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In this paper we consider a few dynamic models of suspension bridge described by partial
differential equations with linear and nonlinear couplings. We study analytically the
stability properties of these models and the relative effectiveness of aerodynamic and
structural damping. Increasing aerodynamic or structural damping indefinitely does not
necessarily increase the decay rate indefinitely. In view of possible disastrous effects of
high wind, structural damping is preferable to aerodynamic (viscous) damping. These
results are illustrated by numerical simulation.
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1. INTRODUCTION

Since the collapse of the Tacoma Narrows bridge in the State of
Washington on November 7, 1940, extensive studies of the dynamics,
stability, oscillation, and occurrence of traveling waves were carried out
by many workers in the field [1-13,17,18]. In several papers [1,8,9,10—
13], the authors studied the problems of nonlinear oscillations, stability
and occurrence of traveling waves. In [1] the authors presented a true
PDE model for the suspension bridge that takes account of the fact that
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the coupling provided by the stays connecting the suspension cable to
the deck of the road bed is fundamentally nonlinear. Stability studies
based on PDE models for space structures closely related to the char-
acteristics of suspension bridges were studied in [14-16]. Recently in
[17,18] the present authors developed rigorous analysis of suspension
bridge based on the PDE models and also studied their stability. Here
we study mainly the asymptotic stability, in particular exponential
stability, of the structure with reference to aerodynamic and structural
damping. This is practically important since a suspension bridge taking
long time to settle down to its rest state is not desirable.

2. SOME RELEVANT FUNCTION SPACES

Let ¥ C R"” be an open bounded set with smooth boundary % and let
L,(X) denote the space of equivalence classes of Lebesgue measurable
and square integrable functions with the standard norm topology. Let
H™(X)=H™, me N, denote the standard Sobolev space with the usual
norm topology

1| g = Z ||Da¢||L2(E), a=(a,a,...0n), ¢; >0, |a| = Za’i

o <m

and H}(X) = H{' C H™ denote the completion in the topology of H™
of C* functions on ¥ with compact support. From classical results on
Sobolev spaces it is well known that the elements of H ' are those of H™
which, along with their conormal derivatives up to order m — 1, vanish
on the boundary 9%.

3. DYNAMIC MODELS OF SUSPENSION BRIDGE

Suspension Bridge Model

A simplified model of a suspension bridge is given by a coupled system
of partial differential equations of the form

mbz,,+aD4z—F0(y—z) =mg+fi, x€(0,) =%, t>0;

3.1
meyu — BD*y + Fo(y — 2) = meg + fr, x € (0,€), >0, 1)
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where the first equation describes the vibration of the road bed in the
vertical plain and the second equation describes that of the main cable
from which the road bed is suspended by tie cables (stays). D* denotes
the spatial derivative of order k. Here my, m. are the masses per unit
length of the road bed and the cable respectively; «, 3 are the flexural
rigidity of the structure and coefficient of elasticity or stiffness of the
cable respectively. The function F, represents the restraining force
experienced both by the road bed and the suspension cable as trans-
mitted through the tie lines (stays) thereby producing the coupling
between the two. The functions f and f, represent external as well as
nonconservative forces generally time dependent. Let z, ys represent
the static displacements (equilibrium positions) which are the solutions
of the system of equations:

aD*z — Fyo(y — z) = mpg, x € (0,2);

) (3.2)
— BD%y + Fo(y —z) =meg, x€(0,4),

subject to any one of the following set of boundary conditions. If the
decks are clamped at both ends the boundary conditions are given by

2(1,0) = z(t,6) = 0, Dz(1,0) = Dz(1,£) = 0,
y(2,0) = y(t,£) = 0.

In case they are hinged at both ends the boundary conditions are given
by

(3.3a)

2(1,0) = z(1,£) =0, D*z(t,0) = D*z(1,£) = 0,
»(¢,0) = y(2,£) = 0.

Other combinations, such as hinged on one side and clamped on the
other, are also used. The initial conditions are

(3.35)

2(0, x) = zo(x), z,(0, x) = z1(x),
¥(0,x) = yo(x), (0, %) = y1(x).

Subtracting Eq. (3.2) from (3.1) we obtain the following system of
equations:

(3.4)

mpyzy +aD*2 —F(F—2)=f;, x€X=(0,0), t>0;

3.5
My — BD* + FG — ) = fo, x € (0,£), 1 >0, (3:5)
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where Z =z — z;, § = y — y, and the function F is given by
F(¢) = Fo(¢ + 2 —J’s) — Fo(zs — ys).

Note that F(0)=0. Throughout the rest of the paper we assume that
the displacements, again denoted by z, y instead of Z, y, are measured
relative to the static positions. We use (3.5) as the general model.

Conservative Systems
(3A) Linear Model

In case the tie cables never loose tension, the restraining force F is
given by

F(§) = K&,

where £ is the stiffness coefficient of the vertical cables and & represents
their elongation from the equilibrium. In this case, in the absence of
external force, the dynamics of the suspension bridge around the
equilibrium position is described by a system of coupled linear
partial differential equations as given below:

MyZy + OzD4Z - k(y — Z) = 0, X € (0’ e), t 2 0,

2 (3.6)
meyy — Dz —k(y—2z)=0, x€(0,¢), ¢

The same linear model is obtained if the road bed is assumed to be
supported with ties (stays) connected to two symmetrically placed main
(suspension) cables one above and one below the road bed. The initial
conditions are given by

2(0,x) = z1(x), z/(0,x) = z5(x), x € (0,2),

0,X) = 1i(¥), 1(0,5) = ;) xe©g, O

where zy, z,, y1, > are suitable real valued functions defined on ¥ =
(0,¢). Using any one of the boundary conditions (3.3) or (3.4), one can
establish the existence and uniqueness of solutions of the system (3.6)—
(3.7) [17]. Given that z; € H3, z; € Ly(X), y1 € H} and y, € Ly(¥) the
system (3.4)—(3.7) has a unique solution {z,y} € Lo(I, H} x H|}) and
{z, 1} € Looll, Ly(2) X Ly(2)).
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The total system energy is given by

4
B0=(1/2) [ {melziP +mly +lD%P + A0y +kl(y =)} dx,
(3.8)

where the first two terms represent the kinetic energies of the deck
and the main suspension cables respectively and the next two terms
represent their elastic potential energies and the fifth term represents
the elastic energy due to tension in the vertical cables. Differentiating E
with respect to time and using the boundary conditions (3.3) or (3.4) we
obtain

¢
(d/dt)E = / {(mpze + aDz — k(y — 2))z,
0
+(meyy + IBDZY +k(y — Z)))’t} dx.

Since the couple {z,y} is the solution of the system (3.6)—(3.7), it
follows from the above expression that (d/df)E =0 and hence

E(t) = E(0), forall¢>0. (3.9)

This shows that the homogeneous system (3.6)—(3.7) with either one of
the boundary conditions (3.3) or (3.4) is conservative and hence stable
in the Lyapunov sense. However the system is not asymptotically stable
with respect to the rest state though this is what is desirable for
engineering structures. In fact in the absence of other external forces,
other than the initial disturbance (which may have been caused by
sudden wind gust or seismic activity), the system will continue to
oscillate unabated.

(3B) Nonlinear Model

If the tie cables (stays) experience loss of tension the system is no more
linear and one must consider Eq. (3.5) with F nonlinear. In particular,
F may be taken as F(§) =kW¥(§) where

W®={&im>a (3.10)

0, otherwise.
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This replaces the linear model (3.6) by the following nonlinear system:

myzy + aD*z — kU(y—2z)=0, x€X=(0,0), t>0;

o T (3.11)
meyy — BDy + k¥ (y—z) =0, x€(0,¢), t>0.

This is subject to the same set of boundary and initial conditions (3.3)—
(3.4) and (3.7) respectively. Note that the model (3.11) takes into
account the fact that there are no restraining forces whenever the stays
(tie cables) are loose. In other words when the stays are loose the road
bed is decoupled from the main cables. This may also arise in case of
symmetrically supported road bed, if one of the set of tie cables above
or below the road bed suddenly breaks loose. In any event the total
system energy is given by

L
B0 = (1/2) [ {mlzi + my + olD%2P + By
+ k(\I/(y——z))z}dx. (3.12)

Differentiating this with respect to time and using the boundary
conditions (3.3) while integrating by parts, one can verify that

¢
(d/dt)E(2) = /0 {(mozy + aD*z — kU(y — 2))z,
+(meyy + BD*y + kT (y — z))y. } dx.

Thus it follows from Eq. (3.11) and the above expression that
Eit)=0 (3.13)

and hence the nonlinear system is also conservative. Again this implies
stability in the Lyapunov sense only and since there is no dissipation of
energy, the system will continue to vibrate perpetually once a jolt of
energy is delivered to the structure.

(3C) General Nonlinear Model

In general the function F of model (3.5) can be taken as any function
with its graph lying in the first and third quadrants of the plane R*.
However from physical point of view it makes sense only if F is a
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nondecreasing function of its argument. In other words this simply
means that a positive amount of energy is required for stretching any
elastic cable till it reaches its plastic state and breaks down. In any case
let us consider the corresponding homogeneous system:

mpzy +aD*z — F(y —2) =0, xeX=(0,0), t>0;

3.14
mcytt—ﬂD2y+F(y—z)=0, x € (0,0), t >0. ( )

This is subject to the same set of boundary and initial conditions as in
(3.3)-(3.4) and (3.7) respectively. Define

¢
G(() = /0 F(E) de. (3.15)

The total system energy is then given by

£
E(n=(1/2) / {molz + melyi? + ol D2 + 81Dy +2G(y - 2)} d.
0
(3.16)

Again it is easy to verify that
Elt)=0 (3.17)

and hence the nonlinear system (3.14) is also conservative and the
previous conclusions hold.
We summarize the above results in the form a theorem.

THEOREM 1 In the absence of external forces, a suspension bridge,
linear or nonlinear, is conservative. The total energy functionals given
by (3.8) for the linear system, (3.12) for a simple nonlinearity and
(3.16) for the general nonlinear system, are Lyapunov functions for the
respective systems and these systems are stable in the Lyapunov sense.

Nonconservative Systems

(3D) Aerodynamic Damping

In all the models given above aerodynamic damping was neglected.
Natural atmosphere surrounding the structure provides viscous
damping. Considering the general model (3.5) and including the
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viscous damping (aerodynamic damping) we have

mpzy + aD*z — F(y—z)=fi(z,), x€X=(0,¢), t>0;

5 (3.18)

meyy — BD y+F(y - Z) :f2(yt)9 x(O,é), t>0,
where f; and f, are suitable functions of displacement rates. This is
subject to the same set of boundary and initial conditions as in (3.3) and
(3.7) respectively. Using the energy function (3.16) and carrying out the
differentiation and integrating by parts while using the boundary
condition (3.3) one can verify that

4
(d/dn)E(r) = /0 Uiz + fboy) dx. (3.19)

It follows from this expression that if £;(£)¢ < 0 then E < 0. It can be
shown [17] that the system is asymptotically stable with respect to the
rest state, given that £;(0) =0, f;({)¢ <0, for (#0, and F(§)¢ > 0, for
£ € R. In other words, if the graphs of the functions —f; and F lie in the
open first and third quadrants of the plane then the equilibrium state is
asymptotically stable. For detailed proof see [17]. This stability prop-
erty also holds for linear aerodynamic damping with fi(§)=—7&,
f2(&) = —7,&. In this case Eq. (3.19) reduces to

L
(d/d)E(r) = /0 {nlad + bl } dx, (3.20)

where 71,7y, > 0, are the aerodynamic coefficients of the road bed and
the main cables respectively. Of course these constants are dependent
on the geometry, particularly the effective surface area resisting free air
flow, and not the constituent materials. Thus one cannot indefinitely
increase the aerodynamic damping. Further it is also not desirable since
wind actions can destabilize the system. The fact that arbitrary increase
of aerodynamic damping does not increase the damping rate can be
justified as follows. For simplicity we consider the linear version of
(3.18):

mpzy +aD*z + K(z—y)+mz, =0, xeX=(0,4), t>0;

3.21
Meyu — /BDzy +Ky—z)+7y =0, x€(0,¢), t>0. ( )
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Following the same procedure as in [17], we can reformulate this
system as an ordinary differential equation on the Hilbert space
H= Lz(Z) X Lz(Z)

¢+ Ap+KBp+ad =0, ¢(0)=6, ¢(0)=6,. (3.22)

Here

denotes the instantaneous displacement profiles of the road bed and
the main cables along the span of the bridge respectively and ©; and
O, denote the initial displacement profile and its rate. The operator 4
is given by the realization of the formal differential operator

214
A= () (323)

subject to the boundary conditions (3.3) or (3.4). The operator 4 is a
positive self-adjoint unbounded operator in H and —A generates a Cy
semigroup of contractions. The operator B is given by

1/my, —l/mb>(¢1)

By = .

¢ ( -1 / me 1/ me 05}

For simplicity of presentation the parameter « is assumed to be given

by

a = (11/my) = (12/me).

Note that the boundary conditions are absorbed in the space
V=H3}x H|. Thus using this space one can treat the differential
operator A as a bounded operator from ¥V to its dual V*. That is,
AeL(V,V*) and one can easily verify that for § =min{a?, b*}

(46,9) -y = 6l #ll7 (3.24)
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or in other words 4 is coercive. Since V' is continuously embedded in H
there exists a constant ¢ > 0 such that

Al < clihll, forall he V. (3.25)

We may assume that c is the smallest such constant. Hence it follows
from (3.24) and (3.25) that

(A, B)ye,v 2 (6/) 1Bl
and therefore the smallest eigenvalue of the operator 4 given by
v = inf{ (46, 8)y. p, 16ll5 = 1} (3.26)

has the lower bound v; > (6/c*)>0. Now considering the operator

A = (A + KB) it is easy to see that
(A, @)y = (8/%) = (K/2)(m — me/myme). (3.27)
Thus if
(6/c2) — (K/2)(my — me/mpmc) > 0,
the smallest eigenvalue, say ), of the operator 4 is positive and
AL > (8/c2) — (K/2)(my — me/mypmy). (3.28)

Then it follows from a well known result (see [19, Proposition 1.2,
p. 179]) that for

d = (1/2) min{a/4, \/2a} (3.29)

the linear system (3.22) and hence (3.21) is exponentially stable with
the decay rate d or equivalently

eI + le(0)lI3 < e, t>0. (3.30)

Define the state space as E=V x H with the norm topology

I€lls = (el + oty
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induced by the natural scalar product. This is a Hilbert space. Using
this state space one can rewrite Eq. (3.22) as a first order evolution
equation in E

%= (_0/1 _21)1&, (3.31)

i) denotes the state covering both the displacement and

its rate profiles. Hence the expression (3.30) can be presented as

where ¢ =

D)z < coe™ @D, 1> 0. 3.32
E

It is evident from Eq. (3.29) that the decay rate d cannot be indefinitely
increased by increasing the aerodynamic damping coefficient o or
equivalently the coefficients {~y, v,}. Maximum d is obtained when the
two factors in (3.29) are equal giving the best aerodynamic damping
a = 4/(2\1) and the corresponding decay rate dp, = /(\1/2). If one
includes only structural damping, assuming aerodynamic damping
negligible, Eq. (3.22) changes to

¢+ Ap+ KBp+72Ch =0, ¢(0) =01, $(0) =0,  (3.22)

where 7, is the coefficient of structural damping and the operator C is

given by
_(-D* 0
c=(20).

Again, indefinite increase of structural damping ~y;, does not increase
the decay rate. Here also there is an optimum value. We state these
results in the following theorem.

THEOREM 2 In the presence of either aerodynamic damping or struc-
tural damping, a suspension bridge, linear or nonlinear, is asymptotically
stable. The total energy functional is a Lyapunov function for the
system. The rate of decay cannot be indefinitely improved by increasing
the damping coefficients; there is an optimum value and any deviation
from this will cause a decrease in the decay rate.



84 N.U. AHMED AND H. HARBI

The statements of this theorem are illustrated by numerical
simulation results shown in Figs. 1, 2, 5, 6, 9 and 10 as explained in
Section 4.

(3E) Structural Plus Aerodynamic Damping

In the presence of both viscous and structural damping f; is a function
of z,, D*z,=(8/0f)(D*z) and possibly also D*z,. Assuming linearity f;
may be given by

fi(Zt, .DZZ[, D4Zt) = _’Y]Z[ + 712D221 — 713D4Zt. (333)

The coefficients ;> and 3 are dependent on the metallurgical
properties of the construction materials while -y; is dependent on the
geometry of the road bed, for example, the surface area, shape etc. For
the suspension cable structural damping is negligible. Assuming linear
viscous damping f is given by

Sf2(ye) = =2y (3.34)

Clearly from physical consideration damping coefficients are non-
negative and hence 7y, v12, 713,72 > 0. Substituting these in Eq. (3.18),
with f; and f> now given by (3.33) and (3.34) it follows from (3.19) that

¢
E(t) = —/0 {’Yl > |z, + ya| Dz + 3| Dz + 72|yt|2} dx <0.
(3.35)

Thus material properties can provide additional damping. From (3.35)
one can justify that the system is asymptotically stable with respect to
the origin.

If one includes both structural and aerodynamic damping, assuming
the higher order structural damping negligible, v;3=0, Eq. (3.22)
changes to

¢+ Ad+ KB + (al +7112C)p =0, $(0) = 01, ¢(0) = 6, (3.22)"

where both a#0 and 7;,#0. The combined effect is much more
effective. We state this result in the form of a theorem.
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THEOREM 3 In the presence of both aerodynamic and structural
damping, a suspension bridge, linear or nonlinear, is asymptotically
stable. The total energy functional is a Lyapunov function for the
system. The decay rate can be improved by suitable choice of the

coefficients {a,v12}.

4. NUMERICAL RESULTS AND DISCUSSIONS

In view of the above results, designers can choose suitable construction
materials for the road bed as well as its geometry (perforated or solid)
to provide sufficient damping so as to obtain desirable decay rate
thereby providing speedy dissipation of energy. This will minimize the
possibility of failure due to fatigue caused by oscillation for extended
period of time. Here there is a possibility of trade-off between structural
damping and aerodynamic damping. It is clearly desirable to trade
aerodynamic damping for structural damping in regions that experi-
ence frequent storms or turbulent weather. Further as indicated above
aerodynamic damping can neither be indefinitely increased nor it is
desirable to do so. But structural damping can be increased by choice of
so-called “smart” materials for construction of the decks. However
indefinite increase of structural damping also does not necessarily
increase the decay rate indefinitely as stated in Theorem 2.

We present here some simulation results indicating the effectiveness
of the two processes of damping. According to Egs. (3.9), (3.13) and
(3.17) it is evident that in the absence of any damping, aerodynamic or
structural, a suspension bridge is conservative irrespective of whether it
is linear or nonlinear. This is illustrated by the total energy plots as
shown in Figs. 1(a), 5(a), 9(a), 13(a) and 15(a) for linear system and
Figs. 2(a), 6(a), 10(a), 14(a) and 16(a) for nonlinear systems. The
damping parameters used for each of the cases a, b, ¢, d, e are shown in
the graphs with the first column giving the values of v, the second
entry giving the values of +y, and the third giving the values of v, ».

(4A) Decay Rate vs Aerodynamic Damping (Roadbed) -,

The aerodynamic damping coefficient of the roadbed is denoted by ~;.
The results are shown (see Figs. 1 and 2) for increasing values of ~;
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starting from zero indicated by a—b—c—d—e. For the linear
system, as the aerodynamic coefficient +y; is increased the decay rate
improves up to a certain value and reaches a maximum and then
declines with further increase of «y;. This is shown in Fig. 1 for the linear
system. The value of ~y, corresponding to the plot (d) is the best and
further increase of «; produces the graph (e) showing the decline in
decay rate. Similar results for the nonlinear system are shown in Fig. 2.
Here ~y; corresponding to the graph Fig. 2(c) is the best. Further
increase of ~y; produces the plots (d) and (¢) showing the increasing
decline of the decay rate. The displacements and their rates are plotted
in Fig. 3 for the linear system and Fig. 4 for the nonlinear system. These
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Nonlinear Case

Displacement at Mid-Span

3 A . . ) L . . )
0 1 2 3 4 5 7 8
Time (t)
101
c 5¢
]
Q.
w t
he]
=
= 0
2
Q
°
2 5t
-10 1 1 L 1 L 1 Il J
0 1 2 3 4 5 6 7 8
Time (t)

FIGURE 4 Displacement & velocity for ; = 1074,

results clearly demonstrate that the decay rate cannot be indefinitely
improved by simply increasing the aerodynamic damping coefficient.
This supports the theory presented in Section 3.

(4B) Decay Rate vs Aerodynamic Damping (Main Cables) -,

The aerodynamic damping coefficient of the suspension cables is
denoted by ,. The corresponding energy decay is shown in Fig. 5 for
the linear system and Fig. 6 for the nonlinear system. The results are
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shown for increasing values of ~y, starting from zero indicated by
a—b—c—d—e. The graphs Figs. 5(a) and 6(a) represent the cases
without damping. Again the Figs. 5(b)—(e) and 6(b)—(e) show the
energy decay for increasing values of damping coefficient. Note that the
decay rate attains its maximum and then starts declining with further
increase of the coefficient. Figs. 7 and 8 show the displacements and
their rates for the linear and the nonlinear systems respectively. Again
these results clearly demonstrate that the decay rate cannot be
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Nonlinear Case

Displacement at Mid-Span
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FIGURE 8 Displacement & velocity for v, =107>.

indefinitely improved by simply increasing the damping coefficient,
thereby supporting the theory presented in Section 3.

(4C) Decay Rate vs Structural Damping ~,,

In the presence of structural damping alone (y; =0, v, =0), similar
conclusions as in (4A) and (4B) hold. The results are shown in
Figs. 9 and 10 for linear and nonlinear systems respectively. The
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FIGURE 11 Displacement & velocity for v, = 1072

corresponding displacements and their rates are also shown in
Figs. 11 and 12. Again there is an optimum value for the structural
damping 7, as evidenced by the results shown for increasing values of
~12 starting from zero indicated by the graphs a—b—c—d—e.
Again this supports the theory presented in Section 3.

(4D) Structural Damping and Viscous Damping Combined

Here we assume that both aerodynamic and structural damping are
present. This is however the most realistic situation. Assuming the
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Nonlinear Case
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FIGURE 12 Displacement & velocity for v, =107,

aerodynamic damping provided by the suspension cables negligible
(72=0) and fixing the aerodynamic damping for the road bed at
~1=107° we plot the Figs. 13 and 14 to show the energy decay with
increasing structural damping for linear and nonlinear systems
respectively. Again there is a critical value at which the decay rate is
maximum. Increasing the value of 7, to ;= 107>, similar results are
plotted in Figs. 15 and 16. In the linear case, comparing Figs. 13 and 15,
we observe some improvement in the overall decay rate, but for the
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FIGURE 14 Nonlinear case with damping (y; & 712).
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FIGURE 16 Nonlinear case with damping (y; & 712).

nonlinear systems, comparing Figs. 14 and 16 we observe decline. Since
the decay rate d is a complicated function of the aerodynamic and
structural damping coefficients, d = d(7y1, v2, 7v12), maximizing this with
respect to one of the variables keeping the others fixed will not yield
the optimum. This requires much more elaborate computational
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efforts. However given the aerodynamic coefficients, ~;, v, and the
metallurgical constraints, it is relatively easy to determine the optimum
structural damping coefficient as demonstrated in (4C).

5. CONCLUDING REMARKS

In this paper we have used a simplified (PDE) model for suspension
bridge as proposed originally by Lazer and Mckenna [1]. A complete
mathematical analysis of this system was recently presented by the
present authors [17,18]. Here we have used the results presented in [17]
to study stability properties of the system. We have provided numerical
results illustrating the comparative effectiveness of aerodynamic and
structural damping. We have demonstrated both theoretically and by
numerical simulation results that the decay rate cannot be indefinitely
increased by simply increasing the aerodynamic or structural damping
coefficients. There is an optimum value for these parameters.
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