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In this paper a simple introduction to the problem of the regularization of ill-posed
problems (IPP) is presented. We describe three regularization methods with simple
examples which illustrate the principle that for “bad” equations it is unprofitable to
carry out exact computations.
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I INTRODUCTION

In the natural sciences ill-posed problems (IPP), as opposed to well-
posed problems defined by Hadamard in 1932, appear when we
consider, for example, systems described by linear equations

Az=u (I.1)
in which the solutions “z” describing the direct attributes of the system

possess at least one of the following properties:

(i) they are very sensitive to small changes éu and 64 of vectors u
and/or operators 4 (input data),
(i1) they are not unique,
(iii) (I.1) is not solvable for the entire space U of vectors u[1,2].
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These properties are related to each other and in fact may occur as a
result of the “smearing” features of the operator 4 which occur in
many observed, indirect attributes u of the phenomenon. IPP are to be
found even in the 2D case considered below [1].

The lack of stability of such systems can also be explained as a
manifestation of the fact that Eq. (I.1) used to describe them is not
restrictive enough [3]. For example, some components of the vector
equation (I.1) are almost identical (e.g. when the determinant of the
matrix 4 has a small value, see Section III). In fact, if the measure-
ments were ideal the operator 4 in Eq. (I.1) could not even be inverted
(det A=0) and only errors (64) make inversion possible. But by
making inversion possible in such a curious way, the above instabilities
are created.

In general, when the solutions to some problem are not stable with
respect to the usual information required for their unique specifica-
tion, there are two ways of solving the resultant difficulty. The first, is
to use additional information and look for solutions in a specific
(compact) subset of possible solutions [1-4]. The second is to use a
statistical description of the system in which small changes of usually
fixed elements of the theory are treated as random quantities [5].

The choice of remedy depends on two factors: the availability of
additional information and the economy of the description. For
example, in the case of turbulent flow in liquid we use the second
remedy, whereas in the case of prospecting for various resources we
use the first method because there is additional information which if
taken into account can transform IPP into problems which are well-
posed, see [1-4,6].

The purpose of this paper is to illustrate the basic concepts of IPP
with the help of the simplest equations. In particular, we are interested
in the idea of regularization — a fundamental notion of the IPP
approach by means of which final results are stabilized.

I REGULARIZATIONS

Because the instability of solutions to Eq. (I.1) is caused by the
intrinsic indeterminate nature of the original equation, it is natural to
expect that additional restrictions (properties) imposed upon possible
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solutions may change the situation. We therefore look for solutions
with an additional property usually expressed by minimization of the
so-called stabilization functional(s) [1,4]. With the help of this func-
tional(s) it is possible, in many cases, to slightly change Eq. (I.1) in
such a way that the solutions with the automatically acquired new
property are stable with respect to small variations 64 and éu of the
input data if the regularization parameter « is in a definite relation R to
the error vector n= (64, éu) [6,7].

Roughly speaking, the relation R between « and 7 expresses the
practical observation that any algorithm should be accompanied by
precision of measurements: it is not recommended, for example, that
we make more and more subtle triangulations of a given surface
without increasing the precision of measurements. All we need to do
after regularization is to check whether the results obtained are stable
[3; page 162]. As a regularized equation to Eq. (I.1) with a completely
continuous operator A we can use, for example,

[A4*4 + a]z = A*u, (IL.1)

[6; page 48].

In Sections III and IV we can see how the idea of regularization
works in the case of a 2D linear equations (I.1) using (II.1) and
simplified equations.

In Section V a regularization parameter « is related to the inverse
power of “the time” s, see [2,8]. In this case instead of the regularized
Eq. (I.1) we use the “gradient equation” (a relaxation method) which
in the continuous case yields

dz/ds = —A*(Az — u), (11.2)

see [2,8]. In the discrete case
Ziv1 =z + 04%(Az; — u), (1I1.3)
see also [8]. It can be shown that, for a broad class of operators A4, the
asymptotes of Eqgs. (I1.2) and (IL.3) tend to stationary solutions which

can be identified with solutions to the original Eq. (I.1), see [2,9]. It
turns out that in the case of imprecise input data (4, u) and IPP (1.1)
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the scenario of a typical evolution (I1.2) is as follows: at the beginning
of the evolution it looks as if the system tends to a solution of the ideal
equation (I.1) (n=0) which is the closest solution to the initial vector
V(0). This picture gradually changes and for large enough s the system
tends eventually to the unique, unstable solution to Eq. (I.1) (n#0).
To stop this, a large but finite s has to be chosen in relation to the
error vector 7. We illustrate this in Section V.

For regularized Eqgs. (II.1)—(IL.3), the stabilization functional men-
tioned at the beginning of this section is the Euclidean norm of vector
z, Section V. In other words, by means of regularizations Eqs. (II.1)-
(I1.3) we can get an approximated solution to Eq. (I.1) whose norm is
minimalized with respect to errors.

Il THE 2D LINEAR SYSTEM

Following [1] we consider the ill-posed problem described by a system
of two linear equations:

(it am 40 any

which can give arbitrary values of z; and z, for any small 6 and u:
z1=6/p, z=1-6/pn. (I11.2)

The above instability is a consequence of the fact that for u=6=0

(I11.1) is reduced to one equation only. Using the regularized equation
(IL.1) with matrix

1 1
A= <1+N 1) (I11.3)
we obtain, for example

2= (b + 1+ (14 w1+ 86)]e)/ (12 + 20+ o + [1 + (1 + p)*])
(111.4)
with « as the regularization parameter and the error vector n=(u, d)

characterizing the accuracy of the input data. We see that z; is stable
with respect to small changes of the error vector 7 if that vector is in
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an appropriate relation R with a. This relation is the following
|n < a. (I11.5)

Taking into account (II1.5) we do in fact get from (I11.4)

a2 ((1+0+p)1+8)]a)/Qa+a®+ 1+ (14 p)e)
~2/(4+a), (I11.6)

where in order to obtain the last equality the absolute smallness of n
was also taken into account. The required stability of formula (I11.4)
with respect to the error vector 7 is realized here by the fact that (II1.6)
which does not depend on 7 is close to (111.4). Of course, in order not
to be too far from the original Eq. (I.1) or (III.1) we have to assume
that « is small, in which case we get a final value for z; =2 1/2. In this
case, from the first Eq. (IIL.1), we get

Z] &2 zy = % (HI.7)

These results can be obtained directly from (II1.1) and (II1.2) by
initially narrowing down the set of possible solutions by some ad hoc
assumption like a demand that the norm of the required solution is
minimal or a demand for symmetry. In the first case we would have to
minimize

21 = (6/w) + (1 - 8/)? (I11.8)
while in the second case symmetry could be understood as the equality
Z1 =2 (IH.9)

resulting from the symmetrical shape of the exact equation (IIL.1).

IV THE SIMPLIFIED REGULARIZATION

The regularization (II.1) of the original Eq. (I.1) in the case of operator
A* = A >0 can be substituted by a simplified regularization

(el +A)z=u (IV.1)
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considered in [7, pages 84—89] for closed operators 4. This method of
regularization is particularly recommended when the Gauss transfor-
mation: 4 = 4*A4, disturbs the original structure of the operator 4, for
example, transforms the diagonal plus lower triangular operator into a
diagonal plus upper triangular operator. We consider regularization
(IV.1) for the original equation

z1 + pzy = 1,

o (IV.2)

with error vector 7= (u,0). Without regularization, the solution to
av.2)is
21=0, z=1/p. (Iv.3)

With simplified regularization (IV.1) (in fact, the corresponding matrix
A is only approximately positive) we get

a=afla(a+1)=p’), z22=p/l-ao(l+a). (Iv.4)

For restriction (II1.5) and the small regularization parameter o we get
the approximated solution

2121, z,20. (IVS)

We would obtain a similar result for the regularization (II.1) albeit
with more complicated formulas.

V THE GRADIENT REGULARIZATION

In this section we examine how the gradient method (I1.2) works. We
have

z=—A"(Az — p). (V.1)

The matrix 4 for (IV.2) can be decomposed into two parts:

A=<(l) 8)-{—”(? (l))EP+,uW. (V.2)
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The first is a projector P= P2 upon the first component of vector z,
the second can be treated as a small perturbation uW which affects the
“evolution” of (V.1) only for large “times” s. So if times s which are
not extremely large are taken into account, we can put

AP (V.3)
into (V.1) and consider the simplified equation
z=—P(z—u) (V.4)
with vector u = (1, 0). Hence
z1=1—e"+2(0)e™, z,=2(0). (V.5)

For a large enough s, z; =1 as in the regularized case (IV.5). We get
the second regularized result (IV.5) if we put initial vector z(0) =0.
This is not an accidential choice but a result of interpretation of the
asymtotes of the gradient method, see the comment after (V.15). It is
interesting to note that the expected unstable result (IV.3) does not
occur when s = 0o because of the simplification (V.3).

The indeterminate nature of the second component of the asymptote
of vector z in (V.5) is a specific feature of the gradient method in the
case of (ii), see the beginning of the paper. It can be avoided if we use a
double regularization with s and « as regularizing parameters. In this
case, instead of (V.3),

A=al+P. (V.6)

At the end of this section we give an exact description of solutions to
Egs. (V.1) and (V.2) to show how the unstable (exact) and stable
(regularized) solutions of Eq. (IV.2) are obtained. To do this we use
general formulas describing s-dependence of solutions of Eq. (V.1)
with the help of the eigenvectors ¢

A" A¢Y) = Eip? (V.7)
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where eigenvalues E; are positive numbers. They are

2(s) = Y _ (89, 2(0)) exp(~Eis)p"
+ Z /0 s(¢<">, A*u) exp(Ei(T — 5))¢Wdr. (V.8)

In the case (V.2)

Ei= 2 +1-(=1)4? +1)')2

for i=1,2 and the orthonormal eigenvectors

0 _ 2172 1
00 = b E- P (g a) )

and vector

From (V.8)

z(s) =D _(4%).2(0)) exp(—E~s)¢>(°
+ D (60, A uE (1 - e i) (V.10)

and because eigenvalues E;, for u# 0, are positive numbers from (V.9)
and (V.12) we can conclude that

2(00) = (E1 — E) '™ + (B2 — E1)1(2), (V.11)

where orthogonal vectors 43(') are defined as in (V.9) but without a
normalizing term. Hence, taking into account that

E\+E=2+1, EE =/, (V.12)

we get (IV.3), a result which illustrates the theorem that solutions of
Eq. (I1.2) asymptotically tend to solutions of the original Eq. (I.1). To
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get, via the gradient method, stable solutions (IV.5) of the regularized
Eq. (IV.1) we have to choose a finite s in appropriate relation to u.

Taking into account that for small values of ,

Ey~1 and E, ~pu* (V.13)

_ (1 _ 7
o (u) 40 = (_1 _N2>,

Z@)%ﬂmm)+uh®H€“+ﬂ4wa1—eﬂﬂ<;>

and

we get from (V.8)

U

+wm@—nmww—mMm—an(l) (V.14)

Now it is easy to see how the regularized solution (IV.5) emerges from
(V.14). We have to assume that large but finite s satisfies relations:

s> 1,
spt >0 (V.15)

and
sp® = 0.

Of course, we assume that ;= 0. Ignoring as before the z(0)-dependent
term we get (IV.5). In fact this point can be justified in a deeper sense:
The reader is reminded that solutions to Eq. (IV.2), since they are
solutions to IPP, are not unique (for the ideal case p =0). In this case
the gradient method chooses the closest solution of (IV.2) to the initial
vector z(0), see [2,10]. The choice

2(0) =0 (V.16)

is equivalent to a choice of solution with minimal norm (normal
solution).
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Choosing s=byu~* we see that s is large and the first relation of
(V.15) is satisfied for small parameters b and u, appropriately related
to each other. The second relation of (V.15) is automatically satisfied
for a small b because su*=b. From the third relation of (V.15) we
obtain b < p because su’=b/u. Hence we get a typical relation
between the parameter s~ related to a regularization parameter a, see
[2], and the error parameter u

st> u4 (V.17)

a characteristic phenomenon when dealing with IPPS.

Vi FINAL REMARKS

In mathematical descriptions of certain domains of Nature, we often
encounter a critical situation in which notions and algorithms pre-
viously checked out many times cease to work. These symptoms
are divergences or instabilities which make calculations difficult
or impossible. In such cases we talk about IPPS disc. sed above, or
about non-computability as in the case of the eigenvalue problem for
unbounded self-adjoint operators in Hilbert space [11], or about non-
uniform convergence or even complete divergence of the perturbation
series [12], and so on. In all these cases remedies have been found in
the form of certain modifications of the previous notions which are
equivalent to extensions or reductions (or both) of the spaces in which
equations were previously considered. Irrespective of whether an
extension is treated as a source of trouble [1-4,7-9] or a device making
possible certain transformations [5,9,10], we have to use additional
conditions to pick out physical solutions. These additional conditions
differ from the classical ones (initial, boundary) in that they are usually
of a qualitative nature and take into account the specific properties of
required solutions like normality [1—4], the zeroth order essentiality
[12], symmetry [10], interpretation [11] and so on [13]. A practical
realization of the above program can be executed by means of a
regularization method substituting Eq. (1.1) by Egs. (I1.1) or (I1.2) and
(IL.3) or (IV.1). In this way the experience and knowledge of the
scientist or engineer can compensate for technical (computational,
measurement) imperfection.
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