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The problems of robust performance and feedback control synthesis for a class of
linear discrete-time systems with time-varying parametric uncertainties are addressed
in this paper. The uncertainties are bound and have a linear matrix fractional form.
Based on the concept of strongly robust H,.-performance criterion, results of robust
stability and performance are developed and expressed in easily computable linear
matrix inequalities. Synthesis of robust feedback controllers is carried out for several
system models of interest.
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1. INTRODUCTION

Robust control theory provides tractable design tools using the time
domain and the frequency domain (Doyle et al., 1989; Petersen et al.,
1991) when the plant modeling uncertainty or external disturbance
uncertainty is of major concern in control systems. In the time
domain, efforts have been centered around the problem of quadratic
stabilization of linear uncertain systems (Khargonekar et al., 1990).
With focus on time-varying uncertainties, robustness results basedon
the concepts of quadratic stability and H.-disturbance attenuation
have been developed (De Souza et al., 1993; Petersen, 1989; Xie et al.,
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1992). For discrete-time systems, Gu et al. (1993) and Gu (1994)
have proposed a design method based on the trade-off between the
minimum achievable H_-norm bound and the size of uncertainties.
Recently, it has been pointed out (Zhou et al., 1995) that the robust
performance problem for linear uncertain systems with time-varying
uncertainties has not been sufficiently examined. As an initial step,
they have introduced the concept of strongly robust H.-perform-
ance criterion and have provided some of its applications. This work
deals primarily with discrete-time systems and generalizes the results
of (De Souza et al., 1993; Gu et al., 1993; Gu, 1994). It contributes to
the further development of robust performance problem by casting
the concept of strongly robust H.,-performance criterion into the
robust analysis and feedback synthesis of linear systems with time-
varying uncertainties modeled by linear matrix fractional representa-
tion. Towards our goal, some earlier results are systematically
recovered and subsequently extended to new and easily computable
forms involving matrix inequalities. These inequalities include the
algebraic Riccati inequality (ARI), the Lyapunov inequality (LI) and
a linear matrix inequality (LMI). The approach of using matrix
inequalities has the advantage that it can be solved using numerically-
stable and efficient methods including the interior-point algorithms
(Boyd et al., 1994). For simplicity in exposition, the analytical results
are organized into lemmas, theorems and corollaries.

The paper is organized as follows: the problem under considera-
tion and related definitions are stated in Section 2. In Section 3
some basic results are provided using matrix inequalities before
formally presenting the concept strongly robust H_,-performance
criterion (Zhou et al., 1995). The structure of uncertainty in the
form of linear matrix fractional representation is introduced and its
properties are analysed in Section 4. Then the model parameteriza-
tion follows in Section 5 to allow dealing with uncertainties in
matrix inequalities format. The subject of robust control design is
then studied in Section 6 and the results of several special models
are provided. The paper is concluded with some relevant remarks.

NotaTions Let R=(—o00,—00), R, =[0,1,2,...,00), R be the set
of complex numbers, ®" be any n-dimensional linear vector space
over the reals equipped by the standard Euclidean norm || -||. Let e;
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be a row vector of appropriate dimension with 1 on the jth entry
and 0 elsewhere. The Lebsegue space L,[0,00) consists of square-
summable sequences on R,. We use W', W L \W),om(W) to
denote, respectively, the transpose of, the inverse of, the eigenvalue of
and maximum singular value of any square matrix W. The matrix
norm is the corresponding induced one; that is |W|=om(W).
LEtS:={zeN:|z< 1}. We use W>0 (W <0) to denote a positive-
(negative-) definite matrix W. For a stable matrix G(z), A\[G(2)] €S,
the H,-norm is defined by

16l == sup (1G] = sup  (lAlly/lIwll,),
9€[0,2r] 0£we Ly[0,N)
where ||-||, stands for the usual ¢, norm given by | p|l, :=
12
(S0 P2(K))

2. PROBLEM STATEMENT AND DEFINITIONS

A wide class of discrete-time uncertain systems is modeled in state-
space by

x(k+1) = A(A)x(k) + B(A)w(k),  x(0) =0, (1a)
z(k) = C(A)x(k) + D(A)w(k), (1b)

where at time ke R, x(k) eR" is the state vector; w(k) e R7 is the
disturbance input vector; z(k)eR" is the controlled output and
A(A), B(A), C(A), D(A) are bounded matrices and their entries are
affine functions of A(k); A(k) € Z is (possibly) a time-varying
uncertain matrix. The set = is compact with a particular structure to
be specified shortly (see Section 4). Note that system (1) could
represents a model of an open-loop system under consideration for
control design. It could also represents the model of a controlled
system for which some robustness issues are to be examined.

DEFINITION 1 System (1) with w=0 is said to be quadratically
stable, if there exists a matrix 0 < P=P'€ R"*" such that V(x)=
x'Px is a Lyapunov function for the system, that is AV(x(k)):=
Vix(k+1))— V(x(k)) <0 Vx#0)and A€ =.
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Distinct from (1) is the nominal system

x(k +1) = Ao x(k) + Bow(k),  x(0) =0, (2a)
2(k) = Co x(k) + Dow(k), (2b)

Ao = A(A =0); By = B(A =0); (3)

Co = C(A = 0); Dy = D(A = 0), 4)

for which the transfer function from w to z is given by

Ay B _
Tpo(z) = [cz D‘g] := Co(zI — Ay) "' By + D. (5)

DEFINITION 2 Given a scalar > 0, the nominal system (2) is said
to be stable with H_-disturbance attenuation 7 if A(4g) €S and
| 72200 < -

Remark 1 1t should be noted that the concept of quadratic stability
requires the existence of a fixed (uncertainty-independent) quadratic
Lyapunov function V(x) for all possible choices of the uncertainty
parameters.

From now onwards, without loss of generality, we take = 1. This
can be done with the scaling T—~"'T, Dy—~ 'D, and
By— " 'By. Our objective here is to establish robust performance
and stability results for a wide class of discrete-time systems with
time-varying uncertainties.

3. PRELIMINARIES

In this section, some results relevant to the subsequent developments
are presented. Our starting point is the Strictly Bounded Real (SPR)
Lemma (Haddad and Bernstein, 1994):

LEMMA 1 Let T(z) be a proper, real rational transfer function matrix
with minimal realization {Ay, By, Co, Do}. Then the following state-
ments are equivalent:

(1) Ay is asymptotically stable and T(z) is SPR.
(2) There exists a scalar >0, 0<X=X'€eR"*" and 0<Y=7Y'€e
R"*" such that
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(@) I— DDy — B{XBy > 0;
(b) X = A5 XAg + (BYX Ao + DYCo)'(I— DyDo — B XBy) ™"
X (BBXA() +D6C0)+C5C0 +eY. (6)
LEMMA 2 For the nominal system (2)—(5) satisfying Lemma 1, the
following statements are equivalent:

(1) MAo) € S and || T(2)] 00 < 1.
(2) The matrix (I — By XBy — D{Dy) > 0 is invertible and there exists

a matrix 0<X=X"'€ R"*" solving the following algebraic
Riccati inequality (ARI):

AL XAy — X + (A XBy + C Do)(I — D§Do — B{XB)™!

X (Bb XAy + DBC()) + CBCO < 0. (7)
(3) There exists a matrix 0<Y=Y"'€ R"*" solving the following
LM
-y! o0 Ay By
0 -1 Co Dy
WO e [ < 0. (8)

Proof (1)=(2): Follows from (Zhou and Khargonekar, 1988) on
noting that ||7,,(Z)|l <1 corresponds to I— Dy Dy— B§XBy >0
and ||Cr(zI—Ap) ' Byl|oo < 1 With

Ar = Ay + Bo(I — Dl Do — BSXBy) ™' D} Cy;
By = By(I — DyDy — BY XBoy)~'/%; )
Ci = (I— DDy — BoXB) ™" C,,

(2)= (3): Since any constant block matrix of the type

R R
- &l 1o



522 M.S. MAHMOUD

can be expressed in the form

Rl R2 — R] 0 Rl_l 0 Rl R2 (11)
RY Ry RS, I|{ 0 Ry—RIR7'R||0 1]

The condition R < 0 corresponds to (1) R; < 0,and (2) (Rs — RS R{'Ry)
< 0. By setting

I y-! 0 _ Ay By N Y O
R1_|: 0 _I:|9 R2_|:C0 DO]’ R4_[ 0 _1]7
expanding and rearranging, the result follows.

DEFINITION 3 (Zhou et al., 1995). System (1) is said to satisfy
strongly robust H,-performance criterion if there exists a matrix
0<Y=Y"€ R"*" solving the A-dependent ARI.

A(A)YA(A) — Y + CHA)C(A)

+[4'(A)YB(A) + CH(A)D(A)RT(A)
x [4'(A)YB(A) + CY(A)D(A)]' <0, (12)
where
R(A) = [I- D'(A)D(A) — BY(A)YB(A)). (13)

COROLLARY 1 System (1) is said to satisfy strongly robust H.-
performance criterion if there exists a matrix 0<Y=Y'€R"*"
solving the A-dependent LM1

[—Y“ o} . [A(A) B(A)]

Lo ol e el
8 s - [

for all admissible uncertainties A(A), B(A), C(A) and D(A). This is
quite clear from Lemma 2 in view of Definition 3.
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Remark 2 It should be noted that Lemma 2 provides a non-
standard form of the link between the concepts of H_-disturbance
attenuation and quadratic stability.

Remark 3 1In the light of Definitions 2 and 3, it is easy to see that
when a system satisfies strongly robust H.-performance criterion
then it is necessarily quadratically stable. In the sequel, more will be
said on the properties of this criterion and its use in robust control
synthesis.

4. UNCERTAINTY STRUCTURE

In the literature on state-space models containing parametric
uncertainties, there have been so far three different methods to
characterize the uncertainty. In the first method, the uncertainty is
assumed to satisfy the so-called matching condition (Bahnasawi and
Mahmoud, 1989). Loosely speaking, this condition implies that the
uncertainties cannot enter arbitrarily into the system dynamics but
are rather restricted to lie in the range space of the input matrix. By
the second method, the uncertainty is represented by dyadic (rank-1)
decomposition (Schmitendorf, 1988). It is well-known that both
methods are quite restrictive in practice. According to the third
method, the uncertainty is expressed in terms of a norm-bounded
form as (Petersen, 1987). It has been reported recently (Zhou et al.,
1995) that a general linear fractional representation would be a
reasonable structure of uncertainty. Here we follow this trend and
consider the uncertainty matrices to be of the form:

&) )= (e B [Plaw 0w

A(k) = H(k)[I — ©H(K)]™", (15b)

where Ao, By, C,, Dy are constant matrices given by (2a),(2b);
Se R MeRP*" NeRP*9 LeR"™™“ are constant matrices
and H(k) eR**? is unknown matrix satisfying the bounding
condition H'(k) H(k)<I, ke R,. The constant matrix © € R°>°
satisfies the contraction condition ©'© < I in order to guarantee the
existence of the inversion in (15b). Now, the set of uncertainties
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considered in this paper = is defined by

1]

= {A(k): A(k) = H(k)[I—OHK)]™", ke Ry;

(16)
H'(k)H(k) < Iand ©'© < I}

and it provides a characterization of the time-behavior of the
uncertainties subject to two bounding inequalities, one on © and the
other on H(k).

Before proceeding further, we recall the following result

LEMMA 3 Let ¥y, 3, be real constant matrices of compatible dimen-
sions and T'(k) be a real matrix function satisfying T (k)I'(k) < N,
0 < Ny = N{. Then the following inequality holds

YTk + DITHR)E, < p* 5188 + p 28 NS, p> 0. (17)

Proof Consider the matrix function
[pZ§ = p7'T(R) o] [pZ] - p7'T(K)Z 4] > 0. (18)

On expanding (18), we get p*%\%f — SiTYK)SY — BT (k) S+
p 2T (k) (k)X > 0, and by rearranging the terms using I'(k)x
I'(k) < Ny, the desired inequality (17) results.

COROLLARY 2 When £iT'(k)Xy + BT ()X + I < 0, II' =11 > 0, it
follows from Lemma 3 that this implies that p*$i%4 + p~2S 5Ny
Yo+ 11 <O.

The next lemma provides an alternative and more convenient
version of (16).

LEMMA 4 Given that ©'O <1, then the set of uncertainties = can be
expressed as

Ea = {AK): A(K)AY(K) < T+ A(K)© + O'Al(k) + A(k)OO'Al(k)}
= {A®k): A(k) =0 I—06Y" + ¥ (k)[I- 06 "%
VH(k)W(k) < I+ O'[I-086Y"'e; 8'e < I
(k) = [I— 00 2Al(k) - [I — 06" /?6}.

(19)
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Proof Observe that simple manipulation of (15b) implies H(k)=
[I+ A(k)®]'A(k). Hence, it directly follows that [/+ A(k)O]=
[I—-H(k)O] . Since H'(k)H(k) < I by definition, we get:
AYK) I+ A(K)O) (I + Ak)O) ' A(k) < I,
AYK) [T+ Ak)O + O'AY (k) + A(k)OB' Al (k) ' A(k) < I,
AR+ Q(k) ' Ak) < 1,
Q(k) := A(k)® + O'Al(k) + A(k)OB' A (k).

(20)

It then follows from (20) that

A(R)AL (k) [T+ Q(k)] ' Alk) < A(k),
A(k) A (R)T + Q)] Ak) < [T+ QRN+ (k)] ' AK),  (21)
{A(R)A (k) — [T+ Q)T + (k)] ' A(k) <0,

Since the indicated inverse in (21) exists, we obtain
A(k)A' (k) < T+ A(k)© + ©'Al(k) + A(k)OO'Al(k). (22)

Introducing ¥(k)=[I— ©0'1'2, A(k)—[I- ©6'"'?0, and complet-
ing the squares in (22) we reach U'(k)¥(k) < I+ O'[/—0©60"7'0© and
the proof is completed.

Remark 4 1t is interesting to note from Lemma 4 that =, CZ. The
significance of expression (19) over (16) is quite evident in eliminat-
ing the inequality on H(k).

Using the above uncertainty structure, we obtain the following
result:

LEMMA 5 Let ¥, ), X3 = XY be real constant matrices of compa-
tible dimensions. Then VA(k) € Z, of (19) and for some p >0 we have

DIAK)S, + AN K, + 55 < 0 (23)

if and only if

-1
I -© 2
—1yt p L2
(P75} pz,][_@t 1] [ng ]+23<0. (24)
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Proof Starting with (23), we use (19) to get

5,041 - 00Y) 'S, + 2, v (1 - eeY) /2%,
+ (I —-eeh'est + S (- 0ehPust + 35 < 0. (25)

By Corollary 2, there exists some p >0 such that

$101 (1 - 00Y)7's, + T — eeY) 'ext 4+ p 2l (1 - 08Y 'y,

+ oI+ 0 (I—0eeY)'e|T, + 53 < 0. (26)
Algebraic manipulation of (26) using the facts [[—©0Y'=
[[+0(-6'9)'8" and 8'O < I leads us to:

si(I-e'e) ey, + Bie(I— e'e) 'y,
+p 25O - e'e) ey,
+p 288, + 25 (I - 0'8) 'S 4+ 53 < 0. (27)
Turning to (24) and recalling that ©'© < I, then a direct expansion
yields:

p 2SI+ 01— 6'0)7 e, + 5[(I- 6'e)'elx,

+ i[O —0'0) |5t + 20 [I-0'0) et + 55 < 0. (28)

By completing the squares in (28), it reduces to

[P12L0 + pTi (1 — ©'0) ' p'TLe + pXi] + p 2B T, + 55 < 0,
(29)
which is equivalent to (27) as required.
We are now in a position to provide the first basic result.

THEOREM 1 For the uncertain system (1), the following statements
are equivalent:

(1) The system satisfies the strongly robust H,-performance criterion.
(2) VA(k) €E,, there exists a matrix 0< X=X"'€R""" solving the



ROBUST CONTROL OF DISCRETE-TIME SYSTEMS 527

A-dependent ARI

A(A)XA(A) — X+ CY(A)C(A) + [4'(A)XB(A) + C(A)D(A))
x RY(A)[B'(A)XA(A) + DY(A)C(A)] < 0, (30)
R(A) = [I- D'(A)D(A) — B'(A)XB(A)].

3) VA(k) € Z,, there exists a matrix 0 < X=X"'€eR"*" solving the
A-dependent Lyapunov inequality (LI)

AA) BA)]'[Xx 0][4(A) B(A)] [x 0 <0. (1)
c(a) pa)y| o 1|lca) by "o 1] <%
(4) VA(k) € Z,, there exists a matrix 0< X=X"'€R"*" solving the
A-dependent LMI1

—x' 0]  [4(Q) B(A)

NIGENCE

(A) = RN RN <0. (32)
8 ) o [0

Proof Since =, CZE, then (1)=(2) follows directly. The implic-
ation (2)=-(3) can be readily obtained in line of Lemma 1 and
Corollary 1. Using Corollary 1, the implication (2)=(4) is easily
derived. To show (2)=-(1), it suffices to recall that (30) is equiva-
lent to (14) and in this way it is readily seen that maxacz Am[W(A)] =
maxaez AM[W(A)]. This means that W(A)<0 VA €E if and only if
W(A) <VA € E,. Finally, by Corollary 2, the proof is completed.

5. MODEL PARAMETRIZATION

To build upon the nominal model and substitute for the effects of
uncertainties, we introduce in the sequel a p-parameterized model of
the form

x(k+1) = Aox(k) + [By pS]w,(k), x(0)=0, (33a)

z,(k) = [p_cl‘;u}x(m + [p?fN l:aL ] w,(k), (33b)
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where w,(k) is an (g4 o)-disturbance input vector from #£,[0, c0)
and z,(k) is (r+ f)-controlled output and p is a positive scaling
parameter.

The second basic result is now established.

THEOREM 2 System (1) is said to satisfy the strongly robust H-
performance criterion if and only if for some p >0 the p-parametrized
system (33) satisfies the strongly robust H,-performance criterion.

Proof By Lemma 2 and Corollary 1, system (33) satisfies the
strongly robust H,, performance criterion if there exists a matrix
0<X=X"eR"*" solving the LMI

[—x~1 0 0 - Ay By pS]
0 -1 0 . C() Do pL
0 0 -1 - p'M p’IN ©
. .| <O0. (34)
Aj o p Mt . X 0 0
B} D}, pINt . 0 -1 0
| pSt pL! ot . 0 0 —1 ]

Introducing the nonsingular permutation matrix P € R ¢ ® of the form

P=e1,ez,e5,3,€4,06; P' =P (35)
such that
[ —x! 0 Ay . By 0 pS—
0 -1 C() . D() 0 pL
Ay Cy o-x - 0 p'M' 0
P‘WPPZ e .| <0. (36)
By Dy 0 - —I pIN' O
0 0 p'M - p'N -1 S}
| pSt  pL! 0 -0 et —I

Using the block matrices

X! 0 Ay By
0 -1 Cy Dy
4 ct o—x o
BL Dy 0 -I

¥y = S, =[0 0 M N|, %=

SO N0

(37)
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then it is easy to see that inequality (36) has the form

-1
I -© -y
_ 1%t 14 2
[p1%} pzl][_@t 7 ] [ o5 ]+23<0. (38)

By Lemma 5, expression (38) corresponds to
T3+ 1A K) S, + Z5A (k)] <0, (39a)
or equivalently

[—X—' 0] . [Am) B(A)]

W(A) = A b 0 39b

(A) A‘(A)O(A) —Xo < (39b)
[Bt(A) D‘(A)] [ ]

for all uncertainties satisfying the structure (16) and therefore the
proof is completed.

6. ROBUST CONTROL SYNTHESIS

Now we turn attention to the problem of robust feedback synthesis.

Extending on system (1), we consider a class of uncertain systems of
the form

x(k+1) = A(A)x(k) + B(A)w(k) + E(A)u(k),  x(0) =0,
2(k) = C(A)x(k) + D(A)w(k) + F(A)u(k), (40)
y(k) = Q(A)x(k) + J(A)w(k) + V(A)u(k),

where at time ke R, x(k) eR" is the state vector; w(k) € R is the
disturbance input vector; u(k)€R™ is the control input vector;
z(k)eR" is the controlled output; y(k)eR’ is the measurement
vector and A(A), B(A), C(A), D(A), E(A), F(A), V(A), Q(A), J(A) are
continuous, bounded matrices of appropriate dimensions and their
entries are functions of A(k); A(k)€ = is (possibly) a time-varying
uncertain matrix. The set Z is compact and the uncertainty matrices
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are described by

A B E Ay By E S
C D F|=|C Dy Fo|+|L|A(k)[M N II], (4la)
o J Vv O Jo W (0]

Alk) = HK)I - OH(K)™; H'()H(K)<I, 6 <1,  (41b)

where Ag, By, Co, Dy, Eo, Fo, Qo, Jo, Vo are constant matrices of appro-
priate dimensions representing the nominal system and S, M, N, L, ®,
II are constant matrices and H(k) is unknown matrix . The pairs
(4o, Ey), (Ao, Qo) are stabilizable and detectable, respectively.

6.1 Dynamic Controller

Now the problem of interest is to design a linear dynamic controller
u(k) = K(k)y(k) such that the controlled system satisfies the strongly
robust H.-performance criterion. Proceeding to solve this problem,
we consider the dynamic controller (of order o and based on output
feedback) has the following state-space realization

C(k + 1) = Ac((k) + Bc))(k),

u(k) = CuC(k). “2)

Following the development of Section 5, we introduce an p-para-
meterized model of the form:

Ko+ 1) = Agx(8) + (B pSTog(l) + Exul),  x(0) =0,
C D, L F
)= | O |so | B0 o+ Ih Jutw.
y(k) = Qox(k) +[Jo  p®]w,(k) + Vou(k),

where w,(k) is an (g + «)-disturbance input vector from ¢,[0, co) and
z,(k) is (r+ )-controlled output and p is a positive scaling param-
eter. We have the following basic result:

THEOREM 3  The closed-loop uncertain system (40)—(42) satisfies the
strongly robust H,,-performance criterion if and only if for some
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p>0 the p-parametrized system (43) with the dynamic controller (42)
satisfies the strongly robust H_-performance criterion.

Proof Combining (42) and (43), we get the p-parameterised closed-
loop system:

r@+n]=[Ao EoCe Hﬂm]+[&) pS

C(k + 1) BcQO Ac + Bc VOCc C(k) BCJO pBC(I)] wl’(k)

A
z(k) = [pgzu piogcCc] [zgllg] [p?'ON lg]w” () 44
=EE$H+BWwy

By Lemma 2 and Corollary 1, system (44) satisfies the strongly
robust H,, performance criterion if there exists a matrix
0< Y=Y eR"TD*"+9 solving the LMI

-y! 0 4 B
~ 0 I C D
— ....;\.t...f.\i ................... < 0 (45)
4 C [ -Y 0 ]
~t ~t
B D 0o I
Using the orthogonal matrix P
P = e, er,€3,07,4,05,€,¢5); P =P, (46)
we get
PWP
'—Yf' 0 0 Ay EyC, By 0 pS
0 ~Y;! 0  B.Qo Ao+ B.QyC. B.Jy 0 pB.®
0 0 —I CO F()Cc Do 0 pL
| 4 LB} G -T 0 0 Mt 0 <0
CLES A4+ClViB' CFf 0 -Y; 0 plam o
By JiB! Dy 0 0 -1 ' 0
0 0 0 p'M plC.  p'N -T e
\_ pSt p®'B. pLt 0 0 0 ot —I
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where Y= block diag[Y; Y>]. Using the block matrices

-—Yi'l 0 0 Ay EyC, By T
0 -Y;! 0 B.Qo Ao+ B.QoC. B.Jo
0 0 -1 C() FOCc DO
Y3 = t t pt ’
4y Q0B G —n 0 0
CLES Ay+CLVB, CUF§ 0 Y, 0
Bf) Jf)Bct D}) 0 0 —I ]
-0 1 - S 7
0 B.®
0 L
o= ) Y= s 48
2 Mr_ 1 0 ( )
ct 0
L N [ 0

then inequality (45) assumes the block form (24). By Lemma 5, this
corresponds to X3 + L1 A(t)E; + LAY (t)E) < 0, or equivalently

S G
- 0 -1
44

[Zt(A) c(a)
B(A) DY(A)

VA € ¥, where
“oay [ ADB) E(A)Ce Soay | BA)
A= [ 0w assrme) MM—[&KM}(W)
C8) = [C(d) FA)C).

Alternatively, by combining (40)—(42) we obtain:

[ (k+1)] [ A(4) E(A)Ce Hx(k)}Jr[ B(A)

Ck+ 1) 08) Ao+ B L) mﬂmh“)

[x(k

qk]+ﬂA w(k).
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x(k)
¢(k)

] + D(A)w(k). (51)

(k) = [C(A) F(A)CC][

_ A [x(k)
= C[c(k)

] + D(A)w(k)

It is readily evident that system (51) satisfies the strongly robust H.-
performance criterion if and only if condition (47) is met VA € =, and
therefore the proof is completed.

6.2 Special Cases
Case 1 (Full State Measurement)
One important special case of system (40) is described by
x(k+ 1) = A(A)x(k) + B(A)w(k) + E(A)u(k), x(0) =0,
z(k) = C(A)x(k) + D(A)w(k) + F(A)u(k), (52)
y(k) = x(k),

for which we seek to design a state-feedback controller u(k) = Fyx(k)
that renders the closed-loop system

x(k+ 1) = [A(A) + E(A)F)x(k) + B{A)w(k),  x(0) =0,

(k) = [C(A) + FA)FJx(k) + D(A)w(k), 59

satisfying the strongly robust H_-performance criterion. The basic
result is summarized by the following theorem.

THEOREM 4 The closed-loop uncertain system (53) satisfies the
strongly robust H,-performance criterion if and only if there exists a
state-feeback controller u(k)= Fyx(k) and two matrices 0< Z= Z'c
R QeR™™" solving the A-dependent LMIT

[—z 0] . [A(A)Z+E(A)Q B(A)]

A 0 —I C(A)Z + FA)Q D(A)
W, = e L TN
®) ZAYA) + QEY(A) ZCHA) + QL (A) -Z 0
[ B\(A) DY(A) ] ' [o —1}
<0 (54)

VA € E, where F,=02Z"".
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Proof (=) By (3) of Theorem 1, system (53) satisfies the strongly
robust H,-performance criterion if and only if there exists matrix
0<X=X"eR"*" such that

[A(A)+E(A)Fs B(A)HX OHA(A)+E(A)FS B(A)]

C(A)+ F(A)F;, D(A)] |0 I]LC(A)+ F(A)F, D(A)
- [i)( (I)] <0 VAeE,. (55)

Then it follows from (4) of Theorem 1 that

-x1 0 A(A) + E(AYF, B(A)
0 -I ' {C(A)+F(A)Fs D(A)]
We(A)=| i <0. (56)
[A(A)+E(A)Fs B(A)]‘ . [—X 0]
C(A) + F(A)F, D(A) 0 -I

Premultiplying inequality (56) by P* diag[[ I X' 1] and post-
multiplying the result by P*, we arrive at

Wi(D) = P*We(A)P*

-x' 0 | AQ)XT +EQ)FXT B(A)
C(A)X '+ FA)F X' D(A)

[y £ xR Q) XCA) + XU REA)
B'(A) D'(4)
<0 VAEe&E,. (57)

By defining Z=X"", F,=0QZ', it is clear that (57) corresponds to
(54).

(<) This can be obtained by reversing the foregoing procedure
and using the state-feedback gain F,=QZ"".

Remark 5 1Tt should be stressed that the state-feedback design
eventually reduces to the search for two matrices 0 < Z=2Z'€ R"*",
Qe R™>" such that linear matrix inequality (54) is satisfied. Observe
that A appears affinely in W(A) and that W (A) is convex in both
Z and Q.

Remark 6 Note that solution of the LMI (54) can be attained by
efficient and numerically-stable techniques including interior-point
methods (Boyd et al., 1994).
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Remark 7 It is interesting to observe that the result of Theorem 4
could be derived as well by using the conclusion arrived at in
Theorem 3 and setting Q(A)=1, J(A)=0, V(A)=0, 4.=0, B.=0
and C.= F; into condition (49).

Case 2 (System and Input Uncertainties Only)
Another important special case of system (40) is described by
x(k+1) = A(A)x(k) + B(A)w(k) + Eou(k), x(0) =0,
z(k) = Cox(k) + Fou(k), (58)
y(k) = x(k)
for which we have the following result:

THEOREM 5 For the uncertain system (58), there exists a state-
feedback controller such that the resulting closed-loop system satisfies
the strongly robust H,, performance criterion if and only if there
exists a matrix 0 < Z=Z'€ R"*" solving the LMI

—Z - A G ZE

A(A) - T 0 0 | <0 VAeE,  (59)

G - 0 o-! 0
EZ - 0 0  FF

where

A(A) = A(A) — Eo(F{Fo) ' FiCo — Eo(FiFo) ' E{Zz7; (60)
['=Z[I- B(A)BY(A)Z]™'; W =1I-Fy(FiF) 'F,.

Moreover, the state-feedback controller has a constant gain of the form

Fy = —(F3Fo) "' [FsCo + EpZ). (61)

Proof (=) By similarity to the proof of Theorem 4, there exists
matrix 0 < Z=Z'e R"*" such that
(A(A) + EoFy)' Z(A(A) + EoF,) — Z + (Co + EoF,)'(Co + EoFy)
+ (A(A) + EoF)'ZB(A)[I — B(A)ZB(A)] 7' B{(A)Z(A(A) + EyFy)
<0 VAeZ,. (62)
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Rearranging (62), one obtains

AY(A)ZA(A) — Z + CyCo + A'(A)ZB(A)[I - B'(A)ZB(A)] 7' B(A)ZA(A)
+ FYESZEy + FiFy + ESZB(A)[I — BY(A)ZB(A)] ' BY(A)ZE | Fy
+ FESZA(A) + F{Co + ESZB(A)[I — B{(A)ZB(A)) ' B(A)ZA(D)
+ [AY(A)ZEy + CSFy + A (A)ZB(A) I — B'(A)ZB(A)] ' B (A)ZEo)Fy
<0 VAeE,. (63)

Using the matrix identity in Z+ ZB(A)[I-B(A)ZB(A)B(A)Z =
Z[I-B(A)B(A)Z]™" in (63) and manipulating with the aid of (60) and
(61), we get:

AYA)ZA(A) — Z 4 CUCy + ZEy(FiFo) " EoZ < 0; VA € E,.
(64)

It is readily seen that (64) can be put into the form (59).

(«<) Follows easily by reversing the above procedure.

Remark 8 1t should be emphasized that the controller form (61)
could be derived as well from linear-quadratic theory by minimizing

2
l1212-

COROLLARY 3 For the class of systems described by

x(k+ 1) = A(A)x(k) + Bow(k) + Eou(k),  x(0) =0,
z(k) = Cox(k), (65)
y(k) = x(k),
it is easy to conclude from Theorem 5 that system (65) satisfies the

strongly robust H..-performance criterion if and only if there exists
matrix 0 < Z = Z' € " "solving the LMI

Il

A - Cy AY(A) — pZ(EVE))
Co L 0 <0 VAeZ,
A(D) — w(BEYZ - 0 r-!

(66)
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where the state-feedback controller has a constant gain of the form
—nEZ.

CONCLUSIONS

In this paper, the problems of robust performance analysis and
feedback control synthesis have been considered for a class of
discrete-time systems with time-varying parameteric uncertainties.
The uncertainties have been represented by linear matrix fractional
model. By adopting the recent concept of strongly robust H.,
performance criterion, several previous results have been system-
atically recovered. Then, new results have been developed. All of
these results have been cast into linear matrix inequality (LMI)
formalism. Synthesis of robust feedback controllers are carried out
for several system models.
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