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In this paper we consider a dynamic model of suspension bridge governed by a pair
of coupled partial differential equations which describe both torsional and longi-
tudinal vibration of the road bed. The vertical and torsional motions are coupled
through a nonlinear operation with the nonlinearity arising from loss of tension in the
vertical cables supporting the decks. We study the impact of wind forces on the
stability of motion of this system both in the absence and presence of viscous and
structural damping. The results are illustrated by numerical simulation.
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1. INTRODUCTION

Since the collapse of the Tacoma Narrows bridge, extensive studies
on the dynamics of suspension bridges, and their stability properties,
oscillation, and occurrence of traveling waves were carried out by
many workers in the field [1-11]. See also the references therein. In a
series of papers Lazer and McKenna [1,6], McKenna and Walter
[1,5,6] presented a PDE model for suspension bridges taking into
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account the coupling provided by the stays (vertical cables) connect-
ing the suspension cable to the deck of the road bed. This coupling is
fundamentally nonlinear. Recently in [8—10] the authors of this paper
developed rigorous analysis of suspension bridge based on the PDE
models and also studied their stability. However, these studies do not
include the torsional motion. In a later paper, Jacover and McKenna
[7] presented a model that includes torsional motion. However, a
complete analysis of the system was not available. In this paper we
use Jacover—McKenna model combined with the model for aero-
dynamic forces as developed in the excellent book by Roseau [11]
and present a complete mathematical analysis. We also add some
stochastic terms in the model to represent random fluctuation of the
aerodynamic forces. We present both deterministic and stochastic
analysis and illustrate our theoretical analysis with numerical simula-
tion results.

The rest of the paper is organized as follows. In Section 2, a brief
account of the function spaces used is presented. In Section 3,
dynamic models of suspension bridges and questions of their stability
are studied including conservative and damped systems. In Section 4,
we present the mathematical analysis of the system subject to
deterministic forces. In Section 5, we study its stochastic counterpart
allowing random fluctuation of wind velocity. In Section 6, we
present and discuss the numerical results for the deterministic part.

2. SOME RELEVANT FUNCTION SPACES

Let X C R” be an open bounded set with smooth boundary 0% and
let L,(¥) denote the space of equivalence classes of Lebesgue
measurable and square integrable functions with the standard norm
topology. Let H™(X)=H™, me N, denote the standard Sobolev
space with the usual norm topology

Wllgn = Y 1Dy @ = (ar,02,. . 0n), i 20, Jal =) o

| <m

and H{(X) = Hj C H" denote the completion in the topology of
H™ of C* functions on ¥ with compact support. From classical
results on Sobolev spaces it is well known that the elements of H{'
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are those of H™ which, along with their conormal derivatives up to
order m — 1, vanish on the boundary 9X. The dual of Hf is H ™
which is a subspace of the space of distributions D'(X).

3. DYNAMIC MODELS OF SUSPENSION BRIDGE

In this section we present a dynamic model of suspension bridge
combining the aerodynamic forces caused by wind as presented by
Roseau [11] and the nonlinear couplings arising from loss of tension
in the vertical cables as suggested by McKenna and Jacover [7]. Thus
an approximate model that describes both longitudinal (vertical) and
torsional vibration of the road bed is given by the following system
of partial differential equations:

mzy + 1Dz — v\ D*z + KFy(2,0) = fi, x€X=(0,L), t>0,
10, + BaD*0 — y2,D*0 + KCFy(2,0) = f», xe€ X =(0,L), t>0,
(3.1)

along with the suspension cable positions given by

Yy = Fo(Z + és?n 9), (3‘2)
2 = Fy(z — £sin6).

The first equation describes the displacement of the deck in the
vertical plain from the rest position and the second equation
describes the roll angle or the angle of twist of the road bed around
the longitudinal axis from the horizontal plain. This is known as
torsional motion. Here m is the mass per unit length of the bridge,
T =2m¢? is the mass moment of inertia (per unit length of the bridge)
along the longitudinal axis, {8;=EI, $,=2¢°8,} are the flexural
rigidities, {7y, = (mg/8S)L?, ~v,=(KG +2¢%~,)} are the coefficients of
elasticity of the suspension cables and S is its sag. The function

Fo(€) = {5 if¢ <0, (3.3)

0 otherwise,

signifying that if the vertical cables were loose, restraining force is
zero and the suspension cables are free from the deck. The functions
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F, and F, are given by

Fi(z,0) = Fy(z + £sin0) + Fo(z — £sin6), 14
F>(z,0) = (Fo(z + £sin ) — Fy(z — £sin)) cos d. (34)
These functions take into account the nonlinearity that arises due to
loss of tension in the vertical cables tied to the girders. The functions
{f1, f2} represent all nonconservative forces including aerodynamic
forces. The aerodynamic components of forces f; and f, are given
approximately by

fra = 2mpts*(0 = (z1/ W), 6s)
fra = ol (0 = (z:/ ) — €8,/ D)),
where p is the air density, v is the wind velocity with angle of attack
v, with respect to the y-axis, and 2/ is the width of the bridge. For
detailed derivation of these forces, the reader is referred to Roseau [11].
In order to solve the system of Egs. (3.1), one must provide the
boundary and initial conditions for z and 6. The boundary conditions
are given by

z(t,0) = z(¢,L) =0, Dz(t,0) = Dz(t,L) = 0,

0(!, 0) = 0([, L) =0, DO(Z, 0) — D0(t, L) =0, (36&)

in case the ends are clamped. In case they are hinged at both ends
the boundary conditions are given by

2(t,0) =z(t,L) =0,  D?z(1,0) = D*z(t,L) = 0,

) (3.6b)
6(t,0) =6(t,L) =0, D*6(t,0) = D6(t, L) = 0.

These boundary conditions must hold for all ¢>0. The initial
conditions are given by

2(0, x) = zo(x), 7,(0, x) = z1(x),

6(0, x) = 6o(x), 6:(0,x) = 6;(x), (37)

where {zq,z,,60y,0,} are suitable functions satisfying some conditions
compatible with the given boundary conditions.
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Conservative System

Consider the system (3.1) in the absence of nonconservative forces,
that is, /=0, /=0, and subject to the boundary conditions (3.6).
Considering all kinetic and potential energies of the system, the total
energy functional is given by

E()=(1/2) /0 L{[mzf +B1(D*2)*+ 1 (Dz2)*]+(Z67 + B2(D%6)*+ 12(D6)’]
+2K[Go(z + £sin 6) + Go(z — £sin 0)]}dx, (3.8)

where

0 ]
G == [ Fda=- [ R-oa
-

Using the boundary conditions (3.6a)/(3.6b) and the system of
Eq. (3.1) it is easy to verify that

E(t)=0, t>0. (3.9)
Thus we have the following result.

THEOREM 3.1 In the absence of external forces, a suspension bridge,
linear or nonlinear, is conservative. The total energy functionals given
by (3.8) is a Lyapunov function for the systems (3.1) and (3.6) and
hence it is stable in the Lyapunov sense.

From engineering point of view Lyapunov stability is not good
enough, one must have asymptotic stability with reasonably satisfac-
tory decay rate.

Damped system First note that the external forces (and torques) f,
and f, can be written as

fl Efla +flv +f13a
f2 Ef2a +f2v +f25

where f;,, i=1,2 represent the aerodynamic forces, f;,, i=1, 2 repre-
sent the viscous forces and f;s, i=1,2 the forces exerted by the
structural elastic resistance. In case the wind velocity v=0, the forces
f1a=0 and f5,=0. Thus in the presence of only viscous and

(3.10)
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structural dampings we have

fi = fiv +fis = —knz + kinD*z, — ki3 Dz,

(3.11)

fo = fov + fos = —kn10, + k12 D*6, — k3 D*0,.
For the system (3.1) with the forces {f},f>} as defined above, the
existence question is somewhat subtle. The question of existence and
regularity properties of solutions are studied in Section 4. Here we
are interested in stability. Taking the time derivative of the expression
(3.8) and using the system of Eq. (3.1) and the boundary conditions
(3.6) we have

. L
E(r) = /0 {fiz+/:0,) dx

L
__ /0 ({11 (20) + kia(Dz0)? + kis(D?20)).

+ {k21 (6))% + ko (D8,)? + kp3(D*60,)*}) dx < 0. (3.12)

By using (3.1) and (3.12) and the boundary conditions (3.6), it is easy
to show that E(¢) < 0, for all # > 0, and that the system is asymptot-
ically stable. More precisely we have the following result.

THEOREM 3.2 Consider the system (3.1) and (3.6) and suppose the
Sforces { f1, >} are as given by (3.11). Then the system is asymptotically
stable if any one of the pairs {(ki;, k), i,j=1,2,3} is strictly positive.

Remark Another proof is given by use of semigroup theory (see
Corollary 4.4).

4. ABSTRACT MODEL

In this section we wish to present an abstract model of the system
(3.1) subject to the boundary conditions (3.6). This is useful in (i) the
study of existence of solutions and their regularity properties, (ii)
modeling stochastic wind forces and carrying out mathematical
analysis of the stochastic system, (iii) study of stability. For this we
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introduce the Hilbert spaces

H = L[5(3) x Ly(%),

4.1
V=Hx H), .1
with the natural scalar products:
(£> 77)11 = (51,771)[,2(2) + (€2a 7)2)14(}])3 fOI‘ §$n € Hs (4 2)

&)y = (51,771)}12(2) + (§2a772)112(z), for{,me V.

By virtue of Poincare inequality, the scalar product for V as defined
above is equivalent to simply

&)y = (D*&, DPm) 5y + (D62, DPmp) sy, for Eme V. (43)
Define

ar = (Bi/m), b= (n/m),

a=(3/I) and by = (12/T) (4.4)

and let A(D) denote the formal partial differential operator given by

_ (@D — bi1D*yy _ ¢1).
Aww‘(mmw—mmw> mw_(%, *3)

and A its realization, with the boundary condition (3.6), as an
unbounded closed operator in the Hilbert space H with domain

D(A)=(H*NH}) x (H*NH}) CH

which is dense in H. Since the coefficients {aj,b,,ay, by} are all
positive it is easy to verify that A is a positive selfadjoint operator in
H. On the other hand identifying H with its own dual H* we have
the Gelfand triple {V, H, V*} with the injections V< H < V'™ being
continuous and dense. Then we consider the operator A as a
bounded operator from ¥V to its dual V*, and again since the
coefficients are positive it is easy to verify that A4 is coercive and there
exists a number 6 > 0, such that

(Av, V) 2 8IV)7, Wy e .
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Let F, denote the coupling operator, and F, the input operator, that
includes all nonconservative forces such as viscous and aerodynamic
dampings, as defined below:

_ —(K/m)F; (Y1, 2)
Fe(¢) = (_(KK/I)FZ(wlﬂpZ)), (4.6)
Food) = ((l/m) ,(t,.,w,D¢,D2¢,¢z)) '
"= /DB, ., DY, D) )

Combining these we can write the system (3.1) as an ordinary second
order differential equation in the Hilbert space H given by

P+ A = Fo(y) + Fa(1h,9), t>0, 9(0) = thy. (4.7)

To deal with stochastic counter parts of this system it is convenient
to write this system as a first order differential equation in an
appropriate Hilbert space. Towards this goal we introduce the
Hilbert space E=V x H with the scalar product and the associated
norms given by

(6, 0) & = Bi(D?*d1, D*3b1) + (D1, Dipr) + Ba(D*p2, D*i2)
+’YZ(D¢2’ DdJZ) +m(¢3’ 1/}3) +I(¢4a 1/’4), (48)

and

2
% = Bl D*6ull7 ) + 1D + B2l Dol s
+n)Dd2ll sy + mlldsli,) + T lballl,),  (49)

respectively where we have used (,) to denote the scalar product in
Ly(X). Note that E is actually the physical energy space and (4.9)
denotes the sum of elastic potential energies and the kinetic energies.
We consider E for the state space and

d) = {¢1’ ¢2’ ¢3’ ¢4}, = {Z’ 0, Zt, 01}’ (410)

for the state. Define the operator A as the realization of the formal
differential operator

A(D)¢ = {$3, ba, —a1 D ¢y + b1 D*¢1, —ay D¢y + by D* ¢y} (4.11)
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with either one of the boundary conditions (3.6), say. Note that the
domain of the operator A is given by

D(A) = (H*NHZ) x (H*NHE) x HE x HE, (4.12)
with
A¢p = A(D)¢, for ¢ € D(A).

Clearly both the domain and the range of the operator A are in E.
Define the operators F; and F, on FE as follows:

Fa(t,6) ={0,0,(1/m) f1, (1/T) £},
where {f;, i=1,2} are as in (4.6). Dependence of these functions on
time are due to the presence of wind velocity as a parameter which
may vary with time. Using (4.10), (4.11) and (4.13) we can rewrite
system (4.7) as a first order evolution equation on the Hilbert space
E as follows:

¢ = Ad+ Fe(4) + Fault, d), (4.14)
50) = o, |

where ¢(0) = {41(0), $2(0), $3(0), p4(0)} = ¢o denotes the initial state.
From here on we shall deal with this first order system. The
following result is fundamental.

LEMMA 4.1 The operator A is the infinitesimal generator of a
Co-semigroup of contractions S(t),t >0 in the Hilbert space E.

Proof The operator A is closed and D(A) is dense in E. For each
¢ € D(A), one can verify that (A¢,d) =0=(A"p, ¢). Thus both A
and A* are dissipative in E. Hence it follows from Theorem 2.2.18
[12, p. 36] that A is the infinitesimal generator of a Cy-semigroup
S(1), t > 0, of contractions in E.

Remark 1t is easy to verify that iA = (iA)" or equivalently A= —A".
Thus it follows from Stone’s theorem ([12, Theorem 3.1.4] that
actually S(f), € R, is a unitary group of linear operators in E. Using
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this result and the variation of constants formula we can rewrite the
evolution equation (4.14) as an integral equation on E,

8() = S+ [ (= )(F() + Falss b)) ds, 120 (4.15)

THEOREM 4.2 Suppose the functions f;, i=1,2 are measurable in
(t,x) €I x X and continuous in the rest of the variables satisfying, for
some g € LT (I x ¥, R), the Lipschitz and growth conditions

fi(t, x,6) = fi(t, x,m)| < g(£; X) 1€ — 7l gs»

/it %, )] < gt x)(1+ 1€l o), (4.16)

for all &,neR® where R" (n=8) is equipped with the standard
Euclidean norm. Then for each ¢o € E the system (4.14) has a unique
mild solution ¢ € C(I, E) on any finite interval I=[0,T].

Proof Define the operator
F(t,¢) = Fe(o) + Fult, ¢)

and the operator G with values (G¢)(¢) as follows:
(Go) (1) = S()do + /0 S(t—s)F(s,p(s))ds, tel

By use of assumption (4.16) and the properties of the functions F,
F, given by Egs. (3.3) and (3.4), it is easy to verify that F(z,v) is
strongly measurable in t€/ and continuous in v € E satisfying the
Lipschitz and the growth conditions

I1F (&, u) = F(t,)ll g < Kllu — v,

. (4.17)

IF ()l g < K1+ [lull),
where the constant K is dependent on the L., norm of g on the set
I'x Y and the stiffness coefficient K of the vertical cables and the
width £ of the decks. By use of the growth condition of the operator
F and the C, property of the semigroup S(¢),t>0, one can easily
verify that G maps C(I, E) into itself. Using the Lipschitz property
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one can verify that for large enough ne N, the nth iterate of G
denoted by G" is a contraction in C(I,E). Thus by Banach fixed
point theorem, G” and hence G has one and the same fixed point in
C(I, E). This proves that the system (4.14) has a unique mild solution
o€ C(ILE).

In view of the aerodynamic forces given by the expressions in (3.5)
and the nonlinear coupling given by (3.4), it is clear that the Lipschitz
and the growth assumptions of Theorem 4.1 are sufficient conditions
for the existence of solution of the partial differential equation (3.1)
subject to any one of the boundary conditions in (3.6) and initial
condition (3.7). In addition to containing aerodynamic components
f1a and f>, given by Eq. (3.5), the functions {fi,f>} can also absorb
viscous damping terms under the same assumptions. Problem arises
if fi and f, are to take care of higher order structural damping
components. For example, suppose these functions are given by

J1=fia+fiv + flss
f2 :f2a +va +st,

with {f}y, fov} denoting the viscous damping components while the
structural damping components { fis, f>s} are given by

(4.18)

Sis(,0) = i D*1, — 2Dy,

. 4.19
Fos (%) = 421 D* 2 — Y22 D*ihay. (4.19)

The parameters {v;; 1<i, j<2} are nonnegative and they are
dependent only on the material properties of the road bed and the
girders. Define the operator D as

D¢ = {0,0, (y11/m)D*¢3— (y12/m) D* b3, (721 /T) D> s~ (722 /T) D* s}’
(4.20)

with domain
D(D) = (H*NH}) x (H*NHY) x (H*NH) x (H*N H}).

The operator F(t,¢) is again given by Eq. (4.13) with f; and f,
replaced by fi,+/fiv and fy,+/f>, respectively. Now we have the
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following system generalizing the evolution equation (4.14):

¢ = A¢ + D¢ + Fe(¢) + Fu(t,¢) = A + Dp + F (1, 9), (4.21)

$(0) = ¢o, '
THEOREM 4.3  Let the operators { A, F.} and Fy be as in Theorem 4.2
satisfying the assumptions given there and let D be the operator as
defined above. Then for each ¢o € E the system (4.21) has a unique mild
solution ¢ € C(I, E) on any finite interval [=[0,T].

Proof Define the operator
A=A+D
with domain given by
D(A) = (H*NHY) x (H*NHE) x (H*NHE) x (H*N HY).

Clearly D(fi) is dense in E and it is easy to verify that the graph of A
denoted by I'(A) is weakly closed and hence a closed subset of E x E.
Thus A is also a closed operator. Using integration by parts, it
follows from (4.19) and the definition of the operator D that
(D¢, p) <0 for all ¢ € D(D). Thus both A and A* are dissipative.
Thus by Lemma 4.1, A is also the infinitesimal generator of a
Co-semigroup of contractions in the Hilbert space E. Let S(¢),7 > 0,
denote the corresponding semigroup. Using this semigroup we can
write the evolution equation (4.21) as an integral equation on E like
(4.15) giving

t
(1) = S(t)bo + / S(t— $)F (s, 6(s))ds, 1> 0. 4.22)
0
Then the conclusion of this theorem follows from the same argu-

ments as in Theorem 4.2. This completes the proof.

Remark Note that unlike A, A is not a generator of a unitary
group. This is due to the fact that the operator D is not skew adjoint
while A is.
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COROLLARY 4.4 The semigroup S(1),t > 0, is asymptotically stable in
the Hilbert space E.

Proof By Theorem 4.3, S is a contraction semigroup in E, but it is
not a unitary group. This means that ||S(¢)¢o|lz < ||¢o|lz and that
18()doll  # lloll z for all £>0. Hence there exists a number £, with
0<to<oo and a number pe(0,1) such that ||S(1)||<p<1
for all ¢ > ty. Thus for any ¢ € E and ¢ > nt,, we have

I18(1)oll = 118(1 — nto)S(nto)oll < S (nto)goll < (p)"lioll-

Hence letting n— oo we have lim,  S(¢)¢po = 0. This proves the
assertion.

5. STOCHASTIC MODEL

In Section 3 we have seen the expressions for aerodynamic forces given
by Eq. (3.5). It is natural to think that there are random variations of
these forces due to random fluctuation of the wind velocity and its
direction. To model the impact of this on the dynamics of the
structure, one must determine the flow dynamics of the wind around
the exterior of the bridge which itself is in state of motion. This can be
done only by solving the Navier—Stokes equation for compressible
fluid (air) in the exterior domain around the bridge which is coupled
with the equations of vibration given by Eq. (3.1). This is certainly a
very complex situation. We wish to present here something that is
mathematically tractable. Let v denote the mean velocity of wind, with
v being the angle of attack measured with respect to the horizontal
plane, and let v be its random fluctuation giving the instantaneous
wind velocity

V=v+7. (5.1)
We denote the random fluctuation by
dv = odw or equivalently (d/d¢)v = o(d/dt)w, (5.2)

where o? stands for the instantaneous wind fluctuation energy and w
stands for one dimensional standard Wiener process with its general-
ized derivative (d/df)w being the white noise. We assume that o is a
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bounded measurable function of ¢ for all 1>0. Let A, denote the
effective area of the deck per unit length of the span as seen by the
wind, p the density of air. Then the instantaneous momentum per unit
length of the bridge is given by

M = pA.(v + 7)* (5.3)

Assuming the time rate of change of the effective area A, to be
negligible, the Ito derivative of the momentum M is given by

dM(1) = pAd(v + )
= 2pAc(v + ¥)(adt + d¥)
=2pAe(v + V)adt + 2pAc(v + ¥) d¥, (5.4)

where a=(d/df)v denotes the mean acceleration. Assuming v > V we
approximate this by

dM = 2pA.vadt + 2pA.vdv
=~ 2pAevadt + 2pAcvodw. (5.5)

Thus the random fluctuation of the wind forces acting on the structure
in the direction of the wind can be approximately modeled by the
second component of the above expression. Since the angle of attack is
given by v, the vertical component of the fluctuating force is given by

2(pAevo) sinv (dw/dr).

Adding this fluctuation to the aerodynamic forces given by the
expression (3.5), we have

f1a = fia + 2(pAevo) sinv (dw/dt)

g (5.6)
foa = fra + (plAevo) sinv (dw/dr).

Letting 6 = 6(z, x) denote the angle of inclination of the surface of the
deck measured with respect to the horizontal plane at time ¢ and at the
position x € (0, L), the effective area 4., per unit length of the span as
defined earlier, is given by

A = 2sin(6 — v). (5.7)
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Using this in Eq. (5.6), the full aerodynamic forces acting on the bridge
is given by

fra = fia + 4ptsin(0 — v)vosin v (dw/dz)

- 5 . ) (5.8)
Jfra = Jra + 2p¢7 sin(0 — v)vosinv (dw/dr).
Define the functions
t,0) = 4plsin(6 — v)vosinv
01(1,6) = 4ptsin(6 — v) 59)

02(t,0) = 2pf*sin(f — v)vosinv,

and the operator

N(t,¢) = {0,0,01(2, $2), 02(1, )} - (5.10)

Now adding the fluctuating component of forces to the expression
(4.18) is equivalent to adding the expression N(z, $)(dw/d¢) to the
evolution equation (4.21) giving
¢ = (A6 + D¢+ F(1,9) +N(ng)(dw/dr), g,
$(0) = ¢o.
Equation (5.11) can be rigorously interpreted as a stochastic evolution
equation in the sense of Ito if written as

do = (Ap + Do + F(t,0))dt + N (1, ¢) dw,
#(0) = ¢,

It is clear from the expressions (5.9) and (5.10) that the operator N/
maps I x E into E, and trivially satisfies both Lipschitz and (at most
linear) growth condition. The explicit dependence of A on ¢ is intended
to signify the variation of the mean wind velocity v and o with time.
Using the semigroup {S(¢), 1 >0} of Theorem 4.3, we can write
Eq. (5.12) as an stochastic integral equation

(5.12)

o) = S+ [ (1 - ) (s, 6(s)) ds

+ /’ S(t— s)N (s, p(s)) dw(s), >0. (5.13)
0
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Let (2, G, G,T, P) denote a filtered probability space where {2 denotes
the space of elementary events, G denotes the sigma algebra of subsets
of the space €2 and {G,, t>0,} C G denotes an increasing family of
subsigma algebras of the sigma algebra G so that the Wiener process
{w(?), t>0,} is G, adapted. Let L,(2, E) denote the space of E-valued
square integrable random variables. This is a Hillbert space with the
scalar product and norms given by

(fig) = /Q (F(w)>8(9) zP(dW) = E{(f,2)}

12 /
1o = ([ Wr1E2@o) = (21712)"

Let M, (I, E) denote the space of G, adapted random processes defined
on the interval IC R, taking values in E and having finite second
moments. This space is furnished with the norm topology given by

pll4, = ess-sup{(E [l 6()[|3)"/?, t € I}.

It is easy to verify that M, (I, E) is a closed subspace of the Banach
space L, (I, Ly(Q2, E)) and hence it is also a Banach space with respect
to the norm topology given above.

DEFINITION 5.1 The system (5.12) is said to have a mild solution
peM(IE) if p(0)=¢o a.s. and ¢ satisfies the integral equation
(5.13) in the Banach space M. (/, E).

THEOREM 5.2 Suppose the basic assumptions of Theorem 4.3 hold
and that the mean velocity ve L (I) and o € Ly(I). Then for each
Go-measurable initial state ¢o€ Ly (), E), the stochastic evolution
equation (5.12) has a unique mild solution ¢ € M (I, E).

Proof Again this can be proved by use of Banach fixed point
theorem. We present an outline of the proof. For the existence of a
solution to Eq. (5.13), it suffices to show that the operator G as
defined below:

980 = S0+ [ (- ) F (s, 6(s)) ds

+ / ’ S(t — )N (s, p(s)) dw(s), (5.14)
0
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has a fixed point in M, (, E). Under the stated assumptions it is easy
to verify that G maps M. (I, E) to M, (I, E) and for sufficiently large
ne N, the n-th power of G, denoted by G”, is a contraction in M,,
(1, E). Thus by Banach fixed point theorem, both G” and G have one
and the same fixed point in M, (I, E).

Remark Since here the noise process is given simply by a one
dimensional Brownian motion, it is trivial to verify that the solution
process ¢ € C(I, E) with probability one. This is true even for more
general situation as considered below.

In the preceding analysis we have assumed that the wind fluctuation
energy is uniformly distributed throughout the span of the bridge. This
assumption may not be true for long bridges. In this case we can use
distributed white noise or, equivalently, distributed Wiener process,
for example,

W(t,x) = B(x)w(t). (5.15)

The function 3 is chosen so that the noise energy is spatially distributed
along the span of the bridge as required by the environment. We can
choose for 3 any bounded measurable function on (0, L) = X. Thus the
function (3 can be used to represent localized wind activities. Associat-
ing (8 with the functions oy, o, as defined by the expression (5.9) giving

o1(t,0) = 4plB sin( — v)vo sinv

5 s ) (5.16)
o2(t,0) = 2p73 sin(f — v)vo sinv,

we have the evolution equation (5.12) with A/ replaced by N to reflect
the modification. Again the analysis is carried out using the integral
equation

t
80 = 300+ | S(=9)F(5.6()ds
r ~
+ / S(t — 5) N'(s,p(s)) dw(s), >0, (5.17)
0
or equivalently the~ fixed point problem ¢ = G¢ in the Banach space
M (I, E), where G denotes the operator representing the right hand

expression of (5.17). Mathematical analysis of this model is similar to
that of the model (5.13). First note that the nonlinear diffusion
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operator N maps I x Eto E. Indeed
IN (& $)IE = llon (& $2)II5 + lloa(t. 62)|I5
L
p / |4ptv(£)o(£) (sin(¢y — v) sinv)B(x)|* dx
0

+ /L 12p%v()a (1) (sin(¢y — v) sin v)B(x)|* dx.
0

Since the mean wind velocity v is bounded and g€ L, (0, L), there
exists a constant ¢ such that

N (5, 9)I < { (4007 + (2067 (sin® )¥2(2) p P (D11
< 0|l < Ll (0)]1Bl (5.18)

where ||3]| oo =ess-sup{|B(x)|, x €[0, L]}. Clearly this bound holds for
all ¢ € E, and therefore the operator N is uniformly bounded in E for
almost all ¢ € I. Similarly one can verify that A satisfies the Lipschitz
condition

IN(1,6) = N (&, )1 < K()ll¢ — ¥l (5.19)
where K(?) is an integrable function given by
K(1) = EL((4p0)” + 20 (sin? ) B A (02(1),

where ¢ denotes the embedding constant H} — F = L,(X). Since the
first two terms of the integral equations (5.13) and (5.17) are the same,
it suffices to consider only the stochastic convolution term. We show
that sup,¢,; E||Z(1, ¢>)|[i- < oo for any ¢ € M (I, E), where Z denotes
the stochastic convolution

Z(,6) = /0 S0t — IN (s, 6(s)) dw(s). (5.20)

Letting {e;, kK € N} denote any orthonormal basis of the Hilbert space
E we have

E(Z(t,¢),e.)* = E /0 ’<S(z — N (s, p(s)), ex)? ds.



VIBRATIONS OF SUSPENSION BRIDGE 411

Summing this with respect to the indices k£ and using (5.18) we have
t ~
BIZ0. ) = E [ 3256 — s, 000). ) ds
k
4 -~
= [ EIS( = )N 6,006 s

< M? /0 ’ E|\N (s, 6(s)) |7 ds

< (M LIBI. /0 " 2(s) ds < oo, (5.21)

Similarly for ¢,% € M, (I, E), using (5.19) we have
ENZ(1.) - Z(9)I; < M [ KOEI60) o)} (522)

Using (5.21) one can easily verify that G maps M ., (I, E) into itself and
using (5.22) one can verify that for sufficiently large n€ N, the nth
iterate of G denoted by C;", is a contraction. Thus G has a unique
fixed point which solves Eq. (5.17). Hence the conclusion of Theorem
5.2 also remains valid for distributed noise.

6. NUMERICAL RESULTS AND DISCUSSIONS

The results of Sections 3 and 4 are illustrated by numerical simula-
tion. First note that the aerodynamic forces as given by Eq. (3.5),
which is reproduced here for the convenience of the reader,

fia = 2mpt(0 = (z1/ M) 6s)

foa = 1plV(0 = (20/IV]) — £(6:/ V),
provide viscous damping through the second term in the first
equation, and second and third terms in the second equation. The
other two terms have destabilizing effect. Two sets of graphs are
presented.
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For the first set we assume normal viscous damping negligible,
except for the damping components arising from the wind activities
as mentioned above. Figures 1-4 provide the results on total energy
and vertical and torsional displacements for increasing mean wind
velocity v. It is clear from these figures that even though initially
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FIGURE 1 Undamped system, V'=0m/s.
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FIGURE 2 Undamped system, V=18 m/s.

0(0, x) =0,(0, x) =0, the vertical motion induces torsional motion (see
Figs. 2(c), 3(c) and 4(c)). Further, at low wind velocities, the
acrodynamic damping components are predominant leading to decay
of initial energy (see Figs. 1(a), 2(a) and 3(a)). With further increase
of wind velocity (see Fig. 4(a)) the destabilizing factors, as mentioned
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FIGURE 3 Undamped system, V' =40m/s.

0.5

705

above, dominate (over the aerodynamic damping forces) and lead to

catastrophic increase of energy.

The second set of results repeat those of the first set for naturally
damped system. That is, here we assume that the normal viscous
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FIGURE 5 Damped system, V'=0m/s.

damping component provided by the surrounding atmosphere (at
normal temperature and pressure) at zero wind velocity is not
negligible. The results are plotted in Figs. 5-9. Comparing the energy
plots of Figs. 1(a), 2(a), 3(a) and 4(a) with those of Figs. 5(a), 6(a),
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7(a) and 8(a) it is clear that the presence of small natural damping
has some stabilizing effect up to a larger wind velocity. For the
undamped system (Fig. 4(a)) the bridge experiences catastrophic
oscillations at v=50 while for the naturally damped system
(Fig. 8(a)), at the same wind velocity, the bridge experiences oscillation
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FIGURE 7 Damped system, V' =40m/s.

but not so catastrophic. However, for v=60 catastrophic oscillation
sets in as shown in Fig. 9.

We have not yet computed solutions in the presence of stochastic
perturbation. We plan to do it in a forthcoming paper.
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FIGURE 8 Damped system, V=S50 m/s.

SUN-SPARC station no. 5 was used for all the computations. The
data used for the simulation are as follows: m=10, §;=10,
41=0.035, K=10, p=118, L=1, £=005 I=2ml*=0.05,
Br=20%3,=0.05, G=0.18, v,=(KG+2¢*y,)=1.8. For numerical
stability we have chosen the ratio (Az/Ax)=2x 107>
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