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Model reduction has become an important issue in the analysis of electric power systems,
due to their constantly increasing size and complexity. In this paper we present a decom-
position algorithm which is capable of reducing the number of equations in the model,
while preserving the potential for parallel computation. A variety of experimental results
are provided to illustrate the performance of the algorithm.
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1. INTRODUCTION

The dynamic behavior of large electric power systems can be described
by a system of differential-algebraic equations (DAE)

J'c=f(x,y), 0=g(x,y), (11)

where x is the set of state variables of all the dynamic devices
(generators), and y represents voltage magnitudes and angles at the
buses [2]. Given the physical interpretation of vectors x and y, in the

* Corresponding author. Fax: 408-554-5474. E-mail: azecevic@scuacc.scu.edu.

43



44 AL ZECEVIC AND N. GACIC

following we will refer to their components as dynamic and static
variables, respectively.

The constant increase in the size and complexity of power systems
has created a need for algorithms that can decrease the number of
equations in (1.1), while preserving an acceptable level of accuracy.
One possible way to accomplish this is to equivalently reduce groups
of generators in the system, which results in an approximate model
with fewer dynamic variables. A variety of methods exist for this type
of dynamic reduction, utilizing concepts such as electromechanical
distances [3,6], clustering of swing curves [7] and analysis of system
eigenvectors [1]. For large systems, however, these methods are
generally complex and result in a considerable computational effort.
They also typically require either the construction of new matrices or
substantial changes in the system model, both of which further com-
plicate the procedure.

In addition to dynamic reduction, in the transient analysis of power
systems it is common practice to eliminate the algebraic network
equations in (1.1), thus transforming the problem into a substantially
smaller system of ordinary differential equations. However, such a
transformation carries a price — the once sparsely connected nodes
now acquire additional links, and all related matrices become much
denser. As a result, the initial sparsity and potential for parallel
computing are largely lost.

The main objective of this paper is to develop a decomposition
which is capable of reducing the number of equations that model the
power system, while preserving the potential for parallel computation.
In the following, we will present an efficient algorithm for dynamic
reduction which requires only a modest computational effort, no new
matrices and no changes to the model; these features make it very
attractive in comparison with existing methods. We will then demon-
strate how epsilon decomposition [8,9,11] can be utilized to solve the
reduced system of differential equations in parallel.

Experimental results will be provided for two power systems — the
IEEE 39 bus system with 10 generators and the NPCC 140 bus system
with 48 generators. In both cases, it will be shown that the reduction
and parallelization can indeed be performed efficiently without
significant loss of accuracy in the simulation process.
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2. EPSILON DECOMPOSITION

Our algorithm for the reduction of large power systems is based on the
concept of epsilon decomposition. The basic idea of the method is
remarkably simple — given a matrix 4 =[g,;] and a value of parameter
€>0, all elements satisfying |a;| <e are set to zero. The resulting
sparsified matrix is then permuted into a block diagonal form, and all
the variables in the same block are considered to be strongly coupled.
After such a permutation, matrix A4 can be represented as

A= Ap +eAc, (2.1)

where Ap is block diagonal and all elements of A¢ are less than or
equal to one in magnitude.

Results obtained by applying epsilon decompositions will depend on
the choice of parameter €. Naturally, as ¢ is increased, more elements
of A are discarded and the diagonal blocks will become smaller. It is
therefore necessary to determine an appropriate value for € that will
identify strong coupling while preserving a desired block structure. In
most applications such a value is difficult to obtain apriori, and some
type of trial and error procedure needs to be performed in order to
obtain satisfactory results. This is generally not a problem, due to the
linear complexity of the decomposition algorithm.

We should also point out a potential difficulty that arises when
epsilon decomposition is directly applied to a matrix with elements
that widely vary in size. In such cases, it may not be possible to find a
meaningful value for ¢, as illustrated in (2.2):

10 5 02
A= 101 02 0.02]. (2.2)
45 1 100

In order to resolve this problem, each row should be scaled by the
element with the maximal absolute value; this will always result in a
more uniform distribution of elements. The application of scaling to
the matrix in (2.2) is demonstrated in (2.3). The scaled matrix A
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obviously has an epsilon decomposition 4 = Ap + eAc for e=0.1,

. 1 05 0 i 0 0 02
Ab=105 1 0f; dc=|0 o0 1]. (2.3)
0 0 1 045 0.1 0

Note that in this case 4 can be represented only as 4= Ap+ Ac
(without €), but scaling does identify block diagonal dominance, since

145" ¢l = elldp Aclo < 1. (2.4)

3. IDENTIFICATION OF GENERATORS WITH
SIMILAR DYNAMICS

The key step in any algorithm for dynamic reduction is to identify
groups of generators that respond “similarly” to disturbances in the
network; these groups then represent the basis for an equivalent
transformation of the power system (e.g. [10]). When the network is
large, standard identification techniques can be quite complex and
time consuming, since they typically involve an analysis of the system
eigenvectors or major modifications to the model. In contrast, the
algorithm proposed in this section is linear in complexity, and involves
only successive applications of epsilon decomposition.

G
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FIGURE 1 A power system with 2 generators and 3 buses.
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We begin by considering the simple power system shown in Fig. 1,
which consists of two generators and three buses [5].
The DAE that describe its dynamics have the form

fi:
fr:

f3:
Ja:

I4 8

&2

g3:

84:

8s:

86!

X1 = X3 — wo,
Xy = X4 — wo,

. w i
X3 = ﬁ(}’ml — |E1]||Yar|y1 sin(x1 — y3)),

. 3 y 3
X4 = 2H (sz |E2|| Y |y2 sin(x2 — y4)),

0= Z | Yik|yk cos(ye+s + d1k) — | Yar|| Er| sin x1,
k=1

3
0= |Yaklye cos(yes3 + poi) — | Yarl| 2| sin xa,
P

3
0= Z |Yiklye sin(y+s + dik) + [Yar|| Er| cos xi,
k=
3

Z Yor|yk sin(yis3 + ¢ok) + [ Yaz|| E2| cos x2,
k=1

3
Z | Y|y cos(Vess + d3k),

0= Z |Y3e|yie sin(ess + d3e)-
k=1

(3.1)

When a short circuit fault occurs, the system is perturbed from its
equilibrium state and it becomes necessary to solve Egs. (3.1) in order
to establish whether stability is preserved. This is typically done by
discretizing the differential machine equations using the trapezoidal
method, and combining them with the algebraic network equations [2].

In each time point #;, this procedure results in a system of purely
algebraic equations,

h
Xk = Xk-1 +§[f(xk—1,yk—l) +f(xkayk)],
0 = g(xk, ¥x),

(3.2)
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where x; = x(tx), vy =y(tx) and h=1t, — t;_; represents the discretiza-
tion step.

For our purposes, it will be convenient to introduce a vector
Zr = [ny{]T, and order it so that all generator variables are numbered
first. For the system in Fig. 1, these variables are {xi, x3, y1, y3} for
generator 1 and {x,, x4, y», 4} for generator 2; consequently, z; would
be ordered as

zZk=[x1 X3 y1 y3 | X2 X4 y2 ya| ¥s el (3.3)

Using this notation, we can now express the algebraic equations in
(3.2) as

Flze) =0 (3.4)

and solve them for k=1,2,... by applying the modified Newton
method [4],

z(i+1) = zi (i) — [Je(0)] " F(zx (i), i=0,1,... (3.5)

The iterative sequence generated by (3.5) starts from some initial
approximation z;(0), and Ji(0) represents the Jacobian evaluated at
this point.

Our algorithm for identifying strongly coupled generators is based
on a decomposition of Jacobian J(0), which corresponds to the
equilibrium state of the power system. By choosing this particular
Jacobian, we secure that the obtained groups of generators are
independent of the fault location. In the following, it will be
convenient to order the equations in (3.4) in accordance with vector
Zx, so that J;(0) can be partitioned as

_|Ju Ji2
11(0)=[ o Jzz]’ (3.6)

where J;; corresponds exclusively to generator variables. For the
system in Fig. 1, such an ordering would be

F=[fifs g1 8|2/ 8 8|8 &gl (3.7)
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and the partitioned Jacobian has the form

x x 0 0:0 0 0 0|0 0]
* x x x, 0 0 0 0[0 O
x* 0 x x10 0 *x x|x*x x
* 0 x _*_:Q_Q_*L KA
0 00 01 x 0 0j]0 O
J1(0) = 00 0 O0'x x x %[0 O (3-8)
0 0 =« *:* 0 * *x|*x *
0 0 * *x1x 0 % *[=x*x =
0 0 x «x 0 0 * =x|x*x =*
10 0 x x 0 0 * *x!x*x x|

In (3.8), * denotes nonzero entries, and the two generator blocks in Jy;
are indicated by dashed lines.

(i) Identification of Strong Direct Connections

The first step of the algorithm is to perform an epsilon decomposition
only on J;;, which results in a block diagonal matrix Jf;. Such a
strategy is motivated by the fact that directly connected generators are
usually the most likely to exhibit similar dynamics, and ought to be
grouped first. There are two issues regarding the epsilon decomposi-
tion of J;; that need to be considered in more detail. It should first be
observed that each generator actually corresponds to a 4 x 4 submatrix
in Jy;, as indicated in (3.8). However, in order to simplify the
application of epsilon decomposition, we will define the derivative
with respect to the phase angle of the bus voltage as the “representa-
tive” of a generator; in our example, the representatives of generators 1
and 2 are 9f3/0y; and 9f4/0ya, respectively. Using this convention, two
generators are assumed to belong to the same block if their
“representatives” belong to that block. Experiments on a variety of
power systems have shown that this simplification is justified, since the
4 x 4 submatrices are regularly preserved in the process of epsilon
decomposition.

The second issue that needs to be discussed is the choice of
parameter &, since it is often difficult to determine a suitable value in
advance. In order to resolve this problem, we propose to specify a
maximal allowable size for a group of generators (denoted Sy,.x), and
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iteratively compute the smallest £ which will satisfy this constraint. A
typical (and empirically justified) choice for Sy is 15-20% of the
total number of generators.

(ii) Identification of Strong Indirect Connections

In order to obtain a meaningful grouping of the generators, it is
usually not sufficient to consider only matrix J;;. Namely, two
generators can also have similar dynamics if they are “indirectly”
connected through the network, provided that these connections are
sufficiently strong. We will distinguish between two types of indirect
connections, as illustrated in Figs. 2 and 3.

It is natural to expect a greater impact from Type 1 connections,
since they are the more direct ones; this fact will be reflected in all
subsequent refinements to the original generator grouping.

In order to incorporate connections of Type 1 into our algorithm, it
will be convenient to form an auxiliary matrix

Ji Ji2
Ia = |70 , 3.9
A [le JD:I (39)

where Jp represents a matrix formed from the diagonal entries of J5,.
It is not difficult to verify that all Type 1 connections are contained in

FIGURE 2 Indirect connections through a common bus (Type 1 connections).
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FIGURE 3 Indirect connections through the network (Type 2 connections).

blocks Ji; and J,;, and the strongest among them can be identified by
performing an epsilon decomposition of matrix J,. Using this
approach, we can now group certain previously unrelated generators,
provided that this does not violate the original maximal block size
Smax- It is also important to point out that the value of € used in the
decomposition of J, should be larger than the one applied to Jyy, in
order to reflect the hierarchy which exists among different types of
generator connections. Experimental results indicate that €, 2¢ is an
appropriate choice.

As a final refinement in this algorithm, it is also possible to consider
connections of Type 2. The strongest among these connections can
once again be identified by an epsilon decomposition, this time of the
entire matrix J(0). Based on this decomposition, the groups of
generators can be further enlarged within the constraints imposed by
the choice of Sp.x. Typically, 3= 1.5¢, is an adequate choice in this
step (reflecting the fact that in practical power systems Type 1
connections are more dominant than Type 2 connections).

The performance of the proposed algorithm was tested on a number
of power systems, including the IEEE 39 bus system with 10 generators
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TABLE I Generator groups for the 39 bus system

Group Generators
1 1,8

2 2,3

3 4,5

4 6,7

5 9

6 10

TABLE II Generator groups for the 140 bus system

Group Generator
1 1,2,6,7,9
2 3,45
3 8
4 10
5 11, 12
6 13, 14, 24, 25, 26
7 15, 16, 17, 18, 19, 20, 23, 31
8 21, 22
9 27, 28, 29, 30
10 32
11 33, 34, 35
12 36
13 37, 38
14 39
15 40
16 41
17 42
18 43, 44, 45, 46, 47
19 48

and the NPCC 140 bus system with 48 generators. The resulting
groups of generators for these two systems are shown in Tables I and
I1, respectively.

To demonstrate that generators in these groups indeed respond
similarly to disturbances in the network, in Figs. 4(a) and (b) we show
the transient behavior of groups 1 and 4 for the 39 bus systems, given a
fault at bus #4.

Similar behavior can be observed in the 140 bus system, as indicated
in Figs. 5(a) and (b) for generator groups 6 and 9; in this case, the fault
was at generator #8.
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FIGURE 4(a) Rotor angle curves for generators in group 1 (39 bus system).
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FIGURE 4(b)
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Rotor angle curves for generators in group 4 (39 bus system).
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FIGURE 5(a) Rotor angle curves for generators in group.6 (140 bus system).
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FIGURE 5(b) Rotor angle curves for generators in group 9 (140 bus system).
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4. REDUCTION OF LARGE POWER SYSTEM MODELS

Once groups of “similar” generators are identified, it is possible to
replace each group with a single equivalent generator [1,7,10]. This
transformation can substantially reduce the number of dynamic
variables and accelerate the simulation process. It is important to
note, however, that the resulting equivalent model is only an
approximation of the original system, and that its accuracy depends
heavily on an appropriate grouping of generators. To evaluate the
performance of our method in this context, we applied Podmore’s
aggregation algorithm [7] to reduce the number of dynamic variables
in the 140 bus system from 96 to 50. The results shown in Figs. 6 and 7
indicate that the groups from Table II indeed produce accurate
approximations of the exact solution; it follows, therefore, that epsilon

110 T T T T T T T T T

20 1 1 1 1 1 1 1 1 i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 6 Rotor angle curves for generator #6, with a fault at bus #7 (after
Podmore aggregation). Solid and dotted lines represent the original and reduced mod-
els, respectively.
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30 1 1 1 L 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 7 Rotor angle curves for generator #8, with a fault at bus #7 (after
Podmore aggregation). Solid and dotted lines represent the original and reduced mod-
els, respectively.

decomposition can indeed be used effectively as a basis for dynamic
reduction.

Epsilon decomposition can simplify the simulation process even
further. Namely, in the transient analysis of large power systems it is
common practice to transform the model into 7 purely differential
equations

% = d(x), (4.1)

where 7 is the number of dynamic variables that remain after the
equivalent reduction of generators. However, in this process, the once
sparsely connected nodes acquire additional links [10], and the Jacobian
becomes much denser (offering very little in terms of parallel processing).
In view of this fact, we now propose to eliminate the weakest among these
newly established connections, by applying epsilon decomposition to the
Jacobian of ®(x). The resulting decomposed Jacobian is now a block
diagonal matrix with blocks J; (i=1,2,...,p), and the corresponding
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Newton method becomes completely decoupled
Xy = xb = Ji7 ' ®(x), i=1,2,...,p. (4.2)

It is easy to see that such an iterative process is ideally suited for parallel
computation.

The decoupled Newton process will typically result in a larger
number of iterations, but the accuracy of the system model will not be
affected. To evaluate this approach we applied epsilon decomposition
to the Jacobian of the 140 bus system after its model was reduced to 50
ordinary differential equations. For £ =0.05 we obtained 3 decoupled
subsystems, with dimensions 20 x 20, 16 x 16 and 14 x 14, respec-
tively. In this case it was found that the total number of Newton
iterations increased from 275 to 300; on the other hand, using three
processors the computation time per iteration was reduced 2.4 times,
resulting in an overall speedup of 2.2. As expected, the accuracy of the
rotor angle curves was not affected by the decoupling.

5. CONCLUSIONS

In this paper we presented an algorithm for reducing the number of
differential-algebraic equations that model large electric power
systems. The algorithm is linear in complexity, and is substantially
simpler than existing methods, which typically require the computa-
tion of eigenvectors and/or major modifications to the system.

The first step of the algorithm utilizes epsilon decompositions to
efficiently identify groups of generators with similar transient
behavior. Based on this grouping, the number of dynamic variables
is reduced, and the model can be equivalently described by a system of
ordinary differential equations. Epsilon decompositions are also used
in the second step, this time to decouple and parallelize the Newton
iterative method which arises in the simulation process. Experiments
performed on a number of power systems confirm that the loss of
accuracy due to reduction and decoupling is not significant.
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