms:
det H(wo, 11,0) = 1 — 2.78 x 1072 (mwp)® + 3.47 x 1077 (7rwy)®

+3.84 x 107 (mwp) ' — 9.62 x 1072 (mwy)*.  (52)
It is observed that by decreasing time step 4, the magnitude of the
coefficients of all the powers of wy in (51) consistently decreases

implying that they tend to zero as A — 0. Hence, det H(wg, i1, 0) — 1
as h— 0 in Eq. (51).

Damped case (y+#0) Using Liouville theorem, the closed-form
expression for determinant of H, denoted by det Hg, is (see Arnold [1])

det Hg(wo, i, 7y) = e~/

1 _H+77272_773'Y3+774'74_ 7.‘.5,.),5 N 7.‘.6,),6
- 4 " 32 384 ' 6144 122880 ' 2949120
7.[.7,>,7 7T878 71.9,},9
T 82575360 T 2642411520 _ 95126814720
71.10,710
+ 3805072588800 | (33)

where the determinant has been expanded in terms of a Taylor series.
Using (50), an analytical expression for the determinant of H, as
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provided by the point mapping method, is given by

6
D N e G e BT A i S e
detH(wo, p,7) =1 =7+ 35~ = 3o+ 6147 ~ 122880 T 2949120
T~7 8.8 9.9
A LA A

82575377 2642412963 _ 95126930636
71.10,.710

+ 3805081784862 (34)

Note that det H given by (54) obtained from point mapping analysis is
independent of the parameters wy and p as expected. This expression is
in excellent agreement with the exact form (53) even for higher order
coefficients. The coefficients of the point mapping expression in (54)
differ from those of the exact result in (53) in the eleventh decimal
place. By reducing the time step 4 used in generating the matrix H via
(45), the accuracy of the point mapping results increases approaching
the exact analytical expression.

Comparison with other methods of analysis: In order to compare
our results with the perturbation and numerical solutions, define the
characteristic exponents o; of the linear system defined by

1
oy =7 (log|\| +iarg}), j=12,....N, (55)

where )\; are the eigenvalues of the matrix H. For two-dimensional
systems, it is possible to obtain a closed-form expression for A,
When expanded in terms of the parameters wgy, pu and 4, it is found
that the characteristic multipliers A\; and X\, of the system in (47)
have the following leading terms:

T T 573 wiy? iyt
A1=1—(—7+ 7)N4—(2w2+ TLIY '”‘>w02

316 ' 1263 12 48 59
274 191n’y  17nSy 2 207N
(T_ 180 83 125 )
w6 8927r'y 1937842 85m%y3\ 4
( 108 328 ) 0
78 404371' Y 201671042\
+(158 120 131 >“’°
T 1230171'”’*/
(3544 ) Wort
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3.3 4 4 3. 4
R O i G i A T
Y=l-F+ s Y e1aa T 316

113 4,2 54,3 6,4 5 4
_(2772_ iy iyt oy 7r'y_7rw>wg

2 T 372 6583 59

274 16l7r v 5mby2  wly
+<T 0 -+ 65 )“’0
(4t 38371' v lxdy? s 8
45 275 27 )70
(L 23927r >y 1739m1097
158 " 113 0
7710 123017{‘117 10
- (3544“ 55 )“’0 e (56)

By fixing the parameters wo=1.06 and =35, the matrix H
evaluated using (45) has the following functional form in terms of
the parameter yu:

H(p)
37 37u? _L s op® _pl 1oppt o opt
[zss"‘ mt e tatmwmEt o wtwtmt
B T /TS /AN S S T W 1/ S VAR R R R
B wtm - mtmtast > -7 tTr Tttt

(57)

Table I compares the characteristic exponents computed from
numerical integration, perturbation analysis, and point mapping
approach (using (57)) for various values of u. The point mapping
expressions for the 4th and 10th order mappings (respectively
denoted by Hy and H;,) were used to calculate the eigenvalues of H.
The third-order perturbation results were taken from Crespo da
Silva and Hodges [6] where u is treated as a small parameter. The
direct integration result, considered here to represent the “exact
result”, was obtained by using a Runge—Kutta integrator to numeri-
cally compute the matrix H.

The point mapping given in (50) leads to an important qualitative
observation that H does not possess a linear term in the advance ratio
u, in fact H is of O(u?). Since tr H in this case is of O(u*) and det H=1,
hence the characteristic multipliers ); given by (56) are of O(u*). The
absence of the linear term in u explains why perturbation results given
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TABLE I Characteristic exponents as a function of y for a teetering rotor with wy=1.06
and =135 by different analysis methods

7 Point mapping Direct integration Perturbation [6]

0.0 —0.3124998 £i0.0128888 (Hy) —0.3125000-£i0.0128888  —0.3125000£i0.0111719
—0.3124998 +i0.0128888 (H0)

0.1 —0.3124998 £i0.0127956 (Hs)  —0.3125000 £i0.0127956  —0.3125000 +i0.0110621
—0.3124998 +i0.0127955 (H0)

0.2 —0.3124998 £i0.0113056 (Hy) —0.3125000 +i0.9886949  —0.3125000 =+ i1.0009260
—0.3124998 +0.0113050 (H,0)

0.3 —0.3072546, —0.3177436 (H,) —0.3072245, —0.3177755  —0.3039590, —0.3210410
~0.3072243, —0.3177753 (H,0)

0.4 —0:2914364, —0.3335483 (Hy) —0.2913666, —0.3336334  —0.2901350, —0.3348650
—0.2913664, —0.3336332 (H,)

0.5 —0.2762755, —0.3486353 (Hy)  —0.2760502, —0.3489498  —0.2750700, —0.3499310
—0.2760500, —0.3489496 (H0)

in Table I are fairly accurate for < 1. It is seen that the lower-order
point mapping results compare remarkably well with the direct
integration result even for higher values of advance ratio y, the result
from H,, being indistinguishable. This is in contrast to the perturba-
tion results where the accuracy decreases for higher values of pu,
especially for the case p =1 discussed in Section 4.2 (see Table 1I).

The final test to validate the accuracy of the point mapping
method is to perform a bifurcation analysis of the trivial solution
x =0 in parameter space and to compare it with a known solution.
The conditions for bifurcation of a P-1 solution x =0 are established
using Eqs. (16)—(18). The result is a functional relationship between
wo, 4 and v which is satisfied when a bifurcation to a particular
solution occurs. The first few terms in various bifurcation relation-
ships obtained using the point mapping approach are given below.

Bifurcation of P-1 — P-1 (Emergence of harmonic solution):

3 4.2 543
“H) = (42 T T T 2
det(I — H) (47r > 5 384)w0
art  my  why?\
“(T"T*s— “o
8nb  wly\ o 4mdwd
+<4_5__5>°”°_ 315
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TABLE II Characteristic exponents as a function of u for a gimballed rotor with wy=1.06
and =735 by different analysis methods

m Point mapping Direct integration Perturbation [6]

0.0 —0.3124998 +i0.0128888 (H,) —0.3125000+i0.0128888  —0.3125000£i0.0111172
—0.3124998 +i0.0128888 (H()

0.1 —0.3124998 +i0.0121335 (Hy) —0.3125000£i0.0121337  —0.3125000 £i0.0104770
—0.3124998 +0.0121336 (Hi)

0.2 —0.3125002+i0.0074591 (Hy) —0.3125000 +i0.0074639  —0.3125005 % i0.0062757
—0.3124998 £ i0.0074639 (H,)

0.3 —0.2979163, —0.3270855 (Hy) —0.2979060, —0.3270940  —0.2997650, —0.3252350
—0.2979058, —0.3270938 (H,0)

0.4 —0.2837426, —0.3412396 (Hy) —0.2836371, —0.3413628  —0.2875730, —0.3374270
—0.2836370, —0.3413627 (H,0)

0.5 —0.2676597, —0.3571667 (Hs) —0.2672532, —0.3577468  —0.2735770, —0.3514230
—0.2672531, —0.3577466 (H,0)

Bifurcation of P-1— P-2 (Emergence of subharmonic solution of
order 2):

IR A
NRR AR
+ (4—7;{—165—’1+7T—;;)Y—2)w3
_ (%%:_%)wg %&,...
— 0. (59)

Bifurcation of P-1— P-3 (Emergence of subharmonic solution of
order 3):

24,2 3.3 4_ 4
det(I+ H4H?2) =92 1my? my” 2m7y

4 32 128 241
5.3
—(2471'2—6%37—{—77472—7:—%)«)02
1097 642
4_ oS50 2P VTN 4
+(247r 6Ty + 120 >w0
176w 44n7y\ o  344mBwd
‘( 5 “T)“’O*W*"'

=0. (60)
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Bifurcation of P-1— P-4 (Emergence of subharmonic solution of
order 4):

722 miad ity
t 2y -4 - —
detI+H") =4 —7my+ 2 24 + 193

4.2 5,3
—(167(2—47r3’y+27r—7—7r 7 )w02

3 12
64n*  16m5y  4réy?\ ,
_(5127°  128n7y o 102473wé N
45 45 0 315
=0. (61)

Equations (58)—(61) define the region of the parameter space
(wo, it,y) in which a bifurcation of the trivial solution x =0 of (47)
may occur. Note that a bifurcation of P-1 to P-3 for a two-
dimensional system is possible only when y=0 (see [17]).

Assume now that v is fixed. Substituting a given value of wy in
one of the Egs. (58)—(61), a polynomial equation in g results.
Solving this equation results in the value of u at which various
bifurcations may occur. Figure 1(a) shows the bifurcation curves in
the (u,wp) parameter plane obtained from point mapping of order
P=50 for y=5. For the range of parameters chosen, bifurcation
from a P-1 solution to a P-2 solution does not exist and the curves
shown in the figure indicate a P-1 to P-1 bifurcation. A detailed
analysis of (60) and (61), with an increase in the order of truncation,
reveals that they do not possess a non-trivial solution in the (u,wo)
plane. Thus, bifurcations of x=0 to a P-1 or a P-2 solution are the
only one possible (consistent with known analytical results for v >0
(see [17])).

Since an analytical solution to bifurcation analysis of (47) is not
available, results are compared with direct numerical integration of
(47), which is considered here to be an “exact solution”. In order to
obtain bifurcation curves by direct integration, matrix H is com-
puted on a very fine grid of points in the (u,wy) parameter plane.
The quantity on the left hand side of Eqs. (58)—(61) are satisfied
to within a prescribed numerical precision. The result of direct
integration is shown in Fig. 1(b). As can be seen, these two results
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(b)

wo

FIGURE 1 Bifurcation of the trivial P-1 solution to P-1 solution in the (u,wp)
parameter plane for a teetering rotor (p=0): (a) Obtained by point mapping of order
P=60. (b) Obtained by direct integration.
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are virtually identical. Point mapping results differs from the numerical
solution only at the upper right-hand corner where wy~ 4.5 and
u =~ 9.5; improved accuracy can be obtained by increasing the point
mapping order. It should be noted that even for large values of wy and
u, the truncated point mapping solutions are very accurate when
compared with “exact results” of direct integration.

4.2. Gimballed Rotor (p=1)

The analytical expressions for the leading terms of components Hj;
of the matrix H, evaluated via Eq. (45), are presented below:

34,2 15 2 2
H“=1+7l")’/,l,_ T —(27’1’2 71"}’+___7f’)’)w0

237 377 6 96
2rt wly 4rSw
+(‘3‘“‘1—5’)” s
Hy =2 — 7r'y+7r’y 7‘-7

4 T4 768
4072 467r B _515_“2_711 2
377 681 ) \377 " 237)7 [
4 v wiy? 1774 373 )
{‘?’“‘?T’ 80 "'(613"]76 TH [
T

+( T '_) of -t

315
2 3
Hy = { 2W+M_7‘l’ 32 (4071' _46m )’W}w&

4 48 377~ 681
+ (- ek
= 1T S T
(o e (5T

(62)

As mentioned for the case p=0, higher order terms of H in (62)
have coefficients which are progressively smaller in magnitude. The
exact analytical expression for det Hg is given by (53). The
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corresponding expression produced by the point mapping in (62) is
identical.

As before, the characteristic multipliers \; of the system in (47)
obtained from (62) are as follows:

3 4.2 3 4 s
A =1 _{2ﬂ2+57r_"y+7r 7 (—22“—§7r—+1115779)’m2}w02

12 48 89 23
2t 19175y 177892\
+<"3__ 80 83 >“’°
48 89277y\ o 2mdwd
‘(“4?+ 159 )“’0_ 35 T
2,2 3.3 4.4

47732 T 384 6144
Hndy w%y? 7343 (273 S5p%  11nd
- 2 _ _ R et T 2,2
{2” 2 t®’ " 3m (89 33+ 159)7“ }“’0
N (zr_" 16173y 57r672) 4

T AL
476 383717y 6 Wswg
_("4?__6‘8“)“’0+W+'” (63)

Table II provides the characteristic exponents for various values
of p with wy=1.06, and y=>5. The matrix H(x) in this case takes
the form

H(p) =
3 oot w2t o L_op Tl w8t
358 33 T 3z 140+ 200 197 8~ 333 116 183 T 233 255
6 7 8 9 10 6 7 8 9 10
pé o ow? et o o _pb_pl o g ol
+atietmtus ot s 190 599 T 455 Taar tamm +
S NS 75y TS TA 17l 3oyl Mt pd
57353 8 ~ 6 86 103 Btsm e Tt 8T T 107
6 7 8 9 10 6 7 8 9 1
A L AL A LR AL
139~ 302+ 240 2147 Tiea T 107 — 1036 + 2188 — 2465 T 2716 T

(64)

It can be seen that the point mapping results compare remarkably
well with the direct integration result. Also, it is evident that the
results of perturbation analysis deviate significantly even for small
values of pu. The reason why perturbation method performs poorly
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for increasing values of p is quite clear from the point mapping
expression (62) which contains terms of O(u) and characteristic
multipliers in (63) which are of O(u?).

The first few terms in various bifurcation relationships generated
from Eqgs. (16)—(18) are given below.

Bifurcation of P-1— P-1:

3 4,2
detI-H) = (47r2 - %Z + léj—)wé

=0. (65)
Bifurcation of P-1 — P-2:

) 3.3 3 4.2
det(I+H) =414+ T 1 “(47r2-”+”)w§

216 192 2 24
4rt wiy\ 4 8mlwd
" (T‘T)“’o e T
=0. (66)

Bifurcation of P-1— P-3:

9y | 15m%4% 9y

2y—_9_
detI+H+H") =9 R D 8
— (24n% — 61y + iy Hwd
6,6
+ (247* — 61°y)wy — 176%)9- e
=0. (67)
Bifurcation of P-1— P-4:
2.2 3.3 4.2
det(I+H2)=4—7r'y+7T’y T 16”2__‘”37_’_2’/&"7 wg
4 24 3
64rt  16my\ , S1278w§
( 33 )“’0 T T
=0. (68)

Figure 2(a) shows the bifurcation curves in the (u,w,) parameter
plane obtained from point mapping of order P=50 for y=5. As
before, a detailed analysis of equations det(I+H?*) =0 and
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P-1

(b)

wo

FIGURE 2 Bifurcation of the trivial P-1 solution to P-1 and P-2 solutions in the
(1, wo) parameter plane for a gimballed rotor (p=1): (a) Obtained by point mapping
of order P=60. (b) Obtained by direct integration.
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det(I+H+H? =0, with an increase in the order of truncation,
reveals that they do not possess a non-trivial solution in the (u,wp)
plane. Thus, bifurcations of x=0 to a P-1 or a P-2 solution are the
only one possible. The agreement between the point mapping results
shown in Fig. 2(a) and direct integration results shown in Fig. 2(b)
is excellent. Closer agreement of point mapping results in the region
wo ~ 4.5 and p~9 with integration can be obtained by increasing
the order P of the point mapping. As expected, for large range of
parameter values, a higher order point mapping is required.

In summary, combining the results given by point mapping
analysis for the rotor flapping motion, we observe that a bifurcation

&, nand & are
principal axes

support
springs

FIGURE 3 An unsymmetrical rigid rotor attached to an input shaft rotating at a
constant speed 2.
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of the trivial solution x=0 takes place when u>1.6355. The
flapping dynamics model under consideration is valid for only
0 < 1 <0.3, since for p > 0 reversed flow effects that are not included
in the model become significant. However, we include here results
for higher values of yx in order to demonstrate the accuracy of the
Poincaré mapping approach when the design parameter is not small.
Since, the model is valid for 0 < 1 < 0.3, one concludes that for both
cases of p=0 and p=1, bifurcation of the trivial solution may not
occur in applications. It should be noted that when the coupled flap-
lag-torsion motion of a rotor (described by a higher order linear
periodic differential equation) is analyzed, bifurcation may occur for
much lower values of u (see Peters [24]).

5. GROUND RESONANCE OF A ROTORCRAFT

Analysis of a simple model of ground resonance of a helicopter (see
Fig. 3 taken from [3]) is performed here to demonstrate the
capability of the point mapping method to study multi degrees-of-
freedom systems. The system consists of a rigid rotor with elastic
restraints whose input shaft rotates at a constant speed 2. We
consider the case of external stiffness for which ¢ = Q¢. The equation
of motion of the rigid rotor for small angular displacements 6, and
0, may be expressed as

d
T = AMx, (69)
A(r)
[ 0 0 1 0 7
0 0 0 1
= 2a—(1—eo:i5(l+escos27) in2 2(1-a) |°
- 1+e¢; - % 0 (1+€?
- : (S;I_l_ilr) _ 20—(I+e) 4;52-6(‘.1—65 cos2r) 2(11_——:) 0 |
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where x = [0, 6,,6¢,6,]" is the state vector. The inertia anisotropy e;,
stiffness anisotropy ¢, and axial inertia ratio « are defined as

I —
a=lk"h 1<,
15+177
ka _kb
=2 2 <e&< 70
€s ka+kb’ 0<e<1, ( )
s
a_I§+In’ lei] < @< 1,
and the frequency ratio is given by
wo _ ks + kp
r——ﬁ, Wy = I§+I,,] (71)

Systems of the type (69) also find applications in high-speed rotating
machinery, see [3,5,7,14]. The two anisotropy parameters, ¢; and e,,
play a significant role in characterizing system’s stability at higher
rotational speeds.

Consider the problem of finding stability boundary curves in four-
dimensional space of parameters r, a, ¢, and ¢. To evaluate the
matrix H(r, o, €;€;) associated with the system in (69), set #,=0,
T=m, N,=100, P=4. Truncation is carried out to keep homo-
geneous terms of the type

ky k3 ks
a:+k16k, ki+ky+ks+ky <P

The resulting analytical expression for the matrix H(r, , €, €,) reveals
symmetry among its components. The symmetry is with respect to
the parameters ¢; and ¢, which implies that the matrix H has only
eight independent elements. The remaining eight elements are either
odd or even functions. In terms of the components Hj;, the matrix H
can be expressed as

H(r,a,€,¢) =

Hy(r,a,€,€) Hy(r, o, €, €5) Hys(r, o, €, €5) Hyy(r, o, €, €5)

—Hp(r,o, —€, —€) Hyu(r,a, —e, —€;) —Hyu(r,o, —€i;, —¢;) Hiz(r, o, —¢;,

Hy (r, o, €, €5)

—Hy(r,a, —€i, —€5) H3(r,a,

Hiy(r, o, €, €5)

—€i, —€5) —H(r,a,

Hiz(r, o, €5, €5)

—€i, —¢5) Hy(r,a, —€,

_€s)

Hiy(r, o, €, €5)

_Es)

(1)
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In order to verify the above symmetry, an exhaustive numerical study
has been carried out. The matrix H was computed by direct
integration in the four-dimensional parameter space (r,a,¢€;¢€;) by
forming a large, uniformly spaced grid. This study asserted that the
matrix H possesses the symmetry indicated by (72). Thus, the point
mapping approach presented here has the unique feature of unravel-
ing hidden symmetry in the dynamics of the model. The leading
terms of the independent elements of the matrix H are given below:

2.2
Hy(r,o,€,65) = —1 +7r2a(1 ‘“Ei+2€i2 —ﬂ; )

w2 (1 T o 962¢;
+——{2(1+es+e eies)—ﬂ'a(6+—6— 1409)}

7T6
"’{__ 20 " }+720r6+ B

Hy(ro,ene) =n(l+ 6 +€ +¢)

2 2
+ o (2e,~ +3¢? — 27(3 @>_ 15557;30451‘)
_W_Z{E_I_ 1227761'_!_&_'_ 158me? P meis
r2 |6 1867 6 681 6
+m(1+527r6"—3—@>}
3625 3 10
+7f_“{ ™ +H+E+E}_ LA
41120 584 60 504076
Hy(r,a,e6) = —m(1 + e+ e +¢)
2
- T <2€i +3e? — 271-3 o 15557;3ae,~)
_|__7f_2_{f+7977(6 + 267 + €i€) + T
r2 16 681\ =T
+ 0 (29686, wa)}
22557
__7r4{ e ﬂ'Gs} s
120 584 5040r

2 2 ‘a
Hy(r,a,e,6) =7 a(l — € ; 3 )
2 6

_T E_g(l_ )+ﬁ +_7r___a__|_
6 T [ T 12006
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Hy(r,ou€,6) = —m(1 — €+ €f — €})

2 2. 2.2
+7ra(2—2ei+3ei2+27r a_2r ae,_47r3a )

33
7r_2 2577 148me; + 296me?  10me;es _ 122me,
959 681 681 681 1867

B T 382me; & + 957 2¢y
T\37 1673 3" 567

_7r_ 200 wa  337me;  1lme ! 4
959r6

793 760 1967 | 643
7r2a2
Hy(r, o€, 65) = 7r2a<1 + €+ Zeiz — 20— )

3
w2 e,es 25772 wle mla
r—z{ (959 +T_6S__3_>}
wt 207ra €
+r_4{ 793 +€}+
2,2
H33(r,a,ei,es)=—1—7r2a<1+e,-+2e,-2—2a—7r:;1>
+7T2{ (1+€ + €7 + €ies)+max (I——a 9626')}
r2 s s 6 2 1409
(1 7n%a €
__{2_4+W+E}+720 C

Hy(r, o€, 6) = —m(1 — € + & - €i3)

2 2. 2.2
+71’oz<2—2e,v+3ei2+27r o 2 ae,_47r3a >

3 3
+7r—2{7—r(1—6'+2€-2—6)
r2 16 P
4 1227e €, _27r_a (1 et 37r2a2)}
1867 3 20

_ZL“ m_ma_mg me\ o w
120 20 120 60 504076

(73)

Since trA=0, the dynamical system given in (69) preserves
volume in state space and detH=1. To check the accuracy of H
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given above, the determinant of H was evaluated from (73) to yield

detH=1+1.6x 1078 - 8.0 x 10 822 +2.1 x 10703
+ (1.6 x 10780 — 1.4 x 107" a?)€?
—ﬁ{4.o x 1078 — 1.6 x 10 7a+3.2 x 107 7a?
+(4.0x 1078 2.9 x 107 7)€’}
—ri4{4.o x 107 — 8.0 x 1080+ 4.8 x 10 8a?
+88x 10782 + 1.6 x 107%¢2}

o1
—27x%10 9;‘5+"' (74)

The coefficients in the above expression decreases significantly with
decreasing 4 and in the limit as #— 0, det H— 1.

Using Eqgs. (16)—(18), the matrix H given in (73) yields the
following analytical expressions for determining the bifurcation of
the trivial P-1 solution x=0.

Bifurcation of P-1— P-1:

rhat
det(I—H)=16( 1— 722+ 3 —327r2a26,.2)

8 2m2a? 2
rz{l— 3 +(1+a)ei}

7r_4{5 172a? 213262 62}

S

3715 T el 3
1776 1378
T 506 T 100878 T
=0. (75)

Bifurcation of P-1— P-2:

4 2.2 6 8
det(1+H)=’:—4{1—“3a +2e,.2—63}—%+§’0%§+...: .

(76)
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Bifurcation of P-1— P-3:

4.4
detI+H+H?) =1-87%a® + Sem o’ _ 16m2a%¢?
472 14720 2
—72—{1— +(1+Ol)61}
7r_4 19 23372a? N 4423¢? 3 2&2
r4 |3 15 352 3

_dsia® 276r%
90r6 133r8
=0. (77)

Bifurcation of P-1 — P-4:
4,4
det(I+ H?) = 16(1 —4n%a® + 16—7’3“— - 8«%%3)

22 2.2
_3am {1—87r < +(1+a)e,.2}

r? 3

1674 {E 44r%a® 63976} §6_3}
pr

37715 19489 3
_ 544m® 20877
45r6 63r8
~0. (78)

We fix the axial inertia ratio a=0.5, and consider two cases of
importance below, ¢;=0, and ¢;=¢,. The points ro where bifurcation
branches may evolve on the r-axis (e;=0) are obtained by solving
the bifurcation conditions (75)—(78) provided by the analytical point
mapping. These points are identical for both the two cases. Table III
shows the bifurcation points as computed by solving Eqgs. (75)—(78)
and compares them to those obtained by brute force numerical
integration. For the purpose of this study, the results from numerical
computations are considered to be the “exact” solution. It can be
observed from Table III that the two results coincide except when r is
very small; by increasing the order P of the point mapping, a closer
agreement is readily obtained. The analytical point mapping results
implies that bifurcation of the trivial solution x =0 (along the r-axis)
to harmonic and subharmonics of order 2, 3, and 4 can no longer take
place for frequency ratio r>1.5. In addition, it also indicates that
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bifurcation points cluster around r=0. This feature may lead to the
existence of many periodic solutions for small values of r.

Case I. €¢;=0, a=0.5: The condition e=0 leads to the symme-
trical inertia case (that is, I =I,). Figure 4 shows stability boundary
curves in the (r,¢;) plane as determined by point mapping of order
P=50. The matrix H(r,e;) was evaluated by fixing the above
parameter values. To obtain accurate bifurcation branches, the
matrix H(r,e;) was directly employed to compute the various
determinants involved in determining bifurcation points. Using the
Newton—-Raphson iteration, and starting with the location of
bifurcation points given by Table III on the r-axis as initial guesses,
bifurcation branches corresponding to P-1, P-2, P-3 and P-4
solutions were evaluated. For small values of the frequency ratio r
(say r<0.2), the point mapping results indicate that bifurcation of
the trivial solution x=0 to harmonic and subharmonic solutions
occurs for a many values of r. This indicates that the separation of
stable and unstable regions in the (r,¢,) plane becomes narrower

€s

FIGURE 4(a)
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FIGURE 4(d)

FIGURE 4 Bifurcation of the trivial P-1 solution (x=0) in the (r,¢,) parameter
plane for rotors with symmetrical inertia properties (¢;=0) obtained by point map-
ping of order P=50 for a=0.5. Direct integration results are represented by “ x ”.
(a) Bifurcation to P-1 solution. (b) Bifurcation to P-2 solution. (c) Bifurcation to P-3
solution. (d) Bifurcation to P-4 solution.

with decreasing values of r implying that avoidance of instability for
these values of r is extremely difficult.

Case II: €;=¢;, a=0.5: For this case of equal inertia and stiffness
anisotropy, the parameter ¢; has the range 0<¢;<0.5. By fixing
P =50, the matrix A in (69) was expanded in series in terms of ¢;. The
resulting A matrix was employed to evaluate the matrix H(r,€).
Figure 5 shows the bifurcation of the trivial P-1 solution to P-1, P-2,
P-3, and P-4 solutions in the (r, €;) plane. The effect of including inertia
anisotropy ¢; is evident by comparing Fig. 5 with Fig. 4. Even though
the bifurcation points along the r-axis for e,=0 are the same as in
Case I, the bifurcation curves differ substantially for ¢, > 0. Notice also
the widening of the separation of the region between stable and
unstable zones, resulting from including inertia anisotropy e;.
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FIGURE 5(d)

FIGURE 5 Bifurcation of the trivial P-1 solution (x=0) in the (r,e;) parameter
plane for rotors with equal elastic and inertia properties (¢;=e¢;) obtained by point
mapping of order P=50 for a=0.5. Direct integration results are represented by
“x”. (a) Bifurcation to P-1 solution. (b) Bifurcation to P-2 solution. (c) Bifurcation
to P-3 solution. (d) Bifurcation to P-4 solution.
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The accuracy of the above calculations for bifurcation is assessed
by comparing them with a direct numerical integration of (69) over
one period of time using a fourth-order Runge—Kutta integration
scheme. Newton—Raphson iteration is employed to solve the appro-
priate bifurcation condition (16)—(18). For initial guesses, the point
mapping solution for bifurcation points displayed in Figs. 4 and 5
are used. Results obtained by direct integration of (69) are indicated
in these figures by ‘x’. The proposed point mapping results show
excellent agreement with the numerical solution, especially for
r>0.2. Since the equation of motion (69) contains 1 /r2, bifurcation
points are computationally difficult to obtain as r — 0. This observa-
tion also naturally applies to the point mapping solution given in
(69). However, as opposed to numerical integration, by evaluating a
higher order point mapping, the proposed approach can be very
effective in obtaining bifurcation branches close to r=0.

Both cases discussed above for ground resonance problem indicate
complex bifurcation patterns in the frequency domain. The point
mapping results have not only revealed qualitative dynamics but it
has also produced quantitative resuits in excellent agreement with
exact results. The improvement and convergence of the point map-
ping analysis with increasing order of approximation, not further
elaborated here, have been observed for the higher dimensional
problem. Moreover, the validity of the point mapping approach for
a large range of parameter values is established for the class of
systems studied.

6. CONCLUSIONS

It is demonstrated in this paper that the point mapping method
provides both analytical stability and bifurcation conditions for
periodic systems encountered in engineering problems, e.g. rotorcraft
dynamics. The traditional methods of analysis, classical perturbation
and numerical procedures included, have been compared with the
proposed point mapping approach. While perturbation procedures
demand the presence of a small parameter, the point mapping
method provides a solution without such requirements. The results
presented here for problems in rotorcraft dynamics illustrate the
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capability of the point mapping method to provide accurate
analytical solution for multi-dimensional and multi-parameter sys-
tems. Also, the validity of analytical results to large variations in
parameter values has been clearly demonstrated.
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