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The structure of a steady planar Chapman-Jouguet detonation, which is supported
by a direct first-order one-step irreversible exothermic unimolecular reaction, subject
to Arrhenius kinetics, is examined. Solutions are studied, by means of a limit-process-
expansion analysis, valid for A, proportional to the ratio of the reaction rate to the
flow rate, going to zero, and for 3, proportional to the ratio of the activation temper-
ature to the maximum flow temperature, going to infinity, with the product Ag'?
going to zero. The results, essentially in agreement with the Zeldovich—von Neumann—
Doring model, show that the detonation consists of (1) a three-region upstream shock-
like zone, wherein convection and diffusion dominate; (2) an exponentially thicker
five-region downstream deflagration-like zone, wherein convection and reaction domi-
nate; and (3) a transition zone, intermediate to the upstream and downstream zones,
wherein convection, diffusion, and reaction are of the same order of magnitude. It is
in this transition zone that the ideal Neumann state is most closely approached.
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1 INTRODUCTION

The purpose of this paper is to review and extend the previous inves-
tigation [1] of the structure of a steady planar Chapman-—Jouguet
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detonation wave, supported by a direct first-order one-step irreversible
exothermic unimolecular reaction, subject to Arrhenius kinetics. For
the physically realistic case of (1) A, proportional to the ratio of the
reaction rate to the flow rate, going to zero, (2) 3, proportional to
the ratio of the activation temperature to the maximum flow tem-
perature, going to infinity, with (3) AS'? going to zero, solutions
for this structure are obtained by means of limit-process-expansion
techniques.

For A—0, 8> O(1) (in the notation of [1]), Zeldovich, von
Neumann, and Doéring (ZND) proposed that the structure of the
laminar Chapman-Jouguet detonation is separable into a thin non-
reactive shock-like zone followed by a thicker nondissipative deflagra-
tion-like zone. For this ZND model, however, the exact method for
the coupling of these two zones is not formulated.

For A— 0, 8— oo, it is shown in the following sections that, to
describe the structure, it is necessary to introduce, as in [1], a three-
zone model. In addition to an upstream shock-like and a downstream
deflagration-like zones, a transition zone, intermediate to these two
zones, in which there is a reaction—diffusion—convection balance,
must be introduced. It is demonstrated that the solutions for the
(three-region, instead of the two-region [1]) upstream zone, (five-
region) downstream zone, and this transition zone span the domain of
the detonation.

In Section 2, the governing equations for the model for the detona-
tion structure are derived. A discussion of the results obtained from
the analysis for the structure is given in Section 3. The essential mathe-
matical features of the three-zone model are presented in Sections 4—6.

2 THE MODEL DETONATION PROBLEM

Consider the steady planar one-dimensional Chapman—Jouguet deto-
nation wave produced by a binary mixture of ideal gases, undergoing a
direct first-order one-step irreversible exothermic unimolecular chemi-
cal reaction, R — P, with no inert species present. Let x be the spatial
variable in the direction of the flow in a coordinate system at rest with
respect to the wave; v, the velocity component of the gas in the x-direc-
tion; p, p, and T, the hydrostatic pressure, density, and temperature;
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W, Y, €; h;, and w;, the molecular weight, mass fraction, mass-flux
fraction, specific enthalpy, and rate of production of species i by
chemical reaction, with i=1 for reactant R and i=2 for product P;
and u”, A\, and D = pD, the longitudinal-viscosity, thermal-conductiv-
ity, and mass-diffusion coefficients. The equations of conservation of
mass, momentum, species, and energy, and the equation of state for
the flow of such a gas are:

PV = const. = PpVo = PooVoos (2.1a)

dv
p+ pv* — p'—— = const. = py + Po‘% = Poo + pOOv(2>o; (2.1b)
dx

2
%:ﬁ, ei=Y— DdY’ 1chY,,Ze,_l ZWi:O;
pe p

pv
(2.1c)

2
1, dr , dv
pv gihi +=v" | — A— — p'v— = const.
<; 2 ) dx dx

1 1
= poVo (Z 510/710 + = V0> = PooVoo (Z EicoMico + = 2 ); (Zld)

i=1 i=1

2
p= PROTZ(Y:‘/ W) = p(R°/W)T,

i=1

2
with W, = W, Z Y; =1, R° = universal gas const. (2.1e)

i=1

Here, the subscripts 0 and oo refer the cold- and hot-boundary states,
respectively. It is presumed that £,9 = Y1q, so that Yy, €29 =(1 — Y}9),
(1 —£19); and that Y., €100 =0, Yoo, €200 = 1. With respect to the heat
capacities of the species, it is taken that c,;, ¢, = c,=const. In turn,
this means that the specific enthalpies may be expressed as h; =
(hS + cp(T — To)), ha = [h5 + (T — Tp)], where kS, h5 are the specific
enthalpies of formation at the cold-boundary state. For the model,
the longitudinal-viscosity, thermal-conductivity, and mass-diffusion
coefficients are taken to be (1”/ug), (A Xo), (D/Do) = (T/Ty)”, with
w=const. ~ O(1).
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For the Arrhenius kinetics of the model, the reaction rates are
given by

wi = —wy = —pB(T — To)(1 — Y2) exp(=T4/T), (22)

with B, the (const.) amplitude of the frequency factor, and T, the
(const.) activation temperature. In this formulation, the reaction rates go
to zero algebraically as the cold-boundary temperature is approached.’

It is convenient to introduce nondimensional variables. The spatial
variable is defined by 7 = (povo/ug)x. The velocity, temperature, and
pressure are given by v=vyp, p=pos=po(l/p), T=T0, p=por=
Po(R° /W) To(s0) = po Ry To(6]p), respectively. The mass fractions and the
mass-flux fractionsarewrittenas Y, = Y1o(1 — Y), Yo =[1 — Yyo(1 — Y)],
and ¢; = Y o(1 —¢€), eo =[1 — Y;o(1 — €)]. The specific total enthalpy is
expressed as H = (¢, T+ (1/2)v*)= [Hy + (Hoo — Ho)7] = [Ho + q7]=
[Ho + Ylo(hcl’ - hg)T]

For the postulated model, the governing equations can now be
written as

dp 1 (9 )
0¥ —=——=1{==1| =(1-9), 2.3a
&~ M2 \8 (1-9) (2.32)
1 ,dY
de -1
= - - 23
i (1= Y)exp[—(0.4/0)], (2.3¢)
U pwldr n (1/2)(y = DMGd(¢?)] _
P—rgo g~ (=P - o | =09 @39
with
0 =[1+a'7+1(y— 1M1 - ¢?)]. (2.3¢)
'In the previous analysis [1], the reaction rates are given by wj=—w,=

—pBT“(1 — Yy)exp[— T 4/(T — Ty)], with a=const. ~ O(1), such that the reaction rates go
to zero exponentially as the cold-boundary temperature is approached. Thus, the present
“algebraic” reaction-rate model attacks the “cold-boundary difficulty”, rather than
circumvents it, as does the (previous) “exponential” model.
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The boundary conditions for these equations are

¢p—1, Y—0,e—>0,7—0,06—>1 asn— —oo; (2.4a)
P> b, Y—1, e—=1, 751,050, asn— oo. (2.4b)

In (2.3), the parameters introduced are: the ratio of the specific heats,
v =¢p/(¢c, — Ry); the initial Mach number, M,= vo/(YRwTo)'?; the
normalized heat release, o’ = g/(c,To); the initial Lewis number, Ley =
Mo/ (¢yDo); the initial (longitudinal) Prandtl number, Pry = (c,uq)/o;
the initial first Damk&hler number, Ay = pj(BTo)/(pov3); and the
normalized activation temperature, 0 4= T ,4/T.

For a Chapman-Jouguet detonation, with M., = voo/(YRwTs) > =1,
it follows from the thermodynamics relating the bounding states that
the normalized heat release and the downstream value of the velocity
function are

, (M¢ - 1)2
— (Ao — 1) 1 )
o [2(7 DMz > 1, (2.5a)
(’YM(% +1) : [(Mo2 -1) 2
o | et ] h(1—- =|——5>0 ,
1) [(7 DM with (1 — ¢) (+ 1)M2 >0 for My > 1
(2.5b)
such that the two are related by

o +1

_(+D (1- ¢oo)2. (2.5¢)

1/2)(r-1)M¢  (v-1)
The temperature function can now be expressed as

(v+1)
(v=1)

6= [1 +%(7— 1)Mg{(1 — )+ (1 —¢m)27}], (2.6a)

so that its downstream value is
o — {(vMoz + 1>}2
* (y+ 1)M¢

With Ley, Prj = 1, such that, consistent with the equations and
boundary conditions, Y=7; and with the introduction of &, the

. (2.6b)
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modified spatial variable, defined by
U
E=¢ +/ 0~ dz, (2.7
0

where the arbitrary constant £ denotes explicitly the translational
invariance of the equations, the model reduces to

d—ﬁ =—Z(p,7); (2.8a)
§§=Aanaam—ﬁn¢7m (2.8b)
3—2 = (r—e). (2.8¢)
Here,
Z(6.7) = +”F«u¢@%—ﬂ—@—%ﬁﬂ

(” [ {(1=¢)(¢— ¢s) — (1 — o)’ }],

with g5 = (200 — 1) = [( o 1)Mg (2.92)

ﬂ¢ﬂ=Q%ﬁW%ﬂVW¢ﬂ—H

-2 - nmg{a- )+ - )|

wa—nMﬂa—&Hﬂiia—mo}} (2.90)

[0(Par, Tre) — 0(9, 7))

1D =060

_1(1/2)(y = DME{($> - #3) + (v + 1)/ (7 = DI = $oo)’ (7 — T)}]
L+ (1/2)(y = DM = ) + [(v+ 1)/(7 = D](1 — ¢o)’7}]

(2.9¢)
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The upstream and downstream boundary conditions are

¢p—1,e—0,7—0 asf— —oo; (2.10a)
M2+ 1
¢—>¢m=[%ﬁ%]<l,e—>l,T-*l as { — oo. (2.10b)

The parameters 3 and A are introduced in (2.8b). These parameters,
which depend upon the maximum flow temperature,

Om = (Tm/To) = 0(dum, v)
y+1

= [1 +%(7— 1)M§{(1 - 4% o —¢oo)zTM}]’ (2.11)

are defined by

B=(04/0m) = (Ta/Tu); A =Agexp(—p). (2.12a, b)

The asymptotic solutions to the boundary-value problem of (2.8)—
(2.10), in the limit of # — oo, A — 0, such that

ABY? = AoB'? exp(—B) — 0, (2.13)

for all of the other parameters of O(1), are presented in succeeding
sections. It is noted that ¢, T4, and 0,, are quantities to be deter-
mined from these solutions.

3 DISCUSSION OF RESULTS

Here, a discussion is presented of the detonation-structure results that
are obtained from an asymptotic analysis, valid for 8 — 0o, A—0,
such that A3'?— 0, of the boundary-value problem of (2.8)—(2.10).
The salient mathematical features of this analysis are presented in
Sections 4—6.

Four “distinguished” states, two bounding states and two interior
states, of the gas characterize the detonation structure. The two



230 W.B. BUSH AND L. KRISHNAMURTHY

bounding states are (1) the upstream (£ — —oco) cold-boundary state
(denoted by the subscript 0), where the combustible mixture enters the
wave at a supersonic speed, i.e., My>1; and (2) the downstream
(£ — 00) hot-boundary state (denoted by the subscript o), where pure
product leaves the wave at the local equilibrium speed of sound, i.e.,
M, =1. The two interior states are (1) the shock state (denoted by the
subscript S), with { =€g=0; and (2) the maximum-temperature state
(denoted by the subscript M), with 0 < =&y, < co.

According to the ZND detonation model, a “chemically frozen”
shock-like compression zone precedes a “diffusion-free” (high-speed)
deflagration-like expansion zone. In the notation of this paper, the
normalized velocity, ¢, decreases monotonically from its initial value,
¢o =1, at the upstream boundary (£ — —o0), toward a minimum value,
¢s, at the shock state (€ =0), and, then, increases monotonically to its
final value, ¢, at the downstream boundary (£ — oo). That is, ¢g is
related to the conditions at the bounding states by ¢s = (2¢oo — 1) =
(v = 1)MZ +2]/[(y + 1) M¢], where the second equality is the Rankine—
Hugoniot relation between the upstream and downstream velocities in
a normal shock. From the above relations, it is seen that 0 < ¢g<
doo < 1, 1.e., the flow decelerates through the shock-like upstream zone,
and, then, it accelerates through the deflagration-like downstream
zone. Further, the normalized stagnation enthalpy, 7, increases mono-
tonically from its cold-boundary value, 79=0, to its hot-boundary
value, 7., =1, remaining exponentially small at the shock state, i.e.,
Ts~0. The normalized temperature, 6, increases from its cold-
boundary value, 6,=1, toward a local stationary value, g, at the
shock state, continues to rise through the initial part of the deflagra-
tion, reaches an absolute maximum value, 6,,, at the maximum-
temperature state, and, then, in the final part of the deflagration,
decreases to its hot-boundary value, 0. If, as is consistent with the
ZND model, it is taken that diffusion is negligible in the deflagration,
it is found that the maximum-temperature state in velocity space is
defined by ¢u=[(7v+1)/2V)Ideo =[(v+ 1)/(@MI(1 + ¢s), such that
bs< < doo<1 for y>1, MZ > [3y—1)/(v(3—7))] > 1, which
reinforces the concept that the flow accelerates through the deflagra-
tion-like downstream zone. In turn, it is determined that, for the
downstream zone, 65 < 0, < 0 for v >1, MZ>[(2y -1)/(v(2—7))] >

[(By=1)/(v(3=7))] > 1.
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The aforementioned four distinguished states are introduced within
the framework of an asymptotic analysis, in which approximations are
developed that produce (simplified) systems of equations that define
the flow process in regions (of reduced size) within the detonation. The
criterion of consistency, with respect to the approximations that are
developed and the resulting sequences of quadratures that are per-
formed, is the ability of the solutions obtained for a given region to
“match” to the solutions for the adjacent regions.

The results of the analysis for the present model are in general
agreement with those for the ZND model, in that both models produce
a detonation structure consisting of an upstream “chemically frozen”
shock-like zone and a downstream “diffusion-free” deflagration-like
zone. However, in the present analysis, a zone, intermediate to these
upstream and downstream zones, is introduced to describe the tran-
sition of the detonation from its shock-like behavior to its deflagra-
tion-like behavior.

The regions into which the flow is categorized by this analysis are
schematically sketched in Figure 1.

In Section 4, the downstream zone is analyzed. For this zone, the
flow variables, ¢, 7, and ¢, are of (at most) order unity, and the spatial
variable, £, is much greater than order unity as 8 — oo, A — 0: AB'? — 0.
Thermal-conduction and viscous-diffusion effects are rendered to be
of exponentially higher order. Five regions are required to describe the
flow in this downstream zone.

The first of these five regions is (denoted as) the chemical-reaction
“induction region”. In this region, wherein the “initial state” is the
shock state, the flow begins its inviscid acceleration (due to heat
addition). For L,=[ABexp(—A3Gs)]™' — 0o(Gs=const. ~ O(1)), this
region is characterized by £=O0(L)=0(logL,)— oo, and by
(¢ — ¢s). 7.e~ O((BL,) 'log L,) — 0.

The second downstream region is (designated as) the “first-reaction
region”. In this region, the chemical reaction is of order unity, rather
than exponentially small, and the velocity and temperature increase
from their shock-state values to their maximum-temperature-state
values. Thus, this region is defined by £ ~ O(L,); and ¢, 7, ~ O(1).

The third is the “maximum-temperature region”. Here, the velocity
continues to increase, passing through its maximum-temperature-state
value; the temperature increases to its maximum value at the region’s
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FIGURE 1 Schematic diagram of detonation structure.

“origin”, and, then, begins to decrease. For L,,=[A8""'— o0
(i.e., AB'Y?—0), this region is characterized by {¢&— (L&)} ~
O(L,,) — oo(& =const.~O(1)); and by (¢ — dur), (T — Tar), (€ —Err) ~
0B —0.

The fourth region is (designated as) the “second-reaction region”, in
which the velocity and temperature proceed to increase and decrease,
respectively, from their maximum-temperature-state values toward
their hot-boundary-state values. For L,=[Af exp(—BGs)] " — 00
(Goo=const. ~O(1)), with (L,/L,) =exp{—p(Gs—G)} —0, since
(Gs— Gy)=const. >0, this region is defined by {¢— (L&)} ~
O(L;) — oo; and ¢, 7, ~ O(1).
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The “hot-boundary region” is the fifth (and last) region of the down-
stream zone. It is in this region that the chemical reaction is completed,
and the flow accelerates and cools to achieve its hot-boundary-state
values. For L,=[Aexp(—BG..)]"' — oo, such that (Ly/Ly) =B — o0,
yet (Ly/L,) = Bexp{—B(Gs— G)} — 0, this region has {£ — (L&)} ~
O(Ly) — 00; and (¢oo — ) ~ OB~ =0, (1 —7), (1 —) ~ O(8~) — 0.

It follows that the effective thickness of the downstream zone (and,
hence, of the detonation, itself) in &-space is Ly = (L,£2) ~ O([AS x
exp(—BGs)] ') — oo. It is the requirement that the maximum-
temperature-region length-scale, L,,, be much greater than order unity
that produces the third limit of this analysis, namely, A3 12_0.

In Section 5, the upstream zone is analyzed. For this zone, ¢ is of
order unity, 7, € are exponentially small, and {£ + (L}¢})} is of order
unity as 8 — oo, A —0: AB?— 0. The chemical reaction is rendered
an exponentially higher-order effect. Three regions are required to
describe the flow in this upstream zone.

The first upstream region considered is (designated as) the “princi-
pal dynamic region”. In this region, the chemical reaction is exponen-
tially small, and, to the approximation considered, the velocity and
temperature satisfy the Becker solutions for a steady planar “frozen
shock”, as they decrease and increase, respectively, from their cold-
boundary-state values toward their shock-state values. This region has
& = {6+ (L)) ~ O(1), with (L;&;) ~ O(Blog(BL,)) — oc; and
dp~0(1), T~O0B EL) -0, e~O@BL)'—0 for 0<B=
const. < 1. As the cold-boundary state is approached, i.e., §, — —oo,
¢— 1 (exponentially), 7—0 (exponentially), and the upstream
boundary conditions for these functions are achieved; however, in this
limit, due to the reaction-rate model employed, € 4 0 (exponentially),
and the upstream boundary condition is not achieved for this function.

The upstream nonuniformity of the principal-dynamic-region
e-solution is studied in the “cold-boundary region”. This region is
characterized by & = {£ + (L&)} ~ O(1), with (L€) ~ O(Blog L+
(A + B)log 8) — oo (4, B=consts. ~ O(1)); and (1 — ¢) ~ O(3~") — 0,
T~ OB ALY 50, e~ O((BPL,) exp(—BRy)) — 0 (Ry=const.
~ 0(1)). As £ — —oo, the solutions for the cold-boundary region sat-
isfy all three of the upstream boundary conditions of the detonation-
structure problem. [As £.— oo, the cold-boundary-region solutions
match to those of the principal dynamic region (as §, — —00).]
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In the third region, (designated as) the “incipient-reaction region”,
of the upstream zone, the chemical reaction, although more intense
than in the principal dynamic region, is still exponentially small, and
the velocity and temperature behaviors, to leading order, remain
independent of the chemical reaction as the shock state is more closely
approached. This region is characterized by &, = {£ + (L&)} ~ O(1),
with (L:¢") ~ O(BlogL,) — oo; and (¢ —¢ps)~ OB ") —0,7,e~
O(BL) ™' —0.

The transition zone, intermediate to the upstream and downstream
zones, is analyzed in Section 6. In this zone, there is a convection—
diffusion—chemical-reaction balance, with (1) the chemical-reaction
contribution’s going to zero as the upstream zone is approached, and
(2) the diffusion contribution’s going to zero as the downstream zone
is approached. For this zone, £~ O(1); and {(¢ — ¢s) — (Af¢})},
{r =)} de = (Ne)} ~ O(BL) ™ — 0, with X ~ O((BL,) ' x
logL,) — 0 (¢}, 7/, ¢; = consts. ~ O(1)). The solutions of this transi-
tion zone match directly to the incipient-reaction-region solutions of
the shock-like zone and to the induction-region solutions of the
deflagration-like zone. With respect to the (ideal) Neumann state,
(p— bs), 7,6=0, when £=0, it is in this transition zone that the
detonation approaches this state to within a factor of O((BL,) " x
log L,)— 0.

4 THE DOWNSTREAM ZONE

For the downstream zone, which is the inviscid subsonic deflagration-
like zone of the detonation, the appropriate representations for the
spatial coordinate and the flow variables are

§a=§&/La, with Ly — o0; (4.0.1)
$(&) = da(8a), T(&) = 1a(la), (&) = €al&a)- (4.0.2)

In the limit of L;— oo, for &4, du, T4, €4 fixed, from (2.8) and (2.9), the
governing equations in velocity space are

Ta(ba), €d(¢a) = Ja(ba); (4.0.3a, b)
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déa exp{BGa(¢a)} .
dey ~ (Lab)'p Eq(da)
o —1exp{BGa(da)}
a(da) = & + (LaADB) Fb0Edda) (4.0.3c)
Here
oo T 2 1- -
e ]
dJg _ | 2(¢0 — da) |
G = Halsa) = [—————(l = ] (4.0.42)
Eilgi) = X 50700)
— G101 - 6 - -

< [YMG{(1 = ¢u)* — (¢a — dua)*}; (4.0.4b)
2
Gulda) = Y(64.1d00) = o ZMO (¢d)—2 % ]{ e
dGy _ Fi(ba) = [1+ MG = du)’|2YME (da — ¢M)].
da 1+ M1 = u)’ — (ba— dm)*}]

(4.0.4c)

In the foregoing expressions, the following temperature function has
been employed:

0(Ba Ju( b)) = Oa(¢a) = [1 + M1 — pr)* — (ba — )’ }]-
(4.0.5)

Since

0d(¢oo) = ‘900 =

from (4.0.5), it is determined that

o+l o+
(/I)M- 27 ¢oo_ 47

2
(1+¢s) = [(Vgﬁ% I)J. (4.0.6)
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Thus, the velocity functions at the shock, maximum-temperature, and
hot-boundary states are related by

bs < du < Poo < 1 for7>1,M§>7 >1. (4.0.7)

In turn,

(1= o)’ (1= o)’
(4.0.8)

™ em = Ju(dum) = JIu = [1 S ¢M)2} = [(1 — Pm)(Pm — ¢s)}‘

Employing the notation 0u(¢ar)=0um, 0u(beo) =000, and Ou(ds)=0s,
the following holds:

O = [1 + M1 - éu)’),

Ooo = [1+ YMZ{(1 = ¢u1)’ — (Y00 — Sa1)*}]:

Os = (1 +yME(1 - pm)* — (dm — b5)*}],

(2y=1) _Bv-1) 51

Y2-7) " v3-v) "
(4.0.9)

with 05 <6, <0y fory>1, M? >

Thus, (4.0.9) provides the requirement that the upstream Mach
number, M,, must satisfy in order to be compatible with the
Chapman-Jouguet condition.

It is now possible to evaluate J,(¢4), E«(¢4), and G4(¢,) at the maxi-
mum-temperature, shock, and hot-boundary states. At the maximum-
temperature state, (¢gz— ¢as) — 0,

Jalda) ~ Ias + Hag(dag — dpg) (L + ) — Jar,
with J — [1 (- wf} _ [(1 — ) — qﬁs)} o

(1 - o) (1= o)’
2o —
Hy = [-%—:4%1‘24—)] > 0; (4.0.10a)
Eq(¢pa) ~ Ep(14---) — Ep,
with £ —[———("5""‘¢M)][1+ ME(1 = dar I AME(1 = dar)?) > O
= [ MG = 6 I M1 = dur)] > 0

(4.0.10b)
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Gu(da) ~ Kiy(ba— dm)* (1 +---) — 0,
Fu(pa) ~ 2K3(¢a — dm)(1 +---) —= 0,
M}

with K2, =
M MR - p)?]

> 0. (4.0.10c)

At the shock state, (¢, — ¢s) — 0,

Ja(pa) ~ Hs(¢pa — ¢s)(1 +---) — 0, with Hg = [(l ~4¢s)] > 0;
(4.0.11a)
Eq4(¢q) ~ Es(1+---) — Es,
with 25 = |2\ 1430 - o (6 - 69}
x [YMI{(1 = dm)* — (éur — ¢s)°}] > 0; (4.0.11b)
Gu(pa) ~ Gs + Fs(da — ¢s)(1 +---) — Gs,
with G = M (0u — ¢5)'] >0,

[1+yMEH{(1 - dm)* — (éu — ¢5)°}]

[ M1 = )" 12y ME (b — 95)] <0, (40.110
[+ yME{(1 = ¢m) = (o — s}

At the hot-boundary state, (¢o, — ¢g) — 0,

Jd(¢d) =1 - I(¢o — ¢d)2 — 1, with I, = [“—_;Tf] > 0;

(4.0.12a)
Ei(¢a) ~ Doo(poo — Pa)(1 +--+) — 0,
with Dy, = Z;_ 1+ YM2{(1 = $n)* = (oo — 6m0)*}”

X [YME{(1 = ¢u)? = (¢oo — Sa1)*}) > 0; (4.0.12b)
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Gd(¢d) ~ Goo - Foo(¢oo - ¢d)(1 + - ) — Goo,
M3 ($e — b)) S

[+ M1 = dm)* — (b0 — d1)*}]
_ [T+ yME(1 - ¢u)*)2yME (b0 — Pur)]
T+ MG = pu) — (b0 — 1)1

with G5, =

>

>0.  (4.0.12¢)

From (4.0.11c), (4.0.12¢), and (4.0.9), it is determined that Gs> G.

4.1 The Induction Region

In the induction region, for which the “initial state” is the shock state,
the variables are determined to be

&= (Ls&y)/Li=€&/L;, with L; =logL, — oo,

for L, = [ABexp(—fGs)] ™" — oo; (4.1.1)
ba(€a) = bs + 6i9i(&i), Ta(€a) = oimi(&i),  €al€a) = miei(&),
with 6, 0,7 = \, = (BL,) " log L, — 0. (4.1.2)

For these scalings, the introduction of (4.1.1) and (4.1.2) into (4.0.3)
yields

7i(¢:), €i(di) = Hsdis (4.1.3a, b)
d&i ~ 1 . AN ~ __1_ . __ ¢
djﬁi =~ ‘E—; : €I(¢l) ~ ES (f), Ei , (413C)

where £ = const. = B, defined in Section 5. In turn, in terms of &,
these solutions can be written as

¢i(&i) = Es(& +&); (&), ei(§) = HsEs(&+ &) (4.14a, b, ¢)
Upstream, as &; — (L,&,;)/L; — 0, these solutions can be expressed as

b = ¢s+ (Ni/ L) Es{(Li&}) + (Lu€u)}
19s

=¢s+ (IBLr)_ Hy (B log Lr) + (Ltifn')}, (4.1.5a)
Ty €() = ()‘i/Li)HsES{(Lifz?) + (Ltigti)}
= (BL,) "' Qs{(Blog L) + (Lii)}, (4.1.5b, ¢)

where HgEs= const. = Qs, defined in Section 5.
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As &, — (L&) L; — oo, the solutions of (4.1.4) yield

¢ ~ ¢s + (Ni/L)Es(Ly&) = ¢s + (BL,) ' Es(Li€s),  (4.1.6a)
T(,'), 6(,-) ~ ()\i/Li)HsEs(Lirﬁ,'r) = (ﬂL,)—lHSES(L,'r&,). (416b, C)

4.2 TheFirst-Reaction Region

For the first-reaction region, in which the flow accelerates from the
shock state to the maximum-temperature state,

& = (Lg&y)/L, = £/L,, with L, = [ABexp(—fGs)] ™" — 00;  (4.2.1)
ba(a) = dr(&), Ta(la) = (&), ealla) = (&) (4.2.2)

With these representations for the variables, the governing equations
for this region are

T (¢r)s €(Br) = Ja(br); (4.2.3a, b)
der ﬁexp{—ﬁ[Gs —Ga(¢r)]}
do, Ea(¢r) '
o, XP{=BGs — Gu(¢))]}
&(or) = + Ealo) Fald) ,
with & = [— ESIFJ > 0. (4.2.3¢c)

As the upstream shock state is approached, i.e., (¢, — ¢s) — 0, the
asymptotic behaviors of (4.2.3) are

1
&~ ﬁE— (¢r — ¢s) — O, (4.2.4a)
S
Ty, €& ~ Hs(¢, — ds) — 0. (4.2.4b, c)
In turn, as §, — (L;€;)/ L, — 0,
by ~ ¢s + (BL,) ' Es(Lu&s), (4.2.52)

T),€¢) ~ (BLy) " HsEs(Lurkir), (4.2.5b, c)
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and the solutions of the induction and first-reaction regions are seen to
match.

As the maximum-temperature state is approached, (¢ — ¢,) — 0,
and the behaviors of (4.2.3) are

o exp{[8"2Ku(dn — )]’}

~ £ 1/2 _ g0
& 6,, [/8 Cxp( ;BGS)]gm [,81/2KM(¢’M — ¢r)] Er,
1o 1
with &, = |:_~—2EMKM:| >0, (4.2.6a)
T, & = Iyt — Hu(dp — &) — Jur. (4.2.6b, ¢)

Thus, as & —&—(Lymé&m)/Lr— &, in anticipation that Ly =
(A" = oo,

~ _ —1/2_1_ (erfrm)}] 1/2
b~ du — B Ko log L) , (4.2.7a)
12
Ty €0) = JIm — gz % [log{((lz:gm))}] . (4.2.7b, )

The relations for L, and L,, show that (L,./L,) = [3"exp(—3Gs)] — 0.

4.3 The Maximum-Temperature Region

For the maximum-temperature region, with its “center” being the
maximum-temperature state,

Em = {(La€a) — (Ly&n)}/ L = {€ — (L850} Lns
with (L}€5) = (L£2) — 00, Ly = [ABYH ™' - 00;  (4.3.1)
ba(€a) = O + SmPm(&m),
Ta(&a) = T + OmTin(Em),
ea(€) = ept + Tmem(Em)s

with 7ar, €31 = Jats  Oms O T = A = 71/2 = 0. (4.3.2)
Thus, for this region,

Ton(Bm)s Em(Pm) = HinBm; (4.3.3a, b)
dém

Lo L exp{(Kuudm)?} : Enlem) ~ 265 / U exp(P)dr. (43.30)
A By PUEMOm S =S Om) 7= o | Pt 2
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As ¢, — 0, (4.3.3c) yields

1
Em = Efﬁm -0, (4.3.4)
such that, as §,,— 0,

Pim) ~ b + B~ Enm, (4.3.5)

Tom)> €m) = It + B~ Hy Ep&n. (4.3.5b, c)

As |¢,u| — 00, the integral of (4.3.3c) produces
o exp{(KM¢M)2}
Em =&, (Korm) (4.3.6)

such that £, — £ oo as ¢,,, — £ 00. Upstream, for &,, — — (Ln€rm)/Lm
— —00, then,

PR (Lmém)\ ]2

~ e g2 1

Pm) ~ oM — B Ko [log{ () H , (4.3.7a)
1/2

T(m)s> Em) = I — ﬁ—l/Z% [log{(—(L[—i:—g——gn))}] , (4.3.79, ¢)

and the solutions of the first-reaction and maximum-temperature
regions match. Similarly, downstream, for £, — (Lug€mg)/Lm — 00,

121 (Lmg€mg)\ 1"

~ 1/2___ q

Pomy = du + B Ko [Iog{ (L'ZEfn) H , (4.3.82)
1/2

Ton)s Em) ~ Tna + 57 2%‘5 [log{%%”i))}] . (4.3.8b,¢)

4.4 The Second-Reaction Region

For the second-reaction region, in which there is an acceleration of
the flow from the maximum-temperature state to the hot-boundary
state,

& ={(Lda) - (LZ}£Z;)}/Lq ={{- (L;§;)}/Lq,
with (L3&) = (L&) — 00, Ly = [ABexp(—fGc)] " — oo; (4.4.1)
ba(ba) = dq(&g),  Ta(€a) = 74(&g),  cala) = €q(&g)- (44.2)



242 W.B. BUSH AND L. KRISHNAMURTHY
Note that, with (Gg— G,.) >0,
(Ly/Lr) = exp{—B(Gs — G)} — 0. (4.4.3)

The governing equations for this region are

Tq(¢q>» 5q(¢q) ~ Jd(¢q); (4.4.4a, b)
dg  4oxp{=BlGoc — Guld,)1}
dg, Eq(oq) '
E,,(d)q) ~ exp{;f([j:;gl(g:)(%)]}. (4.4.4¢)

As the maximum-temperature state is approached, (¢, — ¢») — 0,
and the asymptotic behaviors of (4.4.4) are

o xp{ (82K (¢ — ém)I’}

~ [B1/2 _ .
€¢I ~ [ﬁ CXp( ﬂGOO)]gm [IBI/ZKM(¢q — ¢M)] 0, (4453)
T €¢ = I + Hy(dg — dm) — Ju- (4.4.5b, ¢)
In turn, as §; — (Lyg€mg)/ Ly — 0,

Lo 1/2
P ~ o+ 672 KLM [log{%L—"go—‘;)}] , (4.4.6a)

1/2
Tq)» E(q) = Ju + ,8“1/2[;_:: [log{(—(LLﬂ—qgoﬂ;—)}] (4.4.6b, c)

and the solutions for the maximum-temperature and the second-
reaction regions match.

As the hot-boundary state is approached, i.e., (¢oc — ¢,) — 0, the
behaviors of (4.4.4) are

exp{_[ﬂFoo(Qboo - ¢q)]}
[BF oo (o0 — )]

o [
&n ~ B8, — 00, Wwith & = [——

a0
(4.4.7a)

T €g 1 — Lo (oo — Bg)* — 1. (4.4.7b, ¢)
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Thus, as &, — (Lypém)/Ly— 00, in anticipation that L,=[Ax
exp(—fGo0)] ' — 00,

~de gt L (Ln&p) }]
Plg) ® b0 = P [log{(thth) ) (4.4.82)
o 2
Tlg)s €(g) = 1 —ﬂ‘z%z[log{%%” : (4.4.8b,¢)

4.5 The Hot-Boundary Region

In the hot-boundary region, in which the “final state” is the hot-
boundary state, the variables are

& = {(Laa) — (L3&)}/ L = {€ — (L;§3)}/ Lo,
with (Li€5) = (L) — 00, Ly = [Aexp(—BGs)] ™ — 00; (4.5.1)
Ga(€a) = boo — 6nPn(&n)s  Ta(€a) = 1—0nTi(6n)s  €a(€a) = 1—TnEn(8n),
with §, ="' =0, opm=M=872—0. (4.5.2)
Note that

(Lu/Lg) = B — 00; (La/Ly) = Bexp{~B(Gs — Gu)} — 0. (4.5.3)

The equations for this region are

() en(dn) ~ Loy (4.5.4a, b)
6 e exp{—(Footn)} .
do ¢ ®n )
&n(bn) ~ & Ei(Footn), with Ei(z) = / t~'exp(—1)dt. (4.5.4c)

Upstream, as ¢, — 0o,

~ oexp{—(Fw¢h)}
€h ~ 6}, ( Foo ¢h) -

Thy €1 & Poopy — 00. (4.5.5b, ¢)

0, (4.5.5a)
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In the limit of A— 0, 8— oo, &, du, Tu €, fixed, from (2.8) and (2.9),
the governing equations in velocity space are

dg, 1

déu " " Pu(du)’ (5.0.3a)
de, ~ 1 [AB exp(—BGs)] .

Aoy Pu(dw) p BOu(¢u) exp{—BR.(4.)}; (5.0.3b)
dr, 1 T

6.~ " Puldu) [ (0_) 5u]~ (5.0.3¢)
Here,

Pulb4) = Z(64,0) = ”2*7” [i{u 6.6 - ¢>s>}]; (5.0.42)

1 1
0u(6) = X($,0) = ¢u[ e —1)M0<1—¢2>]
< 30 DM - ) (5.0.4b)

[(1/2)(v = MG (4, — 63)]

Ru(¢u) = [Y(¢uo0) o GS] = (1 + GS) [1 n (1/2)(’7 _ 1)M02(1 — ¢§)] ’

dR,
dg,

=+

Su(¢u)

Gy L (/20— DM -)r- VMG
1+ (1/2)( = DM (1 - @)
(5.0.4c)

As the cold-boundary state is approached, ie. (1—¢,)—0, the
functions of (5.0.4) have the following behaviors:

Pue) ~ (1= (1 +--) =0, with A= | 2]
(5.0.5a)
Qu(9u) ~ Co(1 = ¢u)(1 +--) =0, with Co = [(y — 1)M¢]; (5.0.5b)
Ru(¢u) ~ Ro — So(1 = ¢u)(1 + ) — Ry,
with Ro = (1 + Gs)[(1/2)(y = Mg (1 - )],
So = (1+Gs)[(y = DM+ (1/2)(y = DM (1 - 5)].
(5.0.5¢)
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As the shock state is approached, (¢, — ¢5) — 0, and

1 e | 2y ¢s .
Pu(u) ~ 5 (b= ¢s)(1+--) =0, with B = [mm]

(5.0.6a)
Qu(¢u) ~ Qs(1+++) = QOs,

with Qg = ls 1 +%(7 ~MZ(1 - ¢§)] B—(’y - )M - ¢§)};

é
(5.0.6b)
Ru(¢u) ~ Ss(pu — ¢s)(1 4---) = 0,
with Ss = (1 + Gs) [y = M5 os] (5.0.6¢)

[+ (1/2)(v = DMG(1 = ¢3)]

5.1 The Principal Dynamic Region

The principal dynamic region effectively spans the domain from the
cold-boundary state to the shock state. The variables for this region
are

& =& —{(L&) — (L§)} = £+ (L5)),

with (L&) = Blog(BL,) — oo; (5.1.1)
Gu(&u) = 8p(&p)s  ouTu(lu) = 0p7p(§p),  Tugu(&4) = mpep (&),
with o, = (8"2L,)"' -0, =, = (6*L,)" — 0, (5.1.2)

such that (7r,,/o,,)=,8“(1“B)——>0, since B< 1. The equations for this
region take the forms

¢, L

a—qbi ~— g (5.1.3a)
de, — 0u(dp) _

G~ 0t exp (AR, (6): (51.3b)
% o™ (5.1.3¢)

dg, ~ Pu(eyp)’
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Their solutions are determined to be

RY.
&(dp) ~ log{((%:%}, (5.1.4a)
P
oo (=0 o | _BL(B)Qs
7(pp) & p{(¢p - ¢s)B}’ with 7 = 0 (;SS)ASg:l’ (5.1.4b)
~ Qu(¢p) _
6P(¢P) ~ Pu(¢p)Su(¢[)) exp{ ﬁRu((bp)} (5.1.4(:)

Upstream, toward the cold-boundary state, as (1 — ¢,) — 0,

A
£~ log{ [(l—_@} } — —co, with ¢, = (1—¢5)”*, (5.1.5a)

Ppe
1 A
T RTS [( ;f”)} -0, (5.1.5b)
pc
Ep ~ €;c eXp(—ﬁR()) CXP{BS()(I - ¢17)} - e;c eXp(—BRo),
with £, = Fg] (5.1.5¢)
0

In turn, as §, — {(Lypéep) + (L,6,)} — —o0,

by ~ 1= [exp{(L,&;)/ A} épe exp{(Lepécp) / A}
=1- (ﬂLr)B/A(l - ¢S>B/A exp{(chfcp)/A} =1- (I)p, (5163)
(o) = [op exp{(L;&) 75 exp{(Lepéep) }

_ (api-8y-1|_BL(B)Qs

= (BL,7) (1= )5 exp(Lepéep), (5.1.6b)
£p) = [mp exp(—PBRo)le,. exp(BSo®))

= [(B*L,)"" exp(—BRo)] [A—Sf-g] exp(BSo®,). (5.1.6¢)

From (5.1.6), it is seen that ¢, — 1, 7(»— 0 as £, — —oo; however,
gp 70 as {,— —oo. Thus, the solutions of the principal dynamic
region satisfy only two of the three upstream boundary conditions for
the detonation boundary-value problem (cf. (2.10a)). All three of these
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boundary conditions are satisfied through the introduction of the
cold-boundary region, which is analyzed in Section 5.2.
Downstream, toward the shock state, as (¢, — ¢s) — 0,

o B
&~ log{ [(—¢,,—fv7s)] } — 00, with ¢}, = (1 - ¢s)"%, (5.1.7a)

o B
~70 | —2 | .
=T [<¢,, - ¢s)] °°’ (3-1.7)

e g exp{—B[Ss(¢p — ¢5)]}
e [Ss(¢p — ¢s)]

— 0o, with g, = BQs. (5.1.7¢)

In turn, as §, — {(Lpép) + (L,6;)} — oo,

by = ¢s + [exp{—(L,&,)/ B} ¢, exp{—(Lp&) B}
=¢s + (ﬂLr)—l (1- ¢S)A/B exp{—(Lp&p)/ B}

=¢s+ ¥, (5.1.8a)
() = [op exp{(L,&,) 7, exp{(Lp&pv)}

_ (ayi-By-1| BI(B)QOs

= (BL,”") = ¢S)Asg] exp(Lpvépy), (5.1.8b)

) = [Bmyley, ——*exp{(;éféi;p”)}
exp{—(8Ss¥)}

_ 1
= (L) BOs—(55.%,)

(5.1.8¢)

5.2 The Cold-Boundary Region

In the cold-boundary region, in which the “initial state” is the cold-
boundary state, the variables are taken to be

e =& — {(Li&)) — (Le€0)} = &+ (L&),
with (L;&) = {BlogL, + (A + B) log 3}
= {Alog 8+ Blog(BL,)} — oc; (5.2.1)
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¢u(§u) ~1- 5c¢c(§c), O'u’ru(gu) ~ ac‘rc(&), 7l'u€u(£”) ~ wt.gt,(é“‘,)’
with 6. =71 -0, o.=(8"*BL,)"" -0,

7. = [(B*L,) " exp(—BRy)] — 0. (5.2.2)
Note that (¢0./6.), (m./0.) — 0; further, (o./0,) = B~ —0,and (me/mp) =

exp(—BRy) — 0. The cold-boundary-region equations of motion in
velocity-space are determined to be

dé.

d¢c ¢C (5.2.3a)
de,

o, ~ ACpexp(Sode); (5.2.3b)
dr, AT

The solutions of these equations, satisfying the boundary conditions
£ — —00, T, e.— 0 as ¢, — 0, are

Ec(ge) ~ log{ (¢) } with ¢} = g5 = (1 - ¢5)™*,  (5.2.4a)

¢O
~ ¢C : o __ 0 _ BF(B)QS 4
Te(pe) = 7, (¢o> , with 77 =77 ——————~(1 — ¢S)ASB:|’ (5.2.4b)
ec(be) ~ eclexp(Soge) — 1], with el =€, = F—Cﬂ] (5.2.4¢)
So

Upstream, as ¢, — 0, these solutions yield

&~ log{ (2:) } — —00, (5.2.5a)

Te RT, (Z) — 0, (5.2.5b)
g = ex(Sope) — 0. (5.2.5¢)

In turn, as {, — —o0,

¢(c) ~1- 6c¢(c) exp(EC/A)
=1-p811 - ¢g5)%4 exp(£./4) — 1 (exponentially), (5.2.6a)
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T(e) = 0T, exp(&e)

BI'(B)Qs

_ (pl44+By -1
= (B L) _m(l—qss)*‘sg e

€() = e [Sodg exp(€./A)]

= (L)™' exp(~BRo)][ACo(1 — ¢5)™]
x exp(§./A) — 0 (exponentially).

xp(&:) — 0 (exponentially),

(5.2.6b)

(5.2.6¢)

Thus, it is seen that all three of the upstream boundary conditions of

the detonation boundary-value problem are satisfied.
Downstream, as ¢. — oo, the solutions of (5.2.4) yield

S (ONES

Te = T, <¢c) — 00,
¢o

. = €7 exp(Sop.) — .
Thus, as & — {(LE)) + (Lepéep)} — 00, it follows that

¢ ~ 1 — [beexp{(L&:)/ A} exp{(Leptep)/ A}
= 1= (BL)"(1 — )" exp{(Leptep) / A4}
=1-6"'0,=1-9,

T(e) = [O’C eXp (L: 5: )] T; CXp(chfcp)

(—1—_—%%} p(Lako).

E(c) = €, exp(So®@.)

= (L")

— (L) exp(—~BRy)] [’—49] exp(BSo,).

So

(5.2.7a)

(5.2.7b)

(5.2.7¢)

(5.2.8a)

(5.2.8b)

(5.2.8¢)

The cold-boundary-region and principal-dynamic-region solutions are

seen to match from (5.2.8) and (5.1.6).
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5.3 TheIncipient-Reaction Region

In the incipient-reaction region, for which the “terminal state” is the
shock state, the variables are

& =& — {(L&) — (LE)} =+ (LK),

with (L&) = Blog L, — o0; (5.3.1)
¢u(§u) ~ ¢S + 5v¢v(£v)s Uu'ru(gu) ~ O'VTv(gv), 7"'w‘fu(gu) ~ 7"'11<":v(€x/)’
with §, = 87! =0, o,,m =\, = (BL,)"" — 0. (5.3.2)

The equations for this region can be written as

dé, B
d¢v ~ —E, (5333)
de, B
d; ~ —— Qsexp{—(Ssh)}; (5.3.3b)
g;vv ~ %W —g). (5.3.3¢)
The solutions of these equations are
AN . A/B
6oy ~logd (5) 1, with i =g, =1 -89¥", (5340
&(dy) = EiEi(SS(f’v)’ 7(¢y) = g, Ei(Ss¢y) +MV';_£-) >
(SSva)
with Ei(z) = /Oo texp(—1)dt, ~(z;k) = /Z t*Vexp(—1)ds,
z 0
€, =€, = BQs. (5.3.4b, ¢)

Upstream, as ¢, — 0o, these solutions have the following asymptotic
behaviors:

2\”
¢~ log{ (—qgl) } — —00, (5.3.5a)

~ O P(B) — o(ﬂ)B__) ith 7° = 7° = BF(B)QS
Ty EV(SS¢V)B T, y 0, wit T, =T, = _——(l—qﬁs)ASg s

(5.3.5b)
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I exp{(;f§3¢vn o (5.3.5¢)
Thus, as fv — {(vaﬁpv) + (LT)&:)} — —00,

bp) = ¢s + [6yexp{~(L}£})/ B} b, exp{—(Lpvém)/ B}
= ¢s+ (BL) ' (1 — ¢s)** exp{—(Lp&p)/ B}
=¢s+ 7', = g5+ T, (5.3.6a)

I'(B °\*?
T R ME, ——( ) 5~ OV, (ﬂ)
(Ss¥,) v,

= (BL}-B)! [ a%’?)g_g_g ] exp(Lpép), (5.3.6b)
~ oexp{_(SS\Ilv)}
) EMN T TRy
_ 1 pp . SXP{=(BSs¥))}
= (8L,) 'BQS—W. (5.3.6¢)

From (5.3.6) and (5.1.8), it is seen that the solutions for the principal
dynamic and incipient-reaction regions match.
Downstream, as ¢, — 0, the solutions of (5.3.4) have the behaviors:

AN
&~ log{ <—") } — 00, (5.3.7a)
by
Ty, €y R E log{ ((%)} — 00. (5.3.7b, ¢)

Thus, as § — {(Lvwéw) + (L}€))} — oo,
by = bs + [8y exp{—(L}&;)/ B} 4, exp{—(Ly&w)/B}
= ¢s+ (BL,) (1 — ¢ps)*/® exp{—(Ly&)/B}, (5.3.8a)
0 €00 % M FHLE) + (L)}

= (BL) ' Qs{(Blog L,) + (Ly&w)}- (5.3.8b, ¢)
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6 THE TRANSITION ZONE

For the transition zone, in which the diffusion and chemical-reaction
effects are of equal magnitude, the appropriate representations for the
spatial coordinate and flow variables are

& =¢& (6.1)
B(&) = ¢s+ 6;0; + 6:pi(&1), T(&) moi +om(&),
5(5) ~ "T:ET + ﬂ-lst(gl)a
with &, 0%, 7" = A = [(BL, )—‘(BlogL,)] -0
b1, 00,m = A = (BL, ) (6.2)

such that (\,/\f) = (Blog L,)"" — 0. The physical-space governing
equations for this transition zone are

7, €; ~ Hs¢;, with ¢} = %E, ie, ), e =j =0s; (6.3a, b)
dqb, de, dr,
i — 05 — == (1, —¢). 6.4a, b
dft B (¢t ) 4z, Os; dz, (7'1 51) ( a, D, C)

The solutions of (6.4), for ¢,, 7,6, — 0 as §,— 0, are

$u(&) ~ —¢;[1 —exp{—(&/B)}] + ¢7&
with ¢ = ¢y = (1 - ¢s)"/”, (6.52)
(&), e(&) = J & (6.5b, c)

As &, — (L,£,;) — —oo, these solutions yield

by = ds + Ao + Mo; exp{—(Lv&)/B}
~ ¢s + (BL) "' (1 — ¢5)"® exp{—(Lu&w)/ B}

for (Blog L,) exp{(Lv&w)/B} — 0, (6.62)
T(t)> E(1) = )‘l]t + )‘tjz (Lvtgvt)
= (BL,) "' Qs{(Blog L,) + (Lwéw)}- (6.6b, c)

A comparison of (6.6) and (5.3.8) indicates that the downstream
solutions of the upstream zone match to the upstream solutions of this
transition zone.
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At ét = Ov
b ~ s+ Aét = ds + [(BL,) "~ (Blog L,)] %—z, (6.7)
T €0 ~ Ny = [(BL,) ™' (Blog L,))Qs. (6.7, ¢)

As &, — (L,&,) — oo, the transition-zone solutions can be written as

d)(l) N ¢s + A7¢7 + )\t¢r(Lti§ti)

— g5+ (ﬁw‘% (Blog L) + (L)}, (6.80)
Ty €0) & A+ Adf (Libai)
= (BL)™' Qs{(Blog L,) + (L)} (6.8b, ¢)

A comparison of (6.8) and (4.1.5) indicates that the upstream solutions
of the downstream zone match to the downstream solutions of this
transition zone.
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