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Nonlinear evolution equations based upon moments of the aerosol size distribution function
are solved asymptotically for constant-rate aerosol reactors (i.e., where condensible monomer
is added at a constant rate) operating in the free-molecular limit. The governing equations are
nondimensionalized and a large parameter that controls nucleation behavior is identified.
Asymptotic analyses are developed in terms of this parameter. Comparison of the asymptotic
results with direct numerical integration of the governing equations is favorable. The asymp-
totic results provide a simplified analytical approach to estimating average particle sizes, par-
ticle number densities, and peak supersaturation values for constant-rate aerosol reactors.
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INTRODUCTION

The nucleation and growth of particles from a vapor is important in many
practical systems, for example, with formation of particulates in the atmos-
phere or production of powders for industrial use. Some systems generate
condensable material over a short time period (e.g., shock tubes). Others
continuously transfer to or generate condensable material within a zone
where appreciable nucleation occurs. These types of systems may be termed
continuously-reinforced reactors, the simplest of which is the constant-rate
aerosol reactor, as described by Friedlander [1]. With the constant-rate aero-
sol reactor, condensable material is generated at a constant rate within the
reactor. This reactor is assumed to be spatially uniform in composition, and
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to have temporally-invariant temperatures and pressures (though the compo-
sition may change with time); smog chambers can approach conditions that
are representative of constant-rate aerosol reactors.

Because of their practical and fundamental importance, constant-rate aero-
sol reactors have been the subject of a number of theoretical and computa-
tional studies. For example, Friedlander [1] has presented basic theory related
to these reactors. Friedlander [2] has also developed a set of ordinary differen-
tial equations to model temporal variations of the moments of the aerosol dis-
tribution as well as the supersaturation of the condensible monomer.

In this paper, we consider the model advanced by Friedlander [2] for the
dynamics of batch aerosol reactors operating in the free-molecular limit.
This model provides nonlinear evolution equations for the first three
moments of the aerosol size distribution, and includes the effects of nucle-
ation and condensation; these evolution equations will be solved asymp-
totically in this paper. In this model, the Kelvin effect is assumed to be
negligible, as is coagulation of particles. However, no restrictions are
placed upon the aerosol size distribution (it is allowed to evolve as deter-
mined by the conservation equations), and the critical diameters dp* at
which stable particles are nucleated are allowed to vary according to the
Kelvin relationship, namely, dp* =4¥V,/(ky, T InS). The equations
describing Friedlander’s model are summarized below.
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In these equations S is supersaturation, N is number density, A, is the
total particle surface area per unit volume, M; is the first moment of the
aerosol size distribution (essentially an average diameter), t is time, Z is
the volumetric rate of generation of monomer molecules, ng the monomer
number density at saturation conditions, g* = [47/(3v{)]1[2¥v/(k, T InS)]3
is the number of monomers in a critical-size nucleus, ¥ is surface tension,
T is temperature, ky, is Boltzmann’s constant, v, is the volume attributed to
a monomer, By = 2nyv; [ka/(anl)]I/ 2 (m; is the mass of a monomer mole-
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cule), s; is the surface area attributed to a monomer in the liquid phase, and J
is the particle nucleation rate, which is assumed to be described by classical
nucleation theory such that J = {[Z‘P/nml]”znszvl} Szexp(—Ejlnzs) where
E = 16n%3v,%(3k,3T>). The parameter E is related to the activation energy
for nucleation of a fresh particle. For typical situations, E is approximately
10? or larger, such that nucleation rates are very sensitive to changes in S;
this sensitivity will be exploited in the asymptotic analysis.

We will nondimensionalize Eqs. (1) — (4) by definingt= tZ/ng, n=
NZ/(ang), m = M, Z/(ngab), and a, = A, Z/(nsas;c*3) where a = [2%¥/nm,]"2
nszvl, b =4%v,/(k,T), and c= [41t/(3v1)][2‘~Pv1/(ka)]3. Inserting these
variables into Egs. (1) — (4) yields the dimensionless governing equations

%fr_l — §2¢-E/In%S (5)

dﬁ? = l_i_zs.e—E/ I’S 4 (S — 1)n (6)
% = Es%e-E/ ’S L 20(S — 1)m ™)
%—iﬁ =1 —yis%e‘E/mzs —0(S—1)a (8)

where o =B;ny(bZ), y=ac/Z, and ¢ = Byngas,c?3/(2v,Z?). The initial
conditions that will be used to develop solutions to Egs. (5)—(8) are
n(1) =m(1) =a, 1) =0, S(1) = 1, i.e., at the initial time T = 1, the vapor is
saturated and there are no particles present.

Equations (5) — (8) are nonlinear and coupled, which makes finding
exact analytical solutions difficult. In fact, previous researchers who have
investigated these equations have only determined solutions numerically.
In this paper, however, asymptotic solutions to Egs. (5) — (8) will be devel-
oped by exploiting the largeness of E. These solutions will be compared
with solutions obtained by direct numerical integration of Egs. (5) — (8).

COMPUTATIONAL RESULTS

To begin, Egs. (5) — (8) will first be integrated numerically to illustrate cer-
tain features of the solutions for the reader. The conditions under which Egs.
(5) — (8) were integrated correspond to the “model compound” considered
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by Warren and Seinfeld [S]. Property values for this compound as well as the
assumed operating conditions for the aerosol reactor are summarized in
Table (I). The values in Table (I) yield the result that the dimensionless sur-
face-tension group Wv;2/3/(kyT) has a value of 1.85 for the chosen condi-
tions. Based upon the arguments of Pratsinis et al. [3], it is therefore
assumed that the Kelvin effect may be neglected in the calculations. In Table
(I), the variable p represents the density of monomer in the liquid phase,
while t.; represents a characteristic time between collisions of monomer
molecules at the saturation number density ng. This value for t; is calcu-
lated using the kinetic theory of gases. Classical nucleation theory is
expected to break down when the characteristic time ny/Z for production of a
monomer molecule is smaller than t.,;/S (Warren and Seinfeld [S]). If we
define the dimensionless monomer source rate Z’=t.;Z/n,, we may
roughly assume that classical nucleation theory begins to fail if Z’ exceeds
unity. In all of the calculations presented here, the variable Z’ was never
allowed to exceed unity. It is noted that by comparing their model with the
simpler models of Friedlander [2] and Warren and Seinfeld [5], Rao and
McMurry [4] suggest that if 25/ 4/(2’ )1/ 2 5> 1, the Kelvin effect should not
be dominant, and that even when 2% 4/(Z ’)1/ 2 is of order unity errors associ-
ated with neglecting the Kelvin effect should not be overriding. The range
2.6 < 24(2)2< 260 applied for the specific conditions examined here.

TABLE I Model Compound Properties

Property Value Units
T 298 K
W; (Mol. Wt.) 100 kg/kmole
¥ 0.025 N/m
n, 2.43x 10 m™
teoll 45 s
P 1000 kg/m?

Shown in Fig. (1) are values for the supersaturation S plotted versus 7.
These results were obtained by numerically integrating Eqs. (5) — (8); all
numerical integrations presented in this paper were generated using a
fourth-order Runge-Kutta scheme. It is evident in this figure that an initial
period exists where S grows linearly with T. This period is terminated
abruptly when the supersaturation peaks sharply and then begins to
decrease. Figure (2) shows calculated histories for particle number densi-
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FIGURE 1 Plots of S vs. T obtained from integrating Eqgs. (5) — (8)
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FIGURE 2 Plots of the number density N vs. T obtained from integrating Egs. (5) — (8)

ties obtained by numerically integrating Egs. (5) — (8). As would be antici-
pated, number densities grow very rapidly until S peaks. After the
supersaturation peaks, number densities then remain essentially constant
because nucleation rates decrease in magnitude extremely rapidly when S
values drop even slightly below the peak S value attained. Nucleation rates
are largest when S has peaked, and the nucleation of large numbers of par-
ticles over the time period when S is at its peak or slightly below is com-
monly termed a nucleation burst.
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ASYMPTOTIC ANALYSIS

The asymptotic analysis presented here will focus upon providing analytical
expressions to predict peak S values, particle number densities, and average
particle sizes; these variables are frequently of interest for aerosols. The
analysis will consider only the aerosol history prior to and including the
nucleation burst. To begin, we may note that at T = 1, the nucleation and
condensation terms in Egs. (5) — (8) are equal to zero, i.e., dn/dT = dm/dt =
da/dt = 0 while dS/dt = 1. For T (and hence S) larger than unity, the nuclea-
tion and condensation terms will be nonzero because S will grow to values
larger than unity. It is surmised, however, that T will have to grow to values
appreciably greater than unity before the nucleation and condensation terms
become appreciable relative to unity and dS/dt=1 is no longer a valid
approximation; the applicability of this assumption is demonstrated by the
previous computational results as well as by arguments presented below. If
the nucleation and condensation terms in Eq. (8) (i.e., the last two terms on
the right-hand-side of Eq. (8)) are negligible relative to unity, then Eq. (8)
immediately yields the approximate solution

S=1+... 9)
where “...” denotes small terms that are neglected. Equation (9) may be
inserted into Eq. (5) to yield the differential equation

d
d—‘; — (1) exp(~E/In?1) + ... (10)

where (1) = 2. The solution to Eq. (10) will provide an approximate
expression to describe the transient particle number density for the time
period where Eq. (9) is valid. To proceed, we will assume a solution of the
form n= g('c)exp(—E/Inz‘t). Substituting this expression into Eq. (10)
yields the ordinary differential equation for g(t)
3—i+%%g=f('c)+.... (11)
For E >> 1, the time derivative may be neglected in the first approxima-
tion, and an asymptotic solution to Eq. (11) is simplyg =
f(T)tn>t/(2E) + ... . An asymptotic solution for the dimensionless particle
number density for the time period where S = 1 is then
_ Pt

n=-—r exp(—E/In1t) +.... (12)
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It is noted that Eq. (12) may also be obtained by integrating Eq. (10), and
then treating the resulting integral as a Laplace-type integral which can be
asymptotically evaluated for E — co.

Equations (9) and (12) may now be inserted into Eq. (6) to yield

dm _ + oft— ) T In3t
dt ln‘t 2E

exp(—E/In%1) + ... . (13)

An asymptotic solution to Eq. (13) may be developed by noting that this
equation has the same general form as Eq. (10), that is, an algebraic func-
tion of T multiplying the term e-E/ In’t To develop a solution for E >> 1,
we may follow the same general procedure as when Eq. (10) was solved.
Upon doing this, it is found that Eq. (13) has the approximate solution

tln31

"= E 11 att-1)"

exp(—E/lnzt) +. (14)

We may also follow the same procedure to develop an approximate solu-
tion to Eq. (7), i.e., we can insert Egs. (9) and (14) into Eq. (7). Doing this
yields a differential equation that is the same general form as Eq. (10). The
asymptotic solution of this equation eventually yields the approximate solu-
tion

q=—"

tin31t[ 12 tin®t/ B3t ,
B [1 2 20 (1) 2E (l Lo (——1) B )]exp(—E/ln D+....(15)

It is to be noted that Egs. (12), (14) and (15) all contain the term exp(—
E/lnz‘r), which dominates the behavior of n, m, and a, for E >> 1, i.e., small
changes in T produce large changes in exp(—E/an‘c) (so long as T is not too
large, which is always assumed here; typical values of E are around 100 or
greater, so T may take on values that are quite large relative to unity before
the term exp(—E/lnz‘c) becomes insensitive to changes in T). Since
exp(—E/anT) appears in the asymptotic solution for a,, T must approach a
critical time t.very closely before the sum of the nucleation and condensa-
tion terms in Eq. (8) becomes appreciable relative to unity. We may spec-
ify a definite value for T, by requiring that it satisfy the equation

2
T,
Vi exp(—E/In*te) +(Te — 1age = 1 (16)
C

where a . is the value of a, at the time T = 1., and where Eq. (16) follows
from setting dS/dt = 0 in Eq_(8).
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The approximation S = 7 is valid so long as T does not approach T, too
closely. To analyze solution behaviors as T approaches T., we may define
the rescaled time 1 = 2E (T —1)/(T, 1n31:c) and the rescaled supersaturation
0=2E (S-1)/(7, ln31:C) as well as the rescaled variables Q= n/n,
© =m/m, and I = a;/a,. where n;., m_ and a, are the values of n, m, and a,
predicted by Eqgs. (12), (14) and (15) at the time T ; € ©, and I" are all of
order unity whenmis of order unity. The variable cis of order unity
for T within O(1/E) of 1., and 1 arises naturally when do/dn is specified to
be order unity or less for T near .. Inserting these new variables into Egs.
(5) — (8) and retaining only the largest terms when performing expansions
for E >> 1 eventually yields the leading-order asymptotic expressions for the
evolution expressions

Q

B (17)
% —xe®+ (1-x)Q (18)
3_11; =ye®+(1-y)® (19)

g%:l—zeo—(l—z)l“ (20)

where x = 1/(1 +h), y = 1/[1 +2(1 =x)x 2], z= 1/{1 +3x 1 (1 = x)[1 + 2
a1- x)x‘z]}, and h, = ot - I)TCIn4‘cc/(2E). Values for x, y, and z will
always be in the range 0 — 1, and x > y > z. These variables represent the
relative importances of nucleation and condensation. When these variables
are close to unity, nucleation dominates over condensation in the conserva-
tion equations. When these variables are small relative to unity, which is typ-
ically the case in physical applications, the opposite situation holds.
Equations (17) — (20) are to be solved subject to the matching conditions
that as | — —e0, =1, Q=0 =T = e". The exact solution 6 =—In(l +e”
M, Q=0=T=In(1 +e")is easily found when x = y = z = 1, that is, when
h, = 0 and condensation effects are totally absent. An analytical solution
for h, > 0 has not been found, so the equations are solved numerically for
this case.

Shown in Figs. (3) — (5) are numerical solutions of Egs. (17) — (20) for
various values of x. For x < 1, ¢ peaks at a maximum value G,,,,, and
which is the rescaled number density, eventually approaches a constant
(and maximum) value Q..; variations in € become small when
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FIGURE 3 Plots of 6, 2, ©, and T" vs. 1 forx =0
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FIGURE 4 Plots of 6, 2 ©, and T vs. 1 for x = 0.6

o becomes less than -2, and the nucleation burst is defined here to occur

when ¢ 2 -2. Variations of 6,,, and Q,.. vs. 1 —x are shown in Fig. (6),

where it is evident that 6,,,,, and Q.. vary strongly as x approaches unity

closely (note that the negative of ¢, is plotted). From the definitions of

¢ and Q, we may develop the following equations to provide estimates for

the maximum supersaturation (S,,,,) and final number density (n)
T In31,

Smax =Tc+Omax 55—

°E (21)

Dot = QaxDc - (22)
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FIGURE 5 Plots of 6,  ©,and " vs. n forx =1
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FIGURE 6 Plots of -G, and Q, ., vs. 1 —x

COMPARISON OF COMPUTATIONAL AND ASYMPTOTIC
RESULTS

The asymptotic analyses have been applied to the same problem that was
solved computationally (see Figs. (1) and (2)). In this section, comparisons
between the asymptotic and computational results are made for the peak
supersaturation S;,, and the final number density N, Figure (7) shows
predictions for the peak supersaturation S, attained as a function of Z’
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FIGURE 7 Comparison of predictions of the peak supersaturation S, ., obtained from the
asymptotic model and numerical integrations of Egs. (5) — (8)

for the computational and asymptotic models (Eq. (21)). Qualitative and
quantitative agreement between the numerical and asymptotic results is
good, especially as Z’ decreases in magnitude. Figure (8) shows plots of
the final number density attained (Ny,,) vs. A, where Ny, has units of parti-
cles per cubic meter. Agreement between the numerical and asymptotic
results (Eq. (22)) is good, especially regarding qualitative trends over
about eight orders of magnitude in predictions for number densities.

It is also of interest to evaluate average particle diameters during a
nucleation burst. For this purpose, we will use area-averaged particle
diameters [At/(nN)]” 2 When use is made of the rescaled variables defined
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FIGURE 8 Comparison of predictions of the final number density Ny, obtained from the
asymptotic model and numerical integrations of Egs. (5) - (8)
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previously, theoretical area-averaged diameters, dty = [A¢/(TN)] 122 that
are present during a nucleation burst can be expressed as

1— 1/2
8102/314-2'7}- r 1/2
L In27, (5) '

Numerical integrations of Egs. (17) — (20) show that prior to and during
the time period where significant nucleation occurs, i.e., the nucleation
burst (defined here as when 6 > -2), (1"/!2)1/2 is always within the range
1-1.6 for 0<x <1, indicating that average particle sizes do not change
by large amounts during a nucleation burst. To provide estimates for aver-
age particle sizes during a nucleation burst, we will thus approximate
(T2 as having a value of unity, yielding Eq. (23) as an estimate for
area-averaged particle diameters that exist during a nucleation burst.

dTH ~

1/2
$i¢C

1-x

142——

s’ e
n In21,

dty ~ (23)

Table (II) provides results for predictions of area-averaged particle diame-
ters obtained from the asymptotic model and the numerical calculations. The
average diameters listed for the numerical calculations correspond to average
diameters that existed when the peak supersaturation S,,,, was achieved.
Also listed are theoretical average diameters defined by Eq. (23), as well as
the T, and x values that were calculated from the asymptotic theory. The
results listed in Table (II) indicate that the asymptotic theory predicts average
particle diameters quite well for the particular problem considered. It is noted
that for these particular results the variable x happened to always be signifi-
cantly smaller than unity; this may not always be the case in other situations.

TABLE II Comparison of area-averaged particle diameters from the asymptotic theory (Eq.
(23)) and also from numerical integration. The subscripts “TH”, and “N” refer to the
asymptotic theory and numerical integrations of Eq. (5) - (8), respectively. Each diameter
listed for the numerical integrations corresponds to the time when S, was attained.

z T, x dyry (nm) dy (nm)
0.844 14.79 0.244 8.45 7.75
0.00844 7.77 0.0322 85.1 83.7

0.0000844 5.24 0.00184 1870 1980
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The results listed in Table (II) were obtained assuming that particles
were always within the free-molecular regime. For this to hold true, it is
easily calculated that total aerosol reactor pressures must be quite low (a
few Torr) for the largest particles considered; the smaller particles can
withstand higher reactor pressures before the assumption of a free-molecu-
lar aerosol is violated. For coagulation to be negligible, the timescale At
for the onset and duration of the nucleation burst must be smaller than the
characteristic time for coagulation [1/(N{)], where N is a characteristic
aerosol number density and { is the collision frequency function. Esti-
mates suggest that At << [1/(N{)] for all of the calculations performed
here. In making these estimates, { values for collision rates between hard
spheres in the free-molecular limit (Friedlander, [2]) were used, where the
spheres were assumed to have the diameters and number densities in Table
(II) and Fig. (8), respectively. Coagulation is expected to be negligible for
the conditions under consideration here.

CONCLUSIONS AND FUTURE DIRECTIONS

An asymptotic model was developed to predict behaviors of constant-rate
aerosol reactors operating with particles in the free-molecular regime.
Results from the analyses provide simplified analytical criteria to predict
relative importances of nucleation and condensation, and analytical
expressions were presented to predict aerosol moments prior to and during
a nucleation burst. The asymptotic model compared favorably with numer-
ical integrations of the governing equations regarding peak supersatura-
tions, average particle diameters, and particle number densities.

Finally, this analysis can be extended in several ways. For example, it is
of interest to include the Kelvin effect and coagulation so that models
could be developed that would apply to more general situations. It would
also be worthwhile to extend the analysis to allow for variable monomer
generation rates.
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