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A new concept of a pair of upper and lower solutions is introduced for a boundary
value problem of second order discrete system. A comparison result is given. An exis-
tence theorem for a solution is established in terms of upper and lower solutions. A
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ation is compared and analyzed. The numerical results are given.
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1. INTRODUCTION

In studying some problems arising in solid state physics, chemical
reaction and some other topics, we have to consider boundary value
problems of discrete systems. These problems are also natural conse-
quences of discretizations of boundary value problems of continuous
systems. Thus more and more researchers are paying attention to such
problems, e.g., see [1-10]. Let N>2 be a positive integer, V-1 =
{1,2,...,N—1} and I} =IF"'U{0,N}. Furthermore, let u(f) =
(u1(2), ..., un(2))" : IV — R” be a vector function of ¢ and the given
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function f: IV x R* — R”" with the components f;, be assumed to be
continuous in its arguments. For the function v(¢) : I)Y — R, we define

82v() = v(t—1) = 2v(t) +v(t+1), teIN,

Pyy(t) = ﬁlﬁ(v(t — 1)+ 10v(t) +v(t+ 1)), ter}d .

Let
A? = diag(6?,...,6%), Py =diag(Py,...,Py).

Then we consider the following boundary value problem of second
order discrete system:

—A%u(t) + PNf(%,u(t)) =0, t€I¥, 4(0)=a, u(N) =6,
(1.1)

where o, 3€R” are known vectors. The motivation to study the
problem (1.1) is due to the fact that it is the natural discrete analog of
the continuous boundary value problem:

—y"'®)+f(xy) =0, 0<x<1, y(0)=a, y(1) =B,

by the fourth order Numerov’s method (based on Numerov’s formula
62y; = (1/N)(1 + 6%y}, e.g., see [11,12]). It is well known that the
nature of the solution of a continuous problem is not identical with
the solution of its discrete analog (see [3,12]). It is of interest to study
the problem (1.1). Recently, the author in [13] proposed a monotone
iterative method for the case of a single equation. This method leads
not only to the existence and uniqueness of a solution but the process
of iterations gives also a computational algorithm for solutions. The
properties of systems are very different from those of a single equation.
This paper is devoted to extending the monotone iterative method for
a single equation to the system (1.1). We also remark that only low
regularity conditions are imposed on f'in this paper.

The outline of this paper is as follows. In Section 2, we introduce a
new concept of a pair of upper and lower solutions of (1.1), and give a
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comparison result. Then we study the existence of a solution in terms
of upper and lower solutions. In Section 3, we propose an iterative
scheme for solving (1.1). Only low regularity conditions on f are neces-
sary to assure the monotone convergence of the iteration. Especially,
we give two sufficient conditions ensuring the monotone convergence
of the iteration to the unique solution of (1.1) in some sector defined
by the upper and lower solutions. The convergence rate of the iteration
is compared and analyzed in Section 4. In the final section, we present
some numerical results which coincide with the theoretical analysis in
the previous sections and illustrate this method.

2. A COMPARISON RESULT AND EXISTENCE OF A SOLUTION

Without further mention, we assume that all the inequalities involving
vectors are componentwise. The ith component of a vector u € R” is
denoted by u;. For convenience, we define

S={u(®)| u(t) : Iy — R"}.

Let u(z), v(?) and w(?) be the vector functions in S. We say that w € [u, v]
ifu(t) <w(t)<w() forallz € I}

We now introduce a new concept of a pair of upper and lower solu-
tions of (1.1).

DEFINITION 2.1 Let P=(P;;) be an n x n nonnegative matrix. A pair
of vector functions u,u € S is called a pair of upper and lower solutions
of (1.1) with the nonnegative matrix P, if

() foralli=1,2,...,n,

Fu) ~(£a0) < 3 Pl ~a). tel,
oLt
2.1)

whenever  min(i(z), u(t)) < #(t) < u(r) < max(ia(¢), u(t)) and

ui () = (2);
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G) foralli=1,2,...,n,
82 (L
) u,(t)+PNf,(N,u(t))
—PN( > Pi,j(ﬁj(t)—léj(f))> >0, teli,
J=1,j#i

—8%u,(t) + Pufi( 0(0)) 22)

=Lt

+P N( Z Py (a(0) —zj(t))) <0, rer,
#(0) > a > u(0), #N)>p>u(N).

Remark 2.1 1If P;;=0, j#i which implies that f; is quasimonotone
nonincreasing with respect to  in [min(i, u), max(i, u)], i.e., for fixed
t € If, fi(t/N, u(t)) is monotone nonincreasing in u;(?) for all j# i, then
(2.2) is reduced to the simple form:

A2- o N-1
Au(t)+PNf(N,u(t)) >0, teli 7,

-8%u() + Puf( 5. u(0) <0, 1€}, (23)
u(0) > o > u(0), #(N) > 8 = u(N).

For the theoretical analysis, we first introduce some terminologies. An
nx n real matrix 4 is called a monotone matrix, if 4Z >0 implies
Z >0 for any vector Z €R” (see [14—16]). A necessary and sufficient
condition for the monotonicity of an » x n real matrix A is the exis-
tence of the inverse A~ > 0 (see [14—16]). An n x n real matrix 4 = (4;, 7
is called an M-matrix if 4;;<0 for all i#j and A7 >0 (see [16]). We

need the following known results.

LEMMA 2.1 (See Theorem 3, p. 298 of [15]) Let v be the identity
matrix. If a matrix T=v — S, $>0 and for certain matrix norm |- ||,
IIS|| <1, then T is a monotone matrix.

LEMMA 2.2 (See [17]) Let A be an M-matrix. Then there exists a
positive diagonal matrix E such that the matrix EAE™" is strictly
diagonally dominant.
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From now on, let v be the identity matrix and define the symmetric
tridiagonal matrices 4 = (4, ;) and B=(B;) as

Ai,i=2a Bil’=%, l=1,2,,N—1,
Ay =-1, B i1=3, i=23,...,N-1; (2.4)
Ai,H-]:_l’ Bii+]=ﬁ, i=152’~~-5N_2'

Let M be a given constant and set

M

— M>0
12N2’° =7
N(M) = (2.5)
- 5+°_°s2(”/N) M, M<O0.
24N?sin*(m/2N)

We have the following results (see [13]).

LEMMA 2.3 The matrix A+(M/N)B is an M-matrix provided
N(M) < 1.

LEMMA 2.4 Letu(t) : IV — R such that
—8%u(t) + MPyu(t) >0, te I, u(0)>0, u(N) >0,
where M is a given constant. If N (M) < 1, then u(t) > 0 for all t € I}Y.

Now, we give a comparison result for a pair of upper and lower
solutions of (1.1).

THEOREM 2.1 Let @, u be a pair of upper and lower solutions of the
problem (1.1) with the nonnegative matrix P=(P;;). In addition, there
exists amatrix Q =(Q; ;) such that for alli=1,2,...,n,

> 00wt =) <(jp-4) ~A( . 00)
<P ~0), e, 26)
=1

whenever min(u(?),#(t)) < (r) < u(t) < max(u(t),u(t)). Set o=
IIlaX,'JPiJ, 02=min,-JQ,-,j, o3 ==max,~P,-,,- and a4=min,-P,~,,v. If

max(N (203), N (204 + nop — 2noy)) < 1,

then i(t) > u(?) for all t € IYY.
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Proof Let w(t) =u(t) —u(t). We have from (2.2) that for all
i=12,...,n,

—52Wi(t)+PN(fi(]%-,a(t)> - ( 1 ’)) 2 Z Py jw;(t )—-

J=1j#

te M, w(0) >0, wN)>0.

Let v(z) = max(u(z), u(¢)). By (2.6),
(1) ~ (%)) =2 32 Pws(o)
J=1,j#i

<ZQU(uI(t _vj(t +zn:Pt] v_] t)——uj(t)—Z Z P,jwj

J=1j#

< Z(Pi,j = Qi) (1) — (1)) — Z Py jwj(t) + 2P;wi(?).
=1 =1

By introducing w'(f)=max(0,w(f)) and w(f)=w()—w' (1), we
further have

fx( ,“(t)) ( )‘2 Z P; jwi(t)

J=1j#
<ZQU t_] )+2Ptth(t)

02—201)Zw )+ 2P;iwi(1).

So we obtain

—(52W,'(t) -+ 2P,~,,~PNW,~(I) > (20’1 - 0’2)PN (zn: Wj_ (t)) .
=
te 1M1, w(0) >0, w(N)>0. (2.7)
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Let W;,G;, W7, W~ € RV"! be defined by

Wi = (wi(1),wi(2), ..., wi(N—1))T,
Gi = (wi(0),0,...,0,wi(N))T,

Wi =Wy (1),w; (2),...,w (N=1))T, W~ => Ww.
Then (2.7) may be written as

(A +%B> Wi > 2"‘N_2 22w~ + (1 - f—) Gi,

w(0) >0, w(N) > 0.

Since N'(203) < 1, we have (1 — P;;/6N?)G;> 0 and from Lemma 2.3,
2(74 -1 2P,',,' -1
A+ Nz > |4+ WB > 0.
These facts lead to

20’1 — 02 2Pi,,° -1 _ 20’] — 02 20’4 -1 —
Wiz =0 (A—i—NzB) BW™ 2 —m5—|4+578B) BW

or

-1
w- > (—Zi"—N—z"L)"- (A +%§-}B) BW-. (2.8)

Since N(204 + nop — 2no1) < 1, we have from Lemma 2.3 that the
matrix

1
A+ 2 (204 + noy — 2n01)B

is an M-matrix. By Lemma 2.2, there exists a positive diagonal matrix
E such that

1 -
E(A +ﬁ(204 + noy — 2m71)B)E !
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is strictly diagonally dominant. Then fore=(1,1,...,1)T we have

2
E(A +EB)E- 2ﬂ’¥’21~:1315 le

N2 N2

and so

2noy — no, 204 -1 -1

_NZ_E(A+FB) BE oo<1. (2.9)
From (2.8),

_ (201 —o2)n 204 .\ o

EW ZTE A+7V—2—B BE'EW

or

2no| — noy 204 -1 -1 -
<u——N2—E<A+N2 ) BE~' |EW~ >0.

By Lemma 2.1 and (2.9), the matrix

20‘4
N2

2 —
V__'zsf.;_ﬁzﬂf;(ﬁ

-1

B> BE™!

is monotone and so EW~ > 0. This implies W~ >0 or #(t) > u(t) for
all t € I}¥. This completes the proof.

There is no definitive result for the existence of a pair of upper and
lower solutions. But in practical problems, such pair can be easily
constructed. We now turn to the existence of a solution of (1.1).

THEOREM 2.2 Let ii,u be a pair of upper and lower solutions of (1.1)
with the nonnegative matrix P=(P;;) such that u(t) > u(t) for all
teI). In addition, there exist constants M; such that for all
i=1,2,...,n,

Fi((55o40) =i 5> 50) < Miu() ~ (), e, (210)
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whenever  u(t) <u(t) <u(t) <u(t) and w(O)=u;(t), j#i. If
max; N'(M;) < 1, then the problem (1.1) has at least one solution
u* € [u, ).

Proof We consider the following uncoupled problem:

—62Vi(t) -+ M;PNv;(t) = MiPNui(t) - PNfi(%’ u(t))’
teI™, v0)=a, v(N) =8, i=1,2,...,n. (2.11)

Since max; N'(M;) < 1, Lemma 2.4 ensures that (2.11) has the unique
solution v(£) = (v1(£), ..., v«(?))". Now, we define the map 7 : [u,ut] —
Sas

Tu(t) =v(t), Vuc|ua, tel. (2.12)

We first show v € [u, #]. Let w(z) = v(¢) — u(¢). It follows from (2.11),
(2.2),(2.1) and (2.10) that forall i=1,2,...,n,

—62Wi(t) -+ MiPNWi(t)

ZPN(Miw,-(z)—u,-a)H S Puy(@(e) - u(0)

J=Lj#

_ﬁ(%,u(t)) +f,~(%,z(t)))

> PN( i P,‘,j(l_lj(t) - yj(t))> >0.

j=1ij?éi

By Lemma 2.4, we have w;(¢f) >0 foralli=1,2,...,nand so v(¢) > u(t)
for all r € I)V. Similarly v(7) < a(z) for all z € I}. In view of the con-
tinuity of £, it is clear that 7 is a bounded continuous map from [, #]
into itself. Since [y, #] is a finite dimensional space, 7 is a completely
continuous map. Thus by Schauder’s fixed point theorem, 7 has at
least one fixed point #* € [u, ). Obviously, this is a solution of (1.1)
in [u, @).
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3. A MONOTONE ITERATIVE SCHEME

So far, we have shown that if (1.1) possesses a pair of upper and lower
solutions #(¢) and u(f) such that #(¢) > u(r) for all ¢ € 1)V, then it has at
least one solution. Moreover the upper and lower solutions may serve
as the upper bound and the lower bound for the solution. In this sec-
tion, we develop a monotone iterative scheme which yields monotone
sequences improving the bounds. Besides, under certain additional con-
ditions, the sequences of the upper and the lower bounds converge to
the unique solution in some sector defined by the upper and lower solu-
tions. For this, only low regularity conditions are imposed on f.

Let #,u be a pair of upper and lower solutions of (1.1) with the
nonnegative matrix P=(P;;. We consider the following iterative
scheme:

i) =a(r), VW) =u@), el
(m) 5" (m) (m) - (m—1) (m—1)
_(m m _(m— —
gim (t) = ZPi,j(uj (1) —U; (t)) -+ Z Pi,j(uj (t) _Ejm (t))’
Jj=1 j=it1
~82a™ (1) + M} Pyi{" (1)

- r _
= Py (M7 (0) = fi( 5o A7 0 7).

"V, 7@D) (),
—6%™ (1) + M} Py u™ (1)

Y (m— t
= Py (M4 ) = fi( 55170, - ),

£, ) - 7)),
i=1,2,---9n3 teIlN_]’
@™(0) =u™(0) =0, #™(N)=u"(N)=8,
(3.1)

where M are some constants specified later. By Lemma 2.4, the above
iteration (3.1) is well defined provided max; N (M}) < 1.

Remark 3.1 1f n=1, the iteration (3.1) is reduced to that established
in [13].
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THEOREM 3.1 Let #,u be a pair of upper and lower solutions of (1.1)
with the nonnegative matrix P = (P; ;) such that u(t) > u(t) forall t € I{V.
In addition, there exist constants M; such that for alli=1,2, ... ,n,

F(5ou0) ~£(55-50) < Miw(®) — (o), el ()

whenever  u(t) < d(t) <u(t) <a(t) and wO=ut), j#i. If
max; N'(M;) < 1, then the sequences {#™ (£)} and {u™(¢)} defined by

(3.1) with M} = M; for all i=1,2,...,n, converge to the limits ui*(t)
and u* (1), respectively. Moreover,

u(f) < ul (1) <u™ V(1) <w'(r) <@ (1)
<a™D @) <a™ () <a(e), terl. (3.3)

Besides, for any solution u* of (1.1) in [u, ], we have u* € [u*, u#*].
Proof We use induction to assert that forallm=0,1,2,...,
u(t) <u™(0) <u™D (@) <@ () <a™(r) <a(r), tel). (34)

Firstly, we have from (3.1), (2.2), (2.1) and (3.2) that
— 82" (1) — (1)) + My Py (i (1) — (1))

~0 - (fl (200) + jai#ip"»f(ﬂ,@)(t) - u.ﬁ”’(t))) =
~82@ (1) — " (1)) + M1 P(@0 (1) — & (1))
= —62" () + Py (ﬁ (% a(O)(t)) n i P (@0 (1) - yﬁ‘”(r))) >0,
J=Lj#i

—6%(@ (1) — " () + M Py (1) — " (1))
= P (M@ () - ) +£i (5. 400)

~fi(5700) +2() 2 0.
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B(y Lemma 2.4, the above estimates imply that ug )(t) < u(l)(t) <
)(t) < a(o)(t) for all ¢ € I)Y. For convenience, let

Fi(5u) =i o4 - ) (3.5)

J=1,j#i

Then we know from (2.1) that f, is quasimonotone nonincreasing in
[u, ). By (3.1) and (2.2),

62(u(1) - " (0) + MiPy (" () - (1)
= 520 (0) = Pu(fi( 5" (1) o (0,
@), )+ )
2 Py (fi( -490) — (1w @12 (0,60, 40 (9))

i—1
+ Py (Z Pi,j(l_lj(-o)(l) - ﬁ](-l) (t))) s
j=1
=628 - () + Mipw (8 () - (1)
=82 (1) + Pu(fi( Jt\,,ﬁﬁ”( )-8 (1),
(@), 500)) - &)

> Py (i (55,800, 8% 0,570, .. a0 (0)) = Fi( 5.5 (0))
co(Sru(o-40)).
=1
—62(12(”(:) - g(.l)(t)) + M;PN(a(,.‘)(t) - g(,.‘)(t))
= 2y (Mi(#) () - P (0)
(i O, 0,800, 7 0))
+ Py 0, s (0,60 @ D) +800))-

By the quasimonotonicity of f,-, (3.2) and Lemma 2.4, an induction
argument for i shows that

uO(r) <uV(1) <aV(r) <aO@), rely.
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Assume that (3.4) holds for some m > 0. We have from (3.1) that for
alli=1,2,...,n,
=822 (1) = "0 (1) + MiP @ (1) - oD (1))
= Pr(Mi(" " (1) — " (1))

4

1
t
+ Pu( o™ O T (0,870, (1))

= Pufi( i@ a0, a0 (1))

+ PN( 3Py (1) - &™)

=

+ i Py (@™ (1) — a}'"*”(r))),

j=i+l
—62(@"™ (1) — a2 () + MiPyE" (1) — a2 (1)
= Py(M,(@™ (1) — 7"V (1))

+ PNf( —(m+2 (t) ) ,l_lfm1+2 (t) —(m+1)(t)’_“,ﬁ£'m+l)(t))

r _ _ _
— P (WO, 0,7, )

+PN(ZPU(E(M+2 (t) - ES'MH)(I))

+ i Py (™0 (1) — yﬁ-’")(t»),

J=i+1
—82@™ (1) — "D () + MiPy(a™ (1) — (1))
= Py(M(@a{™ (1) — " (1))

+ P (o2 0. a0, )0 0)
t

—Pw(ﬁ(—,ﬁgm”)(t), . 9—5"?—2)([) —(m+1)() ) ’aslmﬂ)(t))
(m+2)(t))
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Again by the quasimonotonicity of f;, (3.2) and Lemma 2.4, an induc-
tion argument for i show that

u(t) < u™ V() <u™D (1) < @™ (1) < @™V (1) < a), teld,

and so (3.4) holds for m + 1. The induction for (3.4) is completed.

In view of (3.4), there exist limits #*(¢) and »*(¢) such that

lim @™ (1) = a*(2), hm u™ (1) = w(2)
m—0o0 m—
and (3.3) holds.
Now, let #*(#) be any possible solution of (1.1) in [, &#]. Suppose that
u* € [u™,a™)] for some m>0. By the similar argument as that for
(3.4), we get

d™D () <w(t) <a™ (), terl.

This proves
u™ () <uwr() <a™(), tell, m=012,....

Letting m — oo, we see that »* € [u*, #*]. This completes the proof.
g p p

If P;;=0, j# i which implies that f; is quasimonotone nonincreasing
in [u,#], then limits »*(¢) and #*(¢) in Theorem 3.1 are the maximal
and minimal solutions of (1.1) in [, @], respectively. Here, the maximal
and minimal property of the solutions #*(¢) and u»*(¢) is in the sense
that if »*(¢) is a solution of (1.1) in [, #], then u* € [u*,#*]. In the
general case, if the limits »*(¢) and #*(¢) coincide, then their common
value is the unique solution of (1.1) in [, @].

THEOREM 3.2 Assume that the hypothesis in Theorem 3.1 hold, and let
w*(t) and u*(t) be the limits obtained from the corresponding monotone
sequences. Besides, there exists a matrix Q=(Q;;) such that for all
i=1,2,...,n,

fi((5u@) ~£i( 500 2 ZQ,,, w() —i0), 1€, (3.6)
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whenever u(t) < ii(f) <u(t) < u(f). Set ~yy=max;.;P;; and ~,=
min;; Qi If

max(N (M;), N — 2(n — 1)) < 1

then for all t € IV, w*(¢) = w* (1) and is the unique solution of (1.1) in
[E’ ﬁ]'

Proof Let w*(f) = u*(t) — u*(¢). Obviously, w*(1)>0 for all 1€ I}
and

—8%wi(t)= PN( ,( U (t)) ( (t))) +2PN( i P,~),~w}'(t)>

J=Lj#i
< PN(ZQ,,, (1) — @ (z))) +2PN( }: Py wi(t )
J=1,j#
"72PN(ZW t)) +271PN( Z w;(t)>.
J=1 J=1,j#i

Summing the above result over all i, we have

_ 62 (zn: w:‘(t)) —ny, Py (Zw ) +2(n-1 'y]PN(Zw (t))
i=1

Jj=1

or

—52 (g w}‘(t)> + (my2 —2(n — 1)71) Py (,2:; w;(t)) <0.

By the boundary conditions and Lemma 2.4, we get > .7, wi(t) <0
which leads to w*(£)=0 for all ¢ € I)¥. This proves u*(#) = ut*(¢) for all
terd.

THEOREM 3.3 Assume that the hypothesis in Theorem 3.2 hold. If
max; N(M;) <1 and 2(n— 1)y —ny; <1 where v; = min(0,7,),
then for all t € IY, w*(t) = w*(f) and is the unique solution of (1.1)
in [u,u.
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Proof Letw*(t) = u*(¢) — u*(¢). Then w*(0) =w*(N)=0and w*(¥) >0
for all # € I-1. Moreover by the proof of Theorem 3.2,

—§2 *(t) < ——’szN(ZW t)> +2’71PN( i w;(t)),

j=1 J=1, i
i=1,2,...,n (3.7

Let
|W*|1=maxZ o) —wie—=1))%, [P = max Z wi2(t).
tel¥ rer!
We have
2
Iw*|* =max D w()=max Y | > (wi(®)-wi(i-1)
teIl-! teI¥ \iel
<maxz N> (wi(@) —wi(i-1)?
terl tery
= Nw*3.

Now, multiplying the inequality (3.7) by w;(¢) and summing the result
over all z, we obtain

- D Wi 0)wi ()

teI}!

-5 Z(IZNZ E (Wi (2 = 1) + 10w} (£) + wj (¢ + 1))w; (t))

teIN-!

+2m zn: (12N7- Z (w (t— 1)+10w (t)+w*(t+ ))w;‘(t))

ter!

< ﬁ‘—z ( 3 w0 + w*%t)))

teN!

o> ( > o t>+w*2<t>>>
Jj=1j# \teI¥!
< 2yi(n—1) —

n’Y‘ * - *
<R W < @ - 1) — m)| W
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On the other hand,

= 3 w0 = 3 0w (0) — wi(r - D)2

tel]M! tery

Finally, we get

Y Wi (D) —wit=1)) < @m(n—1) —nmy)|WR;

tell
or
W < @n(n—1) =)Wy
from which, and the boundary conditions, the conclusion follows.

Remark 3.2 In the determination of the monotone sequence from the
iteration (3.1) it is only needed to solve an uncoupled linear two-point
discrete boundary value problem in each iteration. We may use any
one method established in [9], which is efficient in constructing the
solutions of such problems.

Remark 3.3 The crucial point for ensuring the monotone conver-
gence of the iteration (3.1) is to find a pair of vector functions #,u € S
such that #(z) > u(¢) forall 7 € I}V as well as (2.1) and (2.2) hold. In the
final section, we give an example where such a pair of #(z) and u(¢) can
be easily constructed.

4. THE CONVERGENCE RATE OF THE ITERATION

In this section, we compare and analyze the convergence rate of the
iteration (3.1). We begin with the following comparison result.

THEOREM 4.1 Let u, u be a pair of upper and lower solutions of the
problem (1.1) with the nonnegative matrix P=(P;;) such that
u(t) > u(t) for all t € 1. In addition, there exist constants M such that
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foralli=1,2,...,n,
t t . ~
fi(ou0) ~Ai(5-80) < Miw() - (), e g, (@)

whenever u(t) < u(t) <u(t) <u(t) and w;(t)=ul?), j#i. Set M=
max; M;. Let {#"(¢)} and {u(t)} denote the sequences from the
iteration (3.1) with M} = M for all i=1,2,...,n. Also, let {#'™ ()}
and {u'™(t)} denote the sequences from the iteration (3.1) with
M} =M; for all i=1,2,...,n. If max; N (M;) <1, then all above
sequences have the monotone convergence described in Theorem 3.1 and
™) > a™ (1), ¥ () <u'™(), teld, m=0,1,2,....
(4.2)

Proof We only prove (4.2). From Theorem 3.1, we have that for all
telandm=0,1,2,...,

() < 1(1) < w"D (1) < D (1) < ) (r) < (),
u(t) < u'™(1) <uw'™V (1) < @D () < @™ (1) < ae).

Clearly (4.2) is true from m=0. Suppose that (4.2) holds for some

m>0. Let W('”H)(t) — ﬁ(m-H)(t) _ 12’('"+1)(t) and _w(m+1)(t) — 2/(m+1)(t)

—u™t1(¢). Then we have w1 (¢) = w1 (¢) = 0 for t=0,N and
forallze IN'andi=1,2,...,n,
—82w™(¢) + MPy -€m+‘>(z)
= Py (M@ () ~ 5™ ()

S-SR ORI O AL ORI ALIO))

= Pfi( o0, @, @), L)

i—1
+PN(ZP,~J(.¢;""+”(:) — " (1)

i=1

+ E Pi,j(ﬂ}(m)(t) - l‘.ﬁ'm)(t)))
j=it+1

+ (M — M) Py (™ () — &V (2)),
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= P (Ml (1) 7 (1)

1

~/t
+ /(5@ 0. ), 0 0))

~(t
= Pufi( o™ O, V0. (s ()

i—1
+ Py (Z Py (1) - 2" V(0)

J=1

+ Zn: Pi,j(ﬁ}m)(t) — ftj’(m)(t))>

j=i+1

+ (M; — M)Py(” (1) — " (1),

where as before, f; is defined by (3.5). By the quasimonotonicity of f;
and (4.1), we use induction for i and Lemma 2.4 to get

l_l(m+])(t) > ﬁ,(m+])(t), y(m+l)(t) < El(m+1)(t)’ te IéV'

This shows that (4.2) holds for m+1. The induction for (4.2) is
completed.

Next, we estimate the convergence rate of the iteration (3.1).

THEOREM 4.2 Assume that all conditions of Theorems 3.1 and 3.2
hold. Let {a™)(¢)} and {u")(¢)} be the sequences given in Theorem 3.1,
and it*(t) and u™) () be their limits respectively. Set M = max; M;. Then
there exists a positive diagonal matrix E =diag(E,, ..., Ex_1) such that
forallt € I andm=0,1,2,...,

n

S @) - a; (0] + 1w (1) — wi()])

i=1

max; E; n _(0) _ ©
<— " ) — ut () — ut(t
- m1n,-E,~p (,Ienl?v)—(n — (I (2) — & (O] + lu;” (1) — w3 (1)])

+116}£&,’s;<|a5°’(z> =g (0] + 14 () - y’;(m))
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where

<1l

e}

M+ 2(n — 1)’)’1 —ny -1 -1
= } N El A +N2B BE

Proof By the monotone convergence of the sequences, the compar-
ison result in Theorem 4.1 and the uniqueness of the solutions, we only
need to consider the case of M} = M for all i=1,2,...,n Let
W (£) = @™ (¢) — @*(¢) and w™ (2) = w* () — u(¢). Then W (£) > 0
and m("‘)(t) >0 for all 7€ I}Y and m=0,1,2,... Moreover for all
i=1,2,...,n,t€ INandm>1,

— 82w (1) + MPyw" (1)
= Py (3" (1) f(i @m0, ..., 4" ),

V0,7 0)) + Pafi( )
+ Py (}: () + 3 P t))

J=i+1
< PN((M—%)W('" D@0+ (n—m (z #(0)+ 3 t)))
J=1 J=itl
Py (}f W0+ 3 &S’"'l)(t))
Jj=1 J=i+1

n
< PN((M— )@+ —m) Y w0
J=1,j#i
n
+m Y wﬁ'”'l)(t)>,

j=17j7é1

where f", is defined by (3.5). Similarly forall i=1,2,...,n,t € I "' and
m>1,

— 82w (1) + MPyw{ (1)

<Py <(M WD (@) + (11— 12)

ITRICEEDS w}"‘*"(t)).

=L =1
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Then we get

—82(5™ (1) + i (1) + MPx (5™ (1) + w'™ (1))
< (M = )Py (5" V() + wl" V(1))

+ 2y - ’72)PN( 2”: (Wj('m—])(t) +E§~m_1)(t))> .

J=1Lj#

Summing the above result over all i leads to

i=1

—8? (‘: (W™ (1) + m‘{”’(r))) + MPy (‘: (W™ (1) + m(,-'”)(z)))
i=1

< (M+2n—1)m ~n72>PN(§j( ) + (z))) (43)
i=1
Let W™, G™ c RV~ be defined by

T
(m)_(z (w(m (1) +W(m)(1) Z (w(’")(N 1)+ w(m)(N 1)))

i=1

T
G<m>=(§j( " (0) +w!™(0)),0,....,0, Z oy (N +w§-'"’(N))) :

i=1

Then (4.3) may be written as

M M+2(n—1)m —ny, _ 1 e
(m) < (m—1) (m—1)
(A +—NZB)W < g BW™ D +5G :

Since (4 + (M/Nz)B)_lz 0 due to max; N'(M;) <1 and LGV <
£ BG™1, we have

M+42(n— 1)y —ny M\
o< wm < 3 A+5B

X B<W('”‘1) +1i0G('”-1)>. (4.4)

Since N (ny, —2(n—1)1) < 1, we have from Lemma 2.3 that the
matrix 4 + (1/N?)(ny, —2(n — 1)y;)B is an M-matrix. By Lemma 2.2,
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there exists a positive diagonal matrix F=diag(Ey,...,En_1) such
that the matrix

1 _
E(A +m(n72 —2(n— 1)71>E !

is strictly diagonally dominant. Then we have

M+2n— 1)y —ny,

EBE le < E(A +—M—B)E‘1e

N2 N2
where e=(1,1,...,1)T, and so
M+2n— 1)y —nm M N\
p= ‘ 72 E A+ﬁB BE <1
o

Further by (4.4),
IEW ™o, < plE(W D + 56D
Since G =0 for all m > 1, we have that for all m > 1,
IEW ™| < p"EWD + 5G|

Consequently forall t € I and m> 1,

n

S #(0) + wd (1)

i=1

< maxi Ky m( max Z(W“’)(z )+ w0 6))

min; E; teri!
1 _(0) (0)
+1—o}2&1’62,~=1 )+ )

and the conclusion follows.

Theorem 4.2 shows that the iteration (3.1) has geometric conver-
gence rate.
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5. NUMERICAL RESULTS

This section is devoted to numerical results. We consider the following
problem:

-62u1(t)+PNf1( ,u(z))=o, te IV,

—8%uy(2) +P1vf2( ,u(t)) =0, terl, (5.1)
u1(t) =up(t) =0, t=0,N,

2|~ =2~

where

3y t0) = om0~ s o0 - a(5)
(3 0) = o0 () s o 1)

and the functions p and ¢ are assumed to be continuous in their argu-
ments. It is clear that the problem (5.1) is of form (1.1). To use the
iteration (3.1) we have to find the vector functions #(¢) and u(¢) such
that %(z) > u(z) forall ¢ € I)Y and for i=1, 2,

fi(—;—,,u(t)) —f,-(%,ﬂ(t)) < i Pij(ui(r) — (), tely, (5.2)

=L

whenever u(¢) < ii(t) < u(t) < u(t) and u;(¢) = #;(f), and

2
—82a(t) + PNﬁ("]i'pﬁ(t)) - PN( Z Py j(a(t) - E;(’))) >0

J=1,j#i
ter,
2
~8%u,(t) + Pufi(5-u(t)) - P (2 P (1) ,(t»)
J=1j#i
teId !,

4(0) > 0 > u(0), a(N) > 0> u(N),
(5.3)
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where P=(P;;) is a nonnegative matrix. We take
Pip=Py1=1

and set #;(t) = —u;(t) = (¢/N)(1 —t/N), i=1,2. By an elementary
calculation, we find that the pair of # and u is a solution of the above
inequalities (5.2) and (5.3). Moreover fori=1, 2,

#(5:10) ~A(5-80) w0 - a0, 1€ 8,

whenever u(z) < a(t) < u(t) < a(t) and w;(r) =u,(f), j#i. Since all the
assumptions of Theorem 3.1 are satisfied, we have a monotone itera-
tive procedure of the form (3.1). In addition,

f"(%’“(’)) _ﬁ(%’ﬁ(‘)) 2 —i(uf‘(t) —w(0), tell, i=1,2,

J=1

whenever u(#) < @(f) < u(r) < @(t). Thus Theorem 3.2 may be applied.

In practical computations, we specify this example with p(¢/N) =
q(t/N)=1, t€ IN! and N=20. We take M} =1, i=1,2 in the
iteration (3.1) and denote by {#"(£)} and {« ()} the mth value of
the iteration. Numerical results show that {@#"(¢)} is a monotone non-
increasing sequence (see Table I), while {«(¢)} is a monotone non-

decreasing sequence (see Table IT). The monotonicity in Tables I and 11

TABLE 1
m @) ™ (4) ™ (6) #"(2) " (4) " (6)
1 0.029634 0.056425 0.078033 0.019925 0.038191 0.053290
3 0.008687 0.016824 0.023859 0.008123 0.015746 0.022367
5 0.007696 0.014930 0.021235 0.007672 0.014885 0.021173
9 0.007654 0.014849 0.021123 0.007654 0.014849 0.021123
TABLE II
m ") u™ (4) u™ (6) u"(2) £V ue)
1 —-0.017180 —0.032378 —0.043975 —0.007151 —0.013410 —0.018018
3 0.006574 0.012782 0.018253 0.007141 0.013869 0.019763
5 0.007611 0.014767 0.021008 0.007634 0.014811 0.021071
9 0.007653 0.014849 0.021122 0.007654 0.014849 0.021122
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agrees with the one described by Theorem 3.1. We also find that the
above two sequences tend to same limit and so it is the unique solution
of (5.1) in the sector [u, #]. This coincides with the uniqueness result in
Theorem 3.2, because the uniqueness condition of the solution is
satisfied in this example.
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