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This paper presents the emergency control approach intended to urgently return to
the stability basin the system states affected by abrupt changes in certain system
coefficients on a short time interval. Because of its short duration, the modeling of
both the fault and controller involves é-functions significantly simplifying analysis and
control of fault phenomena. The design of an emergency controller is based on the
technique for computing fault-induced jumps of the system states, which is described
in the paper. An emergency controller instantaneously returning states of a sample
nonlinear system to its stability basin is designed.
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1 INTRODUCTION

The impulse control technique based on é-functions as controls was
applied to the optimal control problems in the field of spacecraft
navigation [1] and heat conduction [2], the filtering problems over
discontinuous observations [3], and others. This paper makes an
attempt to extend the application domain of impulse control to the
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problems of fault description and compensation as well as stability
control. The impulse control designed for urgent fault compensation
is called an emergency control, which underlines instantaneous action
of the developed control methods.

This paper presents the concept of emergency control, which is
applied to a dynamic system in the case of urgent necessity to change
a system state affected by fault. It is assumed that system fault
significantly affects the operation of a relatively small subsystem of
the initial system on a short time interval and clears up at the end of
this interval. Such fault results in pseudoimpulsive behavior of a
relatively small number of the system coefficients, which abruptly
increase to the peak values and abruptly return to the nominal
values, as it occurs in transient stability problems for power systems.
The pseudoimpulsive coefficients are modeled by é-functions, which
significantly simplify subsequent analysis and control of the faulted
system. Thus, the initial system-governing equation becomes an
equation in distributions, which describes the system fault. The
solution of an equation in distributions is defined as a vibrosolution
[4], whose jumps occur at points where é-functions are activated. A
number of examples, where jumps of the system state can be com-
puted analytically, are given in the paper. Otherwise, system state
jumps are computed through numerical integration of a subsystem,
which is significantly reduced in comparison with the initial one.

The emergency control is designed to urgently return to the
stability basin the system states affected by fault. For this purpose,
the emergency controller introduces é-functions into the system
equation. This method is applied to a modification of the Van-der-
Pol system, where emergency controller generates a jump of the
system state into the stability basin, thus preventing the system state
from transition to infinity.

The paper is organized as follows. A fault model is described in
Section 2. The basic technique for computing jumps in system states
affected by fault is given in Section 3. Examples of analytic
computation of state jumps are presented in Section 4. The concept
of emergency control is introduced in Section 5. The emergency
control method is applied to a modified Van-der-Pol system in
Section 6. Properties of the proposed method are discussed in Sec-
tion 7. Section 8 concludes this study.
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2 FAULT MODELING

Let us first describe the application of é-functions to modeling of a
system fault on a short time interval.
Consider an equation governing a dynamic system

x(t) =f(x, 1) + k(1)g(x, 1),  x(t0) = xo, (1)
x€RY, f(x,1), g(x,t) € RN, k(t) € RNV,

Assume that, due to a short system fault, the coefficients k(¢)
change in a pseudoimpulsive manner on a short time interval
[#0, 2o + Af]. Namely, the coefficients k(f) abruptly increase to their
peak values and return to the pre-fault values. This induces abrupt
changes in the system state on the interval [ty, fo + At]. The problem
is to find the post-fault system state x(¢o+ Af), or the system state
jump x(fo + Af) — x(t), provided that a pre-fault state x(zy) is given.
The determination of the post-fault system state or system state jump
is necessary for forming the emergency control.

Suppose that a fault affects coefficients only from a small “fault”
sub-system of the initial system. Because of lack of accurate knowl-
edge and observation of the faulted coefficients k(), these coefficients
are represented as §-functions with the corresponding intensities,
which are assumed the peak values of the faulted coefficients or
estimated using a data record of the fault behavior. Such modeling of
pseudoimpulsive behavior of the faulted coefficients is physically
motivated and simplifies computation of state jumps.

3 COMPUTATION OF SYSTEM STATE JUMPS

The coefficients k(¢) in (1) are replaced by é-functions with inten-
sities € RV*Y. The intensities are measured or computed as
1= MAt, where M =supk(t), t € [ty, to+ At]. Then, Eq. (1) takes the
form

x(t) =f(x,t) + pg(x, 0)6(t — t9), x(to) = xo. (2)

Let us denote b(x, #) = pug(x, t) and u(t) = x(t — tp), where x(¢ — t¢)
is a Heaviside function and dy(z — #y)/dt = 6(¢ — tp). Thus, Eq. (2) can
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be rewritten as

x(8) =f(x,6) + b(x, O)u(r), x(t) = xo. (3)

Equation (3) with a bounded variation function u(¢) is an equation

in distributions, whose solution (that is referred to as a vibrosolution

in [4]) is a discontinuous function of bounded variation. The

definition of a vibrosolution is presented below and is followed by

the theorems describing computation of vibrosolution jumps. The
theorem proofs are given in Appendix.

DEFINITION The left-continuous function x(f) is said to be a
vibrosolution of Eq. (3) if the x-weak convergence of an arbitrary
sequence of absolutely continuous nondecreasing functions u*(7) to a
nondecreasing function u(f) in the bounded variation functions space

s-limu®(t) = u(t), k— oo, t> to,
implies the analogous convergence
-lim x*(¢) = x(1), k — oo, t>to,
of the corresponding solutions x*(¢) of the equation
k() = f(x*, 1) + b(xk, ak(e),  x*(to) = xo,
and x(f) is obtained regardless of a choice of an approximating

sequence {u ()}, k=1,2...

Remark The x-weak convergence in the bounded variation func-
tions space

w-lim x*(¢) = x(¢), k— oo, t> 1o,
takes place if and only if the following conditions hold

(1) Lim ||x*(to) — x(to)|| =0, k— o0, t > tq,

(2) lim ||x*(t) — x(¢)|| =0, k— o0, t > to, in all continuity points of
the function x(7),

(3) supiVar(ty, Tx*(1) <oo for any T >t, where Var[a,b]f(t)
denotes variation of a function f(¢) on an interval [a, b].
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THEOREM 1 Let (1) the functions f(x,t) and b(x,t) be piecewise
continuous in x,t and satisfy the one-side Lipschitz condition in x
(see [5]), (2) the function b(x, t) have piecewise continuous derivatives in
x and t: Ob(x, t)/0x, Ob(x,1)/0t, and (3) the N x N-dimensional system
in differentials

dé(z,w,u,s) B
- b s), &w)=z, (4)

be solvable for arbitrary initial values we R", ze R" inside a cone of
positive directions K={u > w|u; > w;, i=1,...,N} and s > ty. Then:
there exists the only vibrosolution x(t) of Eq. (3).

THEOREM 2 A vibrosolution is also the only solution of the following
equation with a measure

dx(f) =f(x,0)dt + > G(xo,, uo,, Au), 1)) dx (1 — 1), (5)
x(t) = xo,

where G(z,w,u,s)=&(z,w,w+u,s)—z, and &(z,w,u,s) is a solution of
the system in differentials (4); t; are points where O-function is
activated, x(t —t)) is a Heaviside function, xo, is a value of x(t) before
a jump, uy, is a value of u(t) before a jump, and Au(t)) is a jump of u(r)
at a point t;.

Thus, Eqgs. (4) and (5) enable us to compute the jumps of
the Eq. (1) state x(z), which are induced by pseudoimpulsive behav-
ior of the coefficients k(f). Explicit analytic formulas for a jump
Ax(ty) = G(xo, 0, 1, ty) can be obtained in special cases, and numerical
simulation of the significantly reduced fault subsystem yields the
jumps values in other cases. The stability of a vibrosolution (in
particular, a value of its jump) with respect to x-weak approxima-
tions of a Heaviside function enables us to use any approximation
for numerical computation of a jump. For example, a pseudoimpul-
sive matrix k(7) with intensity Az can be represented as a constant
on an interval of length Az, 2 on an interval of length A¢/2, or
another *-weak approximation of a Heaviside function. All
possible approximations yield the same limit, which is equal to a
vibrosolution jump as Ar— 0. Moreover, it can be proved that if
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g(x) is time-invariant, k(z) remains constant during a time interval
with length AT, and kAT =pAt, then the integral expression
x(t) = t:°+ATk(t)g(x) d¢, which should be used for numerical compu-
tation, is the same as for computing a jump by virtue of Eq. (5).

The numbers of both coupled equations and terms in each of these
equations in the fault subsystem, which is used for computation of a
vibrosolution jump, are significantly reduced in comparison with the
initial system. This allows fast and, possibly, on-line numerical
computation of the state jumps.

4 EXAMPLES OF EXPLICIT COMPUTATION OF STATE JUMPS

In Examples 1 and 2, only the fault subsystems are given. The
nonimpulsive terms are insignificant for computation of jumps
(because they do not affect the function G(z,w,u,s) in Eq. (5)) and
are omitted for simplicity.

1. Let us consider a system

x=k()x", x(t)=x, X €R,

which will be used later for design of an emergency controller for a
modified Van-der-Pol system. Assuming that the intensity of the
coefficient k(¢) is equal to u, we obtain

Ay (=) =g ifn 1,
xo(exp(p) — 1), ifn=1.

This result readily follows from the fact that &=
(1= n),uu—l—x(l)‘")l/('_") and & =xgexp(uu) are the solutions of the
systems (4) in these cases, respectively. For n>1, Ax is equal to oo,
if xo and p satisfy the condition

1-n

xy "= m—1p.

2. Consider another system equation related to the theory of
transient stability of power networks,

% = ky (1) sin(ax) + ka (1) cos(ax), x(to) = xo, x € RV,
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where p; and p, are intensities of k1(f) and k,(¢) at a point ¢y. Since
¢ = a~'{2arctanfexp(a(y? + p2)"*u) + tan((axo + 0)/2)] — 6} is the
solution of the system (4) in this case, we obtain

Ax = a'{2arctanfexp(a(i? + 13)"/?) + tan((axo + 6)/2)] — 6} — xo,

where 6 = py' e, and e=(1,...,1) is the unit N-dimensional vector.
3. Finally, consider a Riccati equation for the estimate variance in
the Kalman—Bucy filter

P = AP+ PA* + GG* — PC*HCP, P(t)) = Py, P e RV,

where P is the estimate variance, G and H ™! are variances of
Gaussian noises, and C is a transition matrix in an observation
equation. If H changes pseudoimpulsively on an interval [¢o, o + Atf],
then the corresponding jump of the variance matrix P is equal to

AP = Py[I+ C*hCPy]™" — Py,

where 4 is the intensity matrix for the matrix H, and I is the N x N-
dimensional identity matrix. The function &= Py[I+ C*hCPqu] " is
the solution of the system (4) for this example.

Thus, the application of é-functions to computation of the fault-
induced jumps of system states enables us either to obtain
explicit analytic formulas or to significantly simplify their numerical
computation.

5 CONCEPT OF EMERGENCY CONTROL

The emergency control is applied to a dynamic system in the case of
urgent necessity to change back the system states affected by fault.
The nominal equilibrium position of the system is considered stable
with a compact stability basin, whose boundary can be estimated.
Let us assume that the system state leaves the stability basin due to
short fault and its further motion produces severe problems in the
system operation. The emergency controller is designed to urgently
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return the system state to the stability basin. The fault modeling via
6-functions, which was described in Section 2, motivates the applica-
tion of é-functions to the design of emergency control. Such
emergency control adequately responds to the pseudoimpulsive
behavior of the faulted system.

An emergency controlled dynamic system can be written in the
form

x(1) = f(x, 1) + pg(x, Hu(t), x(t;) =x*, x € RY, (6)

where pu(r) is an emergency control, u(t) = 6(¢t — 1), ¢; is the point
where the emergency control is active, and p is the intensity matrix
of emergency control. If f(x,#)=0 and g(x,f)=1, the emergency
control is additive.

Equation (6), as well as (3), is an equation in distributions. The
solution of (6) is defined as a vibrosolution, and its jumps are
computed in accordance with Theorems 1 and 2. As noted, jumps of
the emergency controlled system state (6) can be analytically
computed in special cases. A number of examples are given below,
where the emergency control method is applied to a modified Van-
der-Pol system. Even if jumps of the system state (6) cannot be
analytically computed, the number of terms necessary for numerical
jump computation is reduced in comparison with the total number of
terms in (6).

Let us note that the faulted system (3) and the emergency
controlled system (6) are governed by equations in distributions in
the same form. Thus, one can readily design the emergency control
pu(t) compensating for the fault action. For example, if the
pseudoimpulsive coefficients k() affected by fault are represented as
é-functions with intensities v, then the emergency control returning
the system to the pre-fault state can be designed by changing sign of
intensities, i.e., is equal to —vé(t—t;). However, in practice, this
simple approach may fail due to control limitations.

Consider a general method for design of an emergency control
ué(t — t1) moving a state of the system (6) into its stability basin. The
second addition in (6) is equal to 0 everywhere, except for the point
t; where emergency control is active. Let the initial state x* be
disposed outside the stability basin. Assume that there exists a
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Lyapunov function L(x, ¢) such that
S(x, t) = dL(.x, t)/dl |)'c(t)=f(x,t) < 0

for t > t;, x Ew Cwyp, and wy is the stability basin of (6). To move a
state of (6) into the stability basin, an emergency control should
generate a jump of the state in such a way that the Lyapunov
function derivative is negative at the post-jump state x,

S(x, )] <0, x;=x"4Ax(t). (7

X=Xi,l=1]

In accordance with Theorem 2, the jump corresponding to an
initial point x* and an intensity vector y is equal to

Ax(t1) = G(x*,0,1,11), (8)

where G(z, w, u, s) =£&(z, w, w+u, s) — z, and &(z, w, u, s) is a solution
of (4). Thus, the expressions (7) and (8) compose a closed system
for determination of an intensity vector p and, therefore, an emer-
gency control pu(t). The optimal emergency control minimizing the
Lyapunov function derivative after the jump can be determined as
follows

SO Ol — M0, lpll = tmanll

x1 = x4+ Ax(t1), Ax(t) =G(x*,0,u,1,14),

where the function S(x,¢) should be minimized over all possible
intensities with the maximum available intensity norm.

6 EMERGENCY CONTROL OF A MODIFIED VAN-DER-POL
SYSTEM

Let us consider the application of the emergency control method to a
modified Van-der-Pol system, where the control objective is to return
the system state to the stability basin, preventing it from transition to
infinity.

Consider a system described by the equation

d’x/d? + wx + adx/dr — B(dx/dr)® =0, x(ty) = x0, o, 8> 0. (9)
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This system has the stable equilibrium at the origin with the
stability basin bounded by the solution x?+ (dx/d7)?>=r> where
r = y/a/p. Upon introducing the variable v=dx/dz, the Eq. (9) can
be written as the system of first-order equations

dx/dt = v, dv/dt + wx +av— BV =0, (10)
X(lo) = X0, v(lo) = dx(to)/dt.

Each trajectory outgoing from the interior of the stability basin
approaches zero, i.e., ||x(1)|| — 0, as t— oo, if x3 + v} < r?, and each
trajectory starting from a point outside the stability basin tends to
infinity, i.e., ||x(?)|| = oo, as #— oo, if x3 4+ v3 > r?. Assume that the
initial point (xo, vp) jumps out of the stability basin due to fault. The
control objective is to urgently return the system state to the interior
of the stability basin. A number of emergency controllers solving this
problem are considered below.

1. Assume that additive emergency control is available. If a fault
moves the system state to a position (0,v,), where vo>r, then an
additive control ué(¢z—ty) solving the problem is included in the
second equation of (10)

dv/dt + wx + av — Bv* + pa(r) = 0.

The intensity u should belong to the range vo—r < pu<vgy+r.
If a fault moves the system to a position (xo, 0), where xo > r, then
an additive control is included in the first equation of (10)

dx/dt = v — pau(t).

The intensity p should belong to the range xo—r < pu < x¢+r.

Both equations of (10) should be controlled, if a fault moves the
system state to a position (xo, vo), Xo # 0, vo # 0, x3 + v > r?, which
is located beyond the phase plane axes and stability basin.

2. Assume that multiplicative emergency control pi(f) = av — Bv3,
where o and [ are impulsive coefficients, is available. Let a=
16 (t—ty) and B=0. The value of u returning the system state to the
interior of the stability basin is determined as follows. Due to
Theorem 2, the jump Aw(ty) inspired by the control ué(t— to)v is
equal to Aw(ty) = — vo(exp(u) — 1). Thus, the desired intensity is
p=In(1 — Av(tg)/vo), where |Av| > |vg — /r? — x3|. This result read-
ily follows from Example 1 of Section 4 for n=1.
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Analogously, if a=0 and = — ué(t —ty), then the jump Av(z)
inspired by the control pub(t—1t)’ is equal to Av(t) =
vo — (——2,u+v52)_1/2. Thus, the desired intensity is u = (1/2)x
(vg2 — (vo — Av(19))72), where |Av| > |vg — 1/r2 — x3|. This result
readily follows from Example 1 of Section 4 for n=3.

7 DISCUSSION

Using an additive emergency control pu(f) with an appropriate
intensity, it is possible to return a state of the faulted system (1) to
the stability basin from any post-fault position. However, the
intensity resource of additive emergency control can be insufficient to
return a state of the system (1) to the stability basin from any post-
fault position (for example, if Var[ty, T J(pu(t)) < C = const, where
u(t) = 6(t — 1), i.e., emergency control intensity u < C). In this case,
several additive controllers pou(t — to), piu(t —ty), ..., ut(t — t,,)
operating subsequently at t =1y, ty, ..., t, solve the emergency control
problem. If additive emergency control is unavailable, the question
whether it is possible to return a state of the system (1) to the
stability basin from a post-fault position should be resolved in each
specific case. This study is simplified due to a significant system
reduction associated with impulse control, which can be designed in
a closed form in the case of analytic computation of state jumps.

Modeling of short impulsive behavior of system or controller
coefficients by §-functions is physically motivated and highly simpli-
fies subsequent mathematical analysis. Intensities of an emergency
control should be chosen to obey the controller objectives. Note that
design of an emergency controller requires only observation of the
state jumps in the fault subsystem. The jumps can be measured
directly or, as shown in Section 3, can be computed if intensities of
the faulted coefficients are estimated.

8 CONCLUSION

This paper presents the emergency control approach intended to
urgently return the state of a dynamic system affected by fault to the
stability basin. A method for design of an emergency controller is
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addressed and applied to a modified Van-der-Pol system, thus
preventing its state from transition to infinity. The fault-modeling
approach based on modeling a fault via é-functions and computing
the fault-induced jumps of the system state is described.

9 APPENDIX

Proof of Theorem I By virtue of the theorem conditions, the system
(4) has the solution &(z,w, u, t) on the cone K for ¢ > t,. Let us seek
the solution of (3) corresponding to a nondecreasing function u(¢) in
the form

x(1) = &(z(1), uo, u(1), 1), (11)

where ug=u(ty) and u(?) > uy.
In accordance with the definition of a solution of the system in
differentials (4), the expression (11) implies the representation

u(r)
x(t) = z(t) + / b(E(v), v, 1) dy,

0

or

T
x(t) = z(¢) + /0 b(z(t) + y(r), uo + w(r), )w(r)dr, (12)

where T'=1— ¢ is the time, for which the trajectory of (4) reaches the
point x(#), and y(r) is the solution of (4) corresponding to the
nondecreasing function w(r) = u(r) — uy.

The solvability of the system in differentials (4) on the cone K
implies (see [6] for further details) that the integral form

T

| b(z(t) + y(r), uo + w(r), ) w(r)dr =0 (13)

is equal to zero for any nonnegative function w(r) in R™: w(r)€ R"™,
wi(r) >0, i=1,...,m, which is piecewise smooth on the
interval [0, 7] and equal to zero at its terminal points 0 and 7. In
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other words, the integral form (13) is equal to zero for any
piecewise smooth loop w(r) € R™ inside the nonnegative orthant of
R™, which starts and ends at zero. Here, 7’ is the time of passing
the loop.

Let w(r) be such a piecewise smooth loop in R™ that the
corresponding solution of (4) with the initial value z(f) reaches the
point x(z) for the time T'=1— ty3, where w(r) > 0. Then, the equality
(13) takes the form

T
/0 b(z(2) + y(r), uo + w(r), )w(r)dr
T/
:A‘M40+ﬂmm+w®4MUNr
T
= [ B0+ 500+ ), 00) ar

+/ ) b(x(t) + y(r),u(t) + w(r), t)w(r) dr
0
= 0. (14)

Upon substituting the representation (12) into (14), we obtain

T'-T
x(t) — z(¢) + / b(x(1) + y(r), u(t) + w(r), )w(r)dr =0,
0
ie.,

T'-T
40=ng+A bx(t) + y(r), u(t) + w(r), £)i(r) dr,

or

z(t) = x(t) + /:; b(&(v), v, 1) dv. (15)

The representation (15) implies that the inversion formula

2(1) = &(x(1), u(t), uo, 1) (16)

is valid for u(t) > uy. In particular, z(¢y) = x(¢y) = Xo.
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By the definition, a solution of the system in differentials (4) can
be represented as

&z, w,u,s) =z +/ bi(&(z,w,v,5),v,5)dv, u>w,

where by(&, v, s) either coincides with b(, v, s) or belongs to the right-
hand side of the corresponding differential inclusion. The derivatives
0€/0z, 0&/Ow, and O€[Os satisfy almost everywhere, similarly to the
case of a continuous right-hand side (see [7]), certain systems of linear
differential equations in variations, which can be derived using the
technique of differential inclusions from [5]. In the examined case,
these systems are composed of linear differential equations with
discontinuous right-hand sides, and their solvability on the cone K
follows from the solvability of the system in differentials (4) and the
existence theorem for solutions of differential equations with
discontinuous right-hand sides (see [5]). The solvability of the systems
of equations in variations yields the almost everywhere existence and
piecewise continuity of the derivatives 9¢/0z, 9¢/0w, and 9¢/ds. Since
the solution &(z, w, u, s) of the system (4) is absolutely continuous, the
derivative 0¢/0u also exists.

Based on the almost everywhere existence of the derivatives, we
obtain, using the transforming technique from [8], that z(¢) satisfies
the equation with a discontinuous right-hand side

2(1) = p(2(0), uo, u(1), 1), z(t0) = xo, (17)

where

O&(&(z, up, u, 1), u, ug, t)
0z

X f(&(z, up, u, t),u, )

OE(&(z, up, u, 1), u, up, t)
+ .

Os

The function @(z, uy, u, t) is piecewise continuous as a combination
of the piecewise continuous functions 9¢/9z, f, and 9¢/9s. Thus, using
results from [5], we conclude that a solution of Eq. (17) exists.

Let u*(¢), k=1,2,..., where *-lim u*(¢)=u(t), k — 0o, t > to, be a
sequence of absolutely continuous nondecreasing functions converg-
ing to u(f) in the x-weak topology of the bounded variation functions

p(z,up,u, t) =
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space. Equation (3) with functions uk(z) in the right-hand side
becomes an ordinary differential equation with a discontinuous right-
hand side

x5 (8) = f(xk, uk, o) + b(xk, uk, 0ak (1),  x*(t) = xo. (18)

The existence and uniqueness theorem (see [5]) for a solution of an
ordinary differential equation with a discontinuous right-hand side
implies, in view of the theorem conditions (1) and (2), that a solution
of Eq. (18) exists and is unique. The inversion formula (16) implies,
in turn, that §(xk(t), uk(1), uo, t)=2z"(r) is the unique solution of the
equation

5(1) = (2% (1), ug, u* (1), 1),  z*(10) = xo. (19)

Let *-lim u*(f)=u(f), k— o0, t > t,. Based on the continuous
dependence of a solution of a differential equation on its right-hand
side [5], we obtain that x-lim z%(r) =z*(¢), k— o0, t > to, where z*(?)
is a solution of Eq. (17). This solution is unique due to uniqueness of
solutions z*(7) of (19) for pre-limiting functions u*(z). Thus, z*() is
the vibrosolution of (17). Based on the continuity and one-to-
one correspondence of the relation (11), we conclude that x*(r)=
&(z*(t), ug, u(t), t) is the desired vibrosolution of Eq. (3). Moreover,
supy Var(ty, x* (1) < 0o for t > 1o, in view of uniform boundedness of
variations of the functions z(s) and u*(¢r), k=1,2,... The uniform
boundedness of variations of functions z*(r) and u*(¢) follows from
the convergence

s-limu®(r) = u(r), *limz*(t) = 2*(1), k — o0, t> 1o,
in the x-weak topology of the bounded variation functions space.

Proof of Theorem 2 A proposition similar to Theorem 2 is proved
in [8], assuming continuity of the functions f(x,u,?), b(x,u,t),
Ob(x,u, t)/0x, Ob(x,u,t)/0t. The continuity condition is used in [§]
only for proving the existence and uniqueness of a solution of Eq. (5).
However, the existence and uniqueness of this solution can be proved
under the conditions of Theorem 2, using the existence and unique-
ness theorem [5] for a solution of a differential equation with
a discontinuous right-hand side, as it was done in Theorem 1.
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Substantiation of other statements of Theorem 2 does not require
the continuity of the functions f(x,u,?), b(x,u,t), 9b(x,u,?)/0x,
Ob(x, u, t)/0t and can be carried over from [8].
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