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The paper is concerned with the development of a rigorous mathematical model
describing the dynamics of criminal population subject to sentencing policies of any
penal (legal) system. The model enables evaluation of the impact of preventive
measures used in the society and correctional measures used by the penitentiaries. A
performance index reflecting the effectiveness of such measures and the cost to the
society for providing the same is introduced and the question of optimality discussed.
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1 INTRODUCTION

Growth or decline of crime and the corresponding convicted criminal
population is not a random phenomenon. It is in fact a dynamic
process in the sense that there is a continuous interplay of numerous
factors relating to crime and conviction such as the justice system,
economic conditions, social structure and value system, psychological
makeup, drug and alcohol abuse, religious beliefs, etc., which directly
or indirectly cause and control the state of the process. One simple
way to understand and describe the process is to use an aggregated
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model in terms of the totality of criminal incidents over a given period
of time and the convicted criminal population at any given point of
time. To further simplify matters and also for the immediate purpose
of correctional policy making and cost control, sociologists and
criminologists usually narrow down the problem to a subset of the
criminal population, namely, those who have been convicted and
sentenced to imprisonment.

Numerous works exist in the literature dealing particularly with the
problem of forecasting the size of this subset, that is, prison population
at a future point of time. This is essential for the policy makers who
have to deal with the administrative costs and security issues relating
to prison capacity and overcrowding. Obviously any such forecasting
effort would have to depend on some kind of mathematical modeling.
Most often the models are constructed based on existing theories of
regression analysis, time series analysis and input—output analysis
with or without some probabilistic components. Some notable works
in this area are those of Stollmack [1], Blumstein et al. [2], Barnett [3],
Schmidt and Witte [4,5], Visheret et al. [6] and Lattimore and
Baker [7]. Stollmack’s model, one of the earliest, is of the form

P=Pre™ + (y/p)(1 —e™), (L.1)

where the first term on the right hand side represents the number of
prisoners at time (z — 1) who remain in prison at time #, and the second
term represents the number of individuals sentenced to imprisonment
during the time interval (1—1,¢]. This model requires two basic
assumptions. First, the intake or sentencing rate denoted by -y remains
constant over time. Second, the negative exponential service distri-
bution with service rate (rate of discharge) u also remains constant
over time.

Blumstein et al. [2] improved this model by applying it separately on
each subset of the general population determined by the levels of each
of the categories of age (a), sex (s), race (r), and offense-specific
imprisonment (o) and then summing over all these subsets. His model
is therefore of the form

p t = Z Z Z Z{P t—1 ,arsoeﬂmm + Cl,arso Sar.s'o(l — eftaro )}a (1 2)
a r s o0
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where C,.0 = Yarso = admission rate for the group classified as arso
and S, =(1/ptars0) =mean time served in prison by the group
identified by arso.

Barnett’s model [3] was based on a number of probabilistic
assumptions, such as, all prison admissions come from a chronic
offender population each member of which commits crime at age ¢
and retires at age r. He assumes age-specific density of such oftfenders
and assigns certain probabilities of their return to prison at time z.

The concept and measurement of recidivism was rigorously formu-
lated earlier by Rahim in [9,10]. Schmidt and Witte [4,5] incorporated
the process of recidivism in their model and used standard methods of
survival analysis for estimating the number of imprisonments due to
repeat crime. In other words they used separate models for the “first
time offenders” and those who were imprisoned for repeating crime
following release.

Lattimore and Baker [7] proposed an improved model which is
essentially an input—output analysis with a probabilistic component
which is based on the earlier works of Stollmack, Blumstein et al. and
Barnett.

These well known and pioneering works, including all other notable
works in the area, do have two significant limitations. First, none of
these models have taken into account the ordering of offense types in
terms of their severities. Clearly the model parameters and all the
inherent assumptions would have to differ from one offense category
to another. For example, assumptions that would appear to be
justifiable for bicycle theft would not necessarily be so for homicide or
rape. Second, none of these modeling efforts have considered the
suitability or applicability of what is known as “dynamic process
modeling” well known in the field of Systems and Control theory
which has found widespread applications in applied sciences, engineer-
ing, econometrics and management. Such models take into account
causative and controlling factors which are most appropriate for not
only prison population forecasting but also for evaluation of effective-
ness of correctional policies in place and their possible modifications
for improved results in terms of crime reduction. In other words, the
most important feature is that, it enables controlling the process
through a set of control parameters that is essential for objective
policy making.
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The primary purpose of this paper is, therefore, to develop a
mathematical framework of modeling a dynamic process for prison
population forecasting and providing a tool for policy development
and crime control. According to our survey of literature in the area of
criminology and sociology we did not find any dynamic model as
presented here. The rest of the paper is thus organized as follows. In
Section 2, we develop the model; in Section 3, we discuss the questions
relating to model identification and model validation; in Section 4
we spell out clearly the advantages of having a dynamic model. In
Section 5, we show how policy optimization is possible through a set
of preventive and correctional measures. In the conclusion section,
we reiterate the usefulness of dynamic models.

2 DYNAMIC MODELS

In this section we develop a mathematical model for the dynamics of
criminal population subject to various regulatory policies used by
penitentiaries and the parole system. For this purpose, we categorize
or classify the whole spectrum (column) of crime by intensity or
severity. Let {C,, C,, Cs, ..., C,} denote the types of crime arranged in
the descending order {C; > Cy,> C3> --- > C,} of severity. Accord-
ingly each criminal is assigned a class depending on the severity of the
crime committed. Thus the entire prison population of a country,
or any region of a country, or a system of penitentiaries managed by
any Government agency, is partitioned into these classes. By prison
population here, we mean the population that is serving their sentence
while in the prison or out on parole. Clearly the population count in
any of these classes varies with time. Let {x(¢), x2(2), x3(¢), . . ., x,,(£)}
and {y,(?), y2(2), ¥3(2), - . ., yu(¢)} denote the counts of population in the
prison and on parole, respectively, in the crime categories {C;, C,,
Cs,...,C,} at any arbitrary time ¢. We are interested in the underlying
dynamics that governs the temporal variation of the vectors

x(1) = (a1 (1), x2(0), x3(0), -, xa(0) = | (2.1)
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and

y1(2)
ya(2)

y(1) = (1), 20, y3(0), ..., ya(1)) = (22)

ynkt)

We shall call this pair of vectors the state variable and its value at time
t given by z(f)={x(¢), y(t)} the state at time ¢. Clearly the total
population serving prison sentences at any given time is given by

Z(t) = X))+ Y(2), (2.3)

where
X(t) = ixi(t) and Y(r) = i:yi(t). (2.4)
i=1 i=1

Let P(¢) denote the total population of the country or the region under
study. Clearly Z(2)/P(r) €[0,1] and if it is larger for one country
compared to another, it will be a matter of concern for that country.
Similarly within the same penal system if (x(¢) + y1(£))/Z(¢) or (x(¢) +
y1(0)/P(2) is larger compared to (x(t) + y(1))/Z(1) or (x{1) + y{1))/ P()
for any class C;, i# 1, it is again a matter of concern to the penal
system. In short these vectors of population and their variation with
time are indicative of the state of security of the general population of
the country or the region. Hence it appears that a dynamic model for
the vector processes {x(¢), t €1}, and {y(¢), t € I }, where I is an index
set to be defined shortly, if available to the penal system, will be useful
for evaluation of effectiveness of existing regulatory policies and even
formulating alternative ones to achieve better results. We shall return
to the question of regulation in the sequel. After having made the case
for a dynamic model we will now develop its mathematical structure.

For the index set I one can take the set of all positive and negative
integers

I={k=0; +1,—1; +2,-2; +3,-3;...}. (2.5)

Each one represents a point on the time horizon and the unit interval
between them represents a period of one day or one week or one
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month or any other suitable length of time. Associated with each level
of crime C;, i=1,2,...,n, the length of sentence may be different and
it is denoted by L,, i=1,2,3,...,n, where L,= N; X the length of the
basic time interval used for the index set I. The number N; is an integer
denoting the number of basic units of time. An inmate in the class C;
may be granted parole after serving one, two or any number of basic
intervals of time but certainly not more than N;— 1. The inmate is
released after completion of sentence whether or not he has been on
parole. First note the basic contributors to the change of population
in each class say, C;, during any time period [¢, ¢+ 1], t € I. They are
listed as follows:

(1) fresh convictions during the period from the rest of population,

(2) number of inmates released on parole during the period or released
on completion of sentence,

(3) number of inmates returning to prison during this period for
parole violation,

(4) number of inmates that exit from the system due to death or any
other cause.

Corresponding to these contributors, we introduce the following
fundamental coefficients:

roLr 1 2
{a,-, a,, b e, e; }, (2.6)
where

(1) o; denotes the (fractional) growth rate of fresh recruits from the
rest of the population;

(i) af denotes the fractional rate of paroles granted to inmates of
class C; after they have served their sentence r units of parole time
where r€{1,2,3,...,N;}. The last coefficient, a,N", denotes the
fractional rate of release on completion of sentence. Note that it
denotes the fraction of population, x;(f — N;), that existed at time
(t — N;), who have completed their full N; units of sentence at time
t and hence are released;

(iii) b} ; denotes the rate (a fraction) of parole violations after serving
r units of parole time in the class C;, j > i, and then committing a
crime classified as C;. Clearly b;; is the rate of relapse within the
class C; after serving r units of parole time;
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(iv) e!,e? denote the exit rates of inmates of class C; while in the
prison and while on parole respectively.

Using these coefficients (parameters) we are now in a position to write
the population level at time ¢ + 1, dependent on the history up to time ¢,
as follows:

xi(t+1) =x;(t)+a,-< t)—Z(xk 1) + yi(2) ) Zax, (t—r)
+ZZb”y,(t ) — e xi(1),

Jj=i r=1
i=1,2,...,n, and > 0; (2.7)
Ni—1
yilt+1) =yi(t) + > dixi(t—r) Zzb,,y/ - efyi(1),
i=1 j=i r=
i=1,2,...,n, and t > 0. (2.8)

Note that (2.7) and (2.8) constitute a system of 2n simultaneous delay
difference equations. The first term on the right hand side of Eq. (2.7)
represents the prison population in class C; at time ¢, the second term
represents the fresh recruits or convictions from the remaining
population during the period [z, 7+ 1], the third term represents the
number that was granted parole and release. The sum is shown to start
from r=1; however, it is more appropriate to choose a lower limit,
say, m; < N;, that corresponds to mandatory sentence of at least my;
periods of basic time units for eligibility of parole. However, this
modification is not absolutely essential since one can take g =0, for
1 <r<m;, and this will serve the purpose. This is more flexible since, if
necessary, the parole board may choose different values for different
individuals in the same category. The fourth term represents the
number of relapses from the classes {C;, C;,1,...,C,} to the class C;.
The sum starts at i since it is reasonable to assume that only the
inmates paroled from (lower) classes C;, i < j < n, who have, during
the parole time, committed crime of class C; will be admitted into the
class C; and not those who have committed crime of greater severity.
Note that if relapses occur only within the same class or, in other words,
there are no crossings of categories then 5] ;=0 for all j# i. In that
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case the double sum reduces to a single sum. The last term represents
the total number of exits during the period [z, ¢+ 1] with e! denoting
the fractional exit rate. Similarly in Eq. (2.8) the first term on the right
hand side represents the parole population at time ¢, the second term
denotes the number of paroles granted during the interval [z, ¢+ 1]
which is negative of the third term of Eq. (2.7) with the upper limit N;
replaced by (N;— 1), the third term represents the number of parole
violations and it is the negative of the fourth term of Eq. (2.7). The
fourth term denotes the total number of exits from the parole rolls
during the period [z, ¢ + 1]. The upper limit of the sum in the third term
of Eq. (2.7) is N; while the second term of Eq. (2.8) has the upper limit
(N;—1). This is due to the fact that the last component of the sum
represents release on termination of sentence. That is, a)'' denotes the
rate of release due to termination of sentence.

This is a system of 2n delay-difference equations describing the
dynamics of prison population, both in the prison and on parole. In
order to solve such a system of equations it is necessary to provide the
past history of population. By past history here, we mean simply the
population count during the periods {—N;<¢<0,i=1,2, ...,n}. This
is described as follows:

xi(t) =¢1(t), — N1 <t<L0,

x(t) = ¢a(t), —N2<1t<0,
(2.9)
xn(t) = ¢n(t)’ —-N,<t<0
for the vector x(¢) and
) =¢i(t), —-Ni<t<0,
ya(t) = a(t), —N2<t<0,
(2.10)

yn(t) = wn(t)’ -N, <t<0

for the vector y().

Here {¢(t),y(t); t€[-N,0], i=1,2,3,...,n} denotes the past
history which is known. Given the past history, Eqs. (2.7)and (2.8)
determine uniquely the population vector {x(z), y(¢), t > 0}.
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2.1 Fundamental Parameters

The parameters indicated in (2.6) are fundamental and they must be
determined by experiment and observation over a sufficient period of
time. These parameters are dependent on many factors which we wish
to discuss here.

The parameters (o, i=1, 2, ...,n} depend on several factors such as
(1) level of social education, (2) level of social iniquities, (3) poverty or
income level, (4) family relations (background, divorce, separation),
(5) lack of appropriate and adequate social support system, (6) unjust
government policies, (7) fairness or lack of it in the legal system, etc.
Clearly these and many others are sources of frustration and hate
leading to criminal activities. According to the principle of least action,
which plays a central role in classical mechanics, any physical system
including biological entities attain dynamic or static equilibrium by
following the path of least action or discomfort. Existence of iniquities
and lack of fairness in any social system are clearly potential sources
of discomfort and discord and any human being subjected to such a
system will naturally attempt to minimize suffering by violating the
very rules and regulations that he or she believes are the causes of
suffering. In any case there are many possible remedies that a national
government can choose to apply in order to improve the situation.
The set of possible remedial actions or preventive measures, say ¢
in number, that a government can adopt may be considered as the
control variables denoted by the vector

uE{ul,uz,...,ug}' (2.11)

where the value of u; determines the level of effort in applying the kth
measure. These variables may be interpreted as the level of effort given
to each individual social support system. Appropriate choice of these
variables can lead to increase or decrease of the values of {q;
i=1,2,...,n}. In other words these basic coefficients {«;} are func-
tions of control measures and they are expressed by writing

o; = oi(ur,up, ..o up), i=1,2,3,...,n. (2.12)

Since small efforts produce small results, these are continuous func-
tions of their arguments. The parameters {a’}, denoting the rate of
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paroles granted to the inmates in class C; after serving  units of prison
time, are variables that the parole system can choose in order to
achieve better results. However, given the history of the subject,
decision of the parole board depends on the correctional measures
available in the (correctional) institutions where the inmates are
placed. Similarly the parameters {b] j} denoting the rate of relapses or
coefficient of cross recidivism, are again dependent on the available
correctional measures. If the objective is rehabilitation, one must
consider all possible correctional measures that can be effectively used
to modify criminal behavior including the causes and these tools must
be made available to the correctional institutions. To name a few one
may consider (1) appropriate educational programs (vocational or
others) that offer promise for immediate employment upon termina-
tion of sentence, (2) psychological and physical programs designed for
behavior modification and improvement of work habits, (3) medical
and psychiatric programs designed to correct brain disorders, (4) social
and educational programs designed to develop awareness of obliga-
tions and rights, etc. Assuming that there are m such correctional
measures denoted by the vector v = {vl,vz,.,.,vm}’, which are in
force, the parameters {a,b;} can be written as functions of these
measures:

a, =di(vi,va, ..., vm) = a;(v),

2.13
b ;= b; (v, v2s s vm) = b 4(v). @13)

Again by the same principle, small efforts producing small results,
these are continuous functions of their arguments. Thus we have two
sets of controls or tools:

u= (ul,uz,...,ug)/, V= (V1,V2,...,vm)/, (214)

the first set denoting the preventive measures and the second denoting
the correctional measures. Note that the parameters {a, b} } are
nonnegative and nonincreasing functions of the control measures
while the parameters {a} are nonnegative nondecreasing functions of
their arguments. The larger the control efforts are the smaller are the
coefficients {«;, b} ;} and the larger are the coefficients {a;}.
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3 MODEL IDENTIFICATION AND VALIDATION

The process Z(t) = (X](t), X2(Z), ) xn(t)’ yl(l)’ )’Z(t), e »J’n(t))l giVen by
the solution of Egs. (2.7) and (2.8) subject to the initial data (2.9) and
(2.10) is clearly dependent on all the parameters {c, af, blf, » Ni, e}, e,?}.

Denoting by p the assemblage of all these parameters, we can write
the system of Egs. (2.7), (2.8) and (2.9), (2.10) in the vector form

z(t+1) = F(p,z(t),Hz), t€]0,T],

, (3.1)
Hoz = @ = {¢,}

where H,z denotes the history of z up to time # given by
Hyz=z(t+0) = {z(t+ «9)}', 6e[-N;,0], i=1,23,...,n,

and F denotes the vector function representing the expression on the
right hand side of the system of Eqgs. (2.7) and (2.8) and ¢ denotes
the vector of initial history given by Eqgs. (2.9) and (2.10). System
(2.7)—(2.10) is written in the abstract form (3.1) just for discussion
on conceptual matters relating to modeling and validation of models.
Examining the system (3.1) it is evident that the temporal evolution of
the state z depends on the history ® and the parameter vector p and
hence the regulatory policies {u, v} used. In particular, the state z(¢) at
time ¢ depends on the policies {u, v} up to time ¢. For a given ®, the
state z is a function of time and p denoted by z(z, p). If the historical
record is available for a period, say, [0, To] it is possible to determine
the vector p by minimizing the discrepancy between the model
response z(t,p) corresponding to any p, and the observed historical
data zy(2), t €0, Ty). A simple and popular measure of discrepancy is
given by the sum of the squares of Euclidean distances at each point of
time between the model response and the observed data:

E(p)= Y lz(t.p) — 2(0)l*. (3:2)

1€[0,To)

The parameter vector p* that minimizes this error functional is called
optimal and the criterion is known as the least-squares criterion. The
optimal parameter p* can be determined by using the optimization
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algorithm given in [11, Algorithm C, p. 307]. Note that p* is dependent
on the length of observation T,. Thus p* can be updated as new
observable data become available with the passage of time. It is
expected that after sufficient observation p* will settle down at a fixed
point. The vector p* so obtained can be considered as the true
parameter. Replacing p by p* in Eq. (3.1) we have a dynamic model for
a system which is characterized by the sentencing policies and the set
of preventive and correctional measures it employs. It is important to
note that any change in these measures will result in a corresponding
change in p*. But p* can be easily adapted to any such changes by
following the optimization procedure as outlined above.

The functional dependence of p* or equivalently the parameters
{ai,al, b} - Ni, el,e?}" on the control measures {u,v} is apparently a
subject of great interest and challenge to social and behavioral
scientists. However from a practical point of view it is possible to
develop empirical relations based on records of data on Cause and
Effect by following the procedure discussed above.

Often in the literature of criminology, a measure of effectiveness of
the penal system is described by a factor called recidivism. One can
introduce various measures of recidivism once the fundamental
parameters {b;;} have been identified through the procedure as
described above. For example, the quantity By, i < j < n, given by

By = (1/(N; - 1)) Zb’ (3.3)

is a measure of average cross recidivism from class j to class i. This
means that members on parole from a less severe crime category C;
recommitted crime of a higher severe category C;, i < j, at an average
rate of 3; ;. Note that this is a (triangular) matrix of recidivism with all
the entries below the diagonal being zero. From this we can also
introduce the recidivism, §;, associated with the class C;, by summing
the elements of the ith row,

6= By i=123,....n (3.4)
j=1

Thus by constructing a detailed dynamic model we are not only able
to forecast the future prison population, but also provide the full
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spectrum of criminal population by crime type and gain knowledge of
fundamental parameters such as recidivism as discussed above.

Comment Due to presence of uncertainties in population dynamics,
it is natural to consider appropriate extensions of our model (3.1) to its
stochastic counter part. This will be considered in our future work.

4 ADVANTAGES OF DYNAMIC MODELS

The advantages of a dynamic model are manifold. We explore here
some of these advantages. Once a dynamic model has been set up
using the procedure outlined in the preceding section, the model can
be used for several purposes.

(1) Projection of prison population in the future years which is very
useful for the management of penitentiary capacity. Denoting by
7 the present time, this is simply done by solving the system of
Egs. (2.7) and (2.8) using the current population z(7), and the past
history H,z as defined by the expression following Eq. (3.1).

(2) Evaluation of cross and self-recidivism (; ;, j<n, or simply the
class recidivism {6, i=1,2,...,n}. These numbers give the fre-
quency of repeat crimes associated with each class of crime. For
example, if the class C; denotes homicide, and if the associated 6;
is comparable or even larger than {6,, i # 1}, there is a cause of
great concern. This situation may demand reassessment of existing
sentencing, social and correctional policies.

(3) System parameters can be adapted to changes in social policies
and correctional measures and hence to different crime and justice
systems. Computer simulation results can be used as reliable
guidelines for decision making.

(4) System model can be used for the purpose of determining the
optimal preventive and correctional measures required to achieve
a given social objective. This is further discussed in Section 5.

5 OPTIMAL POLICY

Given the model (2.7)—(2.8) with the initial history (2.9)—(2.10), there
are several possible applications as indicated above, one of them being
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optimization using appropriate preventive and correctional measures.
This requires an objective functional which reflects the goal of the
society. For example, if the goal of the society is to reduce crime and
the criminal population of the country within a specified period of
time, say, [0, T'] starting from time zero, then one could choose the
functional

Zw, xi(T) +yi(T)) (5.1)

as the objective functional, where {w;, i=1,2,...,n} are the weights
(w; > 0) or emphasis given to crime types. One may decide to give the
largest weight to the topmost crime level and the least weight to the
lowest crime level. Note that the solution vector z(f) = {x(?), y(9)},
te[0,T], a 2n vector valued function, depends on the choice of
control policies. In general the control measures must be nonnegative
and, further, there are resource limitations, given that there are other
priorities. Thus the control policies consisting of preventive and cor-
rectional measures are constrained as follows:

Uz{ueRe: 0<wu <w, k=1,2,...,¢},

(5.2)
V={veR™ 0< v <6, k=12,...,m},

where {'s, §'s} are the upper limits of available resources. Hence the
problem is to find a control policy {u(z), v(¢), t € [0, T']} subject to the
constraints (5.2) that minimizes the functional

J(u,v) = Zw, xi(T)+y(T)) = Xn:wi(xi(T, u,v) + yi(T, u, v)).

* (5.1)

To emphasize the dependence of the solution vector on the control
policies adopted, we have written x(T') = x(T, u, v), y(T) = y(T, u, v).

For maintenance of correctional institutions and parole system,
there is a cost involved. If one wishes to include this cost, the objective
functional (5.1) is replaced by

4 m
J(u,v) = sz xi(T) +y(T)) + Z (Z Aii(1) +2Vivi(t)>,
i=1 i=1

1€[0,7]
(5.3)
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where J;, v; denote the cost per unit time, of administering the control
measures.

Using modern control theory and computer programs based on this
theory [11] one can determine the optimum policies. Certainly these
policies can be used as a guideline by the penal system to improve the
performance. Before concluding this section we wish to note that a far
more general criterion than that represented by the expression (5.3) is
given by

J(u,v) = Z U (x(T, u,v), y(T, u,v),u(t), v(t)), (5.4)
t€[0,7)

where W is any continuous nonnegative function of its arguments. In
fact there is no difficulty in optimizing this functional (see [11]). If it is
necessary to assign different weights for those in the prison and those
on parole, the objective functional (5.3) can be modified as follows:

2n 4 m
J(u,v) = Z wizi(T) + Z (Z Aiui(t) + ZWW(O)- (5.5)
i=1

t€[0,7] \ i=1 i=1

Note that here the index i runs from 1 to 2n, thereby allowing the
possibility of admitting different weights for all the components of the
vector Z={x,y} where z, . | =y;,i=1,2,3,...,n.

6 CONCLUSION

In conclusion we want to stress the fact that the phenomenon of crime
incidents and the associated criminal population is a dynamic process
and can be very elegantly modeled and rigorously described using the
modern theory of systems and control. But it appears from the
literature that no such work has been done in the past. In this paper,
for the first time, we have developed the mathematical framework of
such a model. We have also shown its usefulness from the point of
view of crime control and policy evaluation under any social and legal
system. An actual application of this model using the Canadian
correctional data base is currently being studied by the authors.
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