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A risk-sensitive optimal control problem is considered for a hybrid system that consists of
continuous time diffusion process that depends on a discrete valued mode variable that is
modeled as a Markov chain. Optimality conditions are presented and conditions for the
existence of optimal controls are derived. It is shown that the optimal risk-sensitive control
problem is equivalent to the upper value of an associated stochastic differential game, and
insight into the contributions of the noise input and mode variable to the risk sensitivity of
the cost functional is given. Furthermore, it is shown that due to the mode variable risk
sensitivity, the equivalence relationship that has been observed between risk-sensitive and
H,, control in the nonhybrid case does not hold for stochastic hybrid systems.
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1. INTRODUCTION

Consider the stochastic hybrid system
dx, = b(x¢, e, u) dt + o(x4, 1¢) dwy (1)

where x, € R” is the state, u,€ R™ is the control and w;, is a standard
n-dimensional Brownian motion. The variable r, is called the mode of
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the system and is modeled as finite state continuous time Markov
chain taking values in the state space S. Systems of this form arise in
various applications and system formulations, such as power systems
[1], target tracking [2] and fault-tolerant control system [3,2].

The most common approach in the design of control systems for
stochastic hybrid systems is to use optimal control methods. In [4] a
theory for linear hybrid systems with a Markovian jump parameter
(mode variable) is developed and it is shown that the optimal state
feedback control law for linear hybrid system with a quadratic cost
functional is given by a coupled system of Riccati equations. In [2] the
theory for a linear hybrid systems with a quadratic cost functional is
developed further and the theory for such systems is quite complete. In
[5,6] a detailed treatment of nonlinear stochastic hybrid systems is given.
In particular, in [5] conditions for the existence and uniqueness of
solutions of such systems are formulated, and in [6] a general theory for
the ergodic properties of solutions is developed. Optimal discounted
control of a stochastic hybrid system arising in manufacturing systems is
considered in [5], and in [6] optimal ergodic (pathwise average) control
for a general class of nonlinear stochastic hybrid systems is considered.

In recent years it has been shown that for linear systems there is a close
relation between robust control (i.e. H,, control), linear differential
games and risk-sensitive control. In particular, it was shown in [7] that
for linear discrete systems the maximum entropy formulation of the
problem and risk-sensitive control are equivalent problems. A relation-
ship between risk-sensitive control of nonlinear systems and stochastic
differential games is developed in [8] and the relationship between
nonlinear risk-sensitive control and nonlinear H,, control is considered
in [9]. In the paper [10] the theory of H, control is extended to hybrid
linear systems with Markovian jump parameters and it is shown that the
optimal state feedback control law is given by a system of coupled Riccati
equations which are of the same structural type as the Riccati equation
that arises in H,, control and linear quadratic differential games.

In this paper we study risk-sensitive control of nonlinear stochastic
hybrid systems. In particular, the objective of the control is to
minimize the infinite-horizon risk-sensitive cost functional

J(u) = limsup %log E[exp{/oTc(x,, e ty) dt}] 2)

T—o00
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over an appropriate set % of control policies. Here ¢:R” x S x R” = R
is the running cost.

A related problem is studied in [11]. In particular, they consider a
risk sensitive control formulation of a manufacturing system whose
supply-demand dynamics are described by a first order linear system.
The supply rate (control input) is constrained by an upper bound
which is described by a continuous time Markov chain. This problem
is similar to the one we consider in that the system is hybrid. However,
the continuous dynamics of the system they consider is linear and
deterministic, and the stochastic aspect of the problem comes through
the stochastic upper bound of the supply rate.

It is shown in this paper that the relationship between H, control,
linear differential games and risk-sensitive control does not hold any
more. The reason is that, unlike in the H,, control formulation of
hybrid systems in [10], the risk-sensitive cost functional measures the
risk sensitivity of the system to transitions caused by the random jump
parameter (mode variable) as well as the noise input. The risk sensi-
tivity of the cost functional to transitions induced by the mode may be
of a great value in the design of systems where it is desired to make the
system performance as insensitive to the value of the mode variable as
possible.

The paper is organized as follows. In Section 2 we formulate the
problem and state some basic results about the existence of solutions
and admissible controls. In Section 3 we state sufficient conditions for
optimality for the infinite horizon risk-sensitive control problem. In
Section 4 we analyze the risk-sensitive cost functional and show that it
can be represented as the optimal value of an auxiliary optimal control
problem. Finally, in Section 5 we formulate conditions for the exis-
tence of optimal controls for the risk-sensitive optimal control
problem. Conclusions and future research directions are summarized
in Section 6.

2. PROBLEM FORMULATION

We begin by stating the mathematical assumptions under which we are
working. The process w;, in (1) is a standard n-dimensional Brownian
Motion on a probability space (2,7, P). The variable r,, the mode of
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the system, is modeled as a continuous time Markov chain on (2, 7, P)
taking values in the finite state space S={1,..., N}. The dynamics of
r, are described by

my(x, u)6t + o(61), i#]J,
1+ 71',',‘(36, u)5t + 0(6[), i=j,

3)

P(rt+6t=j|rt=isxt=xsut:u)={

where the transition rates 7y satisfy m;; (x, u) > 0 and ;= =) js; 7y

Let II*(x) be the N x N matrix with elements 7;(x,u), 1 <i, j<N
and let U be a compact metric space. We make the following assump-
tions about the controlled system (1) and (3).

Assumption (A0):

(@) b:R"xSx U—R", 0:R"xS—R” and MI*:R"x U—R"V
are continuous and globally Lipschitz in x, uniformly in u.
(ii) There exists a constant oo>0 such that o(x, w)ol(x,u) > ool
V(x,r)eR" x S.
(iii) The matrix II* is irreducible for all (x,u) e R" x U, i.e., for all
(x,u)eR"x U there exists a unique v(x,u)€R" such that
vi(x,u)>0,i€ S, |v(x,u)| =1 and v"(x, W)II*x)=0.

We will concentrate on control policies that are Markov policies,
i.e., uy =ii(x;,r;) where #:R" x S — U is a measurable map. We
denote the set of all Markov policies by %. The class of nonrandomized
Markov policies is denoted by %4 (note that in a nonrandomized
policy the map i is a deterministic function).

For a Markov policy u € % the hybrid process (x,,r;) is Markov
process. Furthermore, the following result from [5] establishes that
under the above conditions the process defined by (1) and (3) is well
defined.

THEOREM 1 For any u € % there exists an almost surely unigue solu-
tion of (1) and (3) which is a strong Feller process on R" x S.

Let P*(t,(x,i),T x {j}) be the transition function for the Markov
Process (x,,r,) and let P and EY be the probability distribution and
expectation operator corresponding to the initial condition (xo, o) =
(x, i) and control u € %. Let A(R" x S) denote the set of all probability
measures on R”x S. A measure p € P(R" x §) is said to be an
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invariant measure of the process (x;, r;) if for any Borel set ' C R”"
> [ P T x D@ = O 7). @
ieS

A control policy u € % (u € %4) for which the process (x;,7,;) has a
unique invariant measure is said to be stabilizing and the class of all
such policies will be denoted by u € %,(%4s). The class %4, is assumed
to be nonempty.

Remark Sufficient conditions for the existence of an invariant can be
found in the literature [6]. In Theorem 2 below conditions of this sort
are formulated.

Let ¢c:R"x S x U— R be a nonnegative function which is contin-
uous in the first and third arguments for each i € S and which has the
property that the set {x: sup;escv (X, i, 4) < M} is compact for each
M > 0. The objective of the control is to minimize the infinite horizon
risk-sensitive cost functional

J(u) = lim sup— logE;i[exp{ /0 Tc(x,,r,,u,)dt}] (5)

T—00

over all control policies u € %gs.
For a control policy u € %4 the Markov process (x,,r,) has infini-
tesimal generator

(A)(x,8) = (LS ) (%, ) + (IT) (x, 6), (6)

where L is given by

(Lif)(x,0) = Zbk X, I, u) (x i)

Y oo g () ()

k=1

for any fe CAR" x §)={f:R" x S—R| f(x,i) € C(R"), i€ S} and

(), 0) = Y (e, u) f(x.)- (8)

JjeS
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In the following theorem we give a sufficient condition for the exis-
tence of a stabilizing control and derive an upper bound on the cost
functional J(u). Define n(p) =inf .5 ,inf, ; c(x, i, u).

THEOREM 2 Let u € %q and assume there exists a strictly positive
e C*(R" x S) and positive constants \, Po such that

(@) n(p)> A for all p> po.
(iii) ¥(x,i) and (Ov/0x)(x,i) have polynomial growth in x and
|6y/0x)* > o5
(iv) For all (x,i) eR" x S, (A“p)(x, i) + c(x, )P (x, i) < Mp(x, i).
Then u € %45 and J(u) < \.

Proof We begin by showing that u € %4s. First note that for
|x| > p> po we have € =inf| | ;s ¥(X, )(n(p) — A) >0 and

(A4“)(x,7) < (A — e, i))v(x, i) < —€. (9)
Therefore, by (9), (ii) and (iii) all the conditions of Theorem 4.4 in [6]

are satisfied and thus u € %4. We next show that J(u) < ). Define a
functional

(KA (e i) = EY, [f ) e, (10)

where f:R” x S — R is a continuous function in x for each i€ S. Then
it follows from the Markov property that K* is semigroup, i.e.
K! f=K*K!f. Note that for f€ C((R"x S) the generator of the
semigroup K coincides with 4+ ¢ where 4" is given by (6). It follows
from [12, p. 195] that for any v €R,

t
e K=+ / e YK} (AY + ¢ —y)pds. (11)
0
Using the inequality in condition (iv) in (11) gives

K<Y+ (=) [ RIS (12)
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Since 1) is positive it follows from the Bellman—Gronwall inequality
that

e MK < PV, (13)
Define ¢ = infycgn jes ¥(x, i). Then it is easy to see that (K1) (x, i) >

D(K*1)(x, i) where 1(x, i) is the function that takes on the value 1 for
all (x,i) € R” x S. This and (13) gives

K< Yon (14)
(4
and noting that
J(u) = limsup % log(K“1)(x, i) (15)
t—00
gives J(u) < .

3. OPTIMALITY CONDITIONS

We begin the analysis of the optimal risk-sensitive control problem
with a sufficient condition (verification theorem) for the existence of
an optimal stationary policy.

THEOREM 3 Assume there exists a positive € C*(R"x S) and a
constant A > 0 such that for all (x,i)eR" x S

Mp(x, i) = Inf[(A4%p) (x, 1) + e(x, i, u)ip(x, ). (16)

Then A<J(u). Furthermore, if u*€ %45 is a policy for which the
minimum in (16) is attained for all (x,i)€R" X S and there exists a
constant ) > 0 such that 1(x,i) > ¢ ¥(x,i) € R" x S, then u* is optimal
and A=Ju").

Proof 1t follows from (16) that

A(x, i) < (A*P)(x, 8) + c(x, b u)(x, 0). (17)
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Using (17) in (11) gives
t
SR 2 G+ (=) [ e RIpds (18)
0
Using a Bellman—Gronwall type of an inequality we get from (18)
K > eMy. (19)

Define

Yr(x, ) = {’/’(x’ ), |xl <R,

0, otherwise.

Then it follows from (19) that
KtuwR 2 e/\td)R- (20)

Note that

(Kipm)(x,i) < (sup Yrlx,i )) (K1) (x, i)

= [lY&( )lloo (K1) (x, ). (1)
Combining (20) and (21) gives
u : At "pR(x’ i)
KEDED 2 ol )

and this gives foru € %

J(u) = lim sup ! log(K“1)(x, i)
—00 t

> X+ limsup log ||$:<(x§> 1)|

=X (23)



RISK-SENSITIVE CONTROL OF HYBRID SYSTEMS 467

This proves the first part of the theorem. Assume now that the mini-
mum in (16) is attained at u* € %4s. Then

M(x, i) = (A P)(x, 1) + c(x, i, u*)p(x, i) (24)

and, consequently, from (11) we have

K/ =M. (25)
Note that
(K ) (x, 1) > DKL 1)(x,1) > 0 (26)
and, therefore
(k1) < EERD _ ), @)

It follows from (27) that J(u*) <\ which when combined with (23)
completes the proof.

4. ANALYSIS OF THE COST FUNCTIONAL

In this section we show that for a fixed u € %45 the cost functional in
(5) can be represented as the optimal value of an auxiliary optimal
control problem. This representation of the cost provides an insight
into the effect of the noise input as well as the mode variable on the
risk sensitivity of the cost. Furthermore, the representation is critical
in establishing conditions for the existence of optimal controls. We
begin by stating an additional technical assumption that is needed for
the subsequent analysis.

(A1) For each u € %45 there exists a 7% > 0, a o-finite measure n* on
R” x S and a function ¢*(x, i, y,j) such that

@) q9"(x,i,y,j) >0 for n* — almost all (x,i/) eR" x S,

(b) Pu(Tua (X, l)a (dy9.] )) = qu(x, i J’,J)W"(dyal )’

(c) for all >0 there exists a §>0 such that if |x—x'| <é then
Yesralq e, i, 3,7) — ¢“(x', 1,3, /) |1(dy, /) <e.
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Define the auxiliary system
dz, = (b(z4, 8¢, ur) + 0(24, 8¢)v1:) At + (24, 5¢) dwy, (28)

where s, is the continuous time Markov chain on § with generator
matrix IT*"2(z) with entries

va(z,j) ., .
mgz,g” £, Tz v2) = — ;mj(z, U, v2)

(2, u, v2) = my(z, u)
(29)

where v,:R”"Xx S—R is measurable map satisfying vy(z,i)>0,
(z,i) e R” x S. The variable v= (v, v,) is a control input in (28) and
(29). Clearly, due to its form vy(z,i) is a Markov policy. We assume
also that vy, is Markov, i.e., there exists a measurable map 7 : R"x
S — R” such that vy, = ¥(z;,5;). We denote the class of all such
Markov polices by 2. Similarly, if v is nonrandomized then we
write v € 74.

LEMMA 1 Let u € %45 and v €. Assume that vo:R” x S —[r, R] for
some R >r>0 and that v, is bounded. Then here exists an almost surely
unique solution of (28) and (29) which is a strong Feller process on
R"x S.

Proof We have to verify that system (28) and (29) satisfies assump-
tion (AO). Let k be the Lipschitz constant for b(x,i,u), o(x,i) and
m;j(x, u) and let 0 < M < co be the bound for v;. Then

b(x,i,u,v1) = b(x,i,u) + o(x, i)v (30)
satisfies
|l;(x, Lu,vi) — l;(fc, i,u, vl)]
< |b(x,i,u) — b(X,i,u)| + |(o(x, i) — o(X,0))1]
< k|x — x|+ k|x — X|M
=k(14+ M)|x — %|. (31)
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Next note that

j(x,u) — my(%,u v2())
(i (x, ) — my(%, )) v2(- 1)

|y, w4y v2) — 75(R, u, v2)| =

VZ("j)
va(:, i)

5k§|x—fc|. (32)

< k|x — x| sup
V2

Therefore, system (28) and (29) satisfies condition (i) of assumption
(A0). Condition (ii) is trivially satisfied. Finally, the irreducibility of
IT*(z) implies the irreducibility of matrix IT*"*(z) as well [11, Lemma 4.3]
and, therefore, condition (iii) of assumption (AO) is satisfied.

Let u € %45, v €74 and let 4™ be the infinitesimal generator of (28)
and (29), i.e., for any fe C*(R" x S),

(A9 )(2o1) = (L)) + V[T (1) o () + (T ). (33)

We make the following assumption about the controlled system (28)
and (29).

(A2) For each u €%y there exists a nonnegative function
#" € C}R" x S) such that:

(1) 11In|z|—>c><> ¢u(z’ l) =00,
(i) There exist p> 0, £ > 0 such that (4*"¢)(z, i) < —¢ for |z| > p and
PN
_6?(2’ z)l > ogl.
2

have polynomial growth in z.

iesS,and

u

(iii) ¢%(z, i) and aai; (z,i)

Remark Assumption (A2) implies that any Markov policy v for (28)
and (29) is stabilizing. Thus, for any v € %, system (28) and (29) has an
unique invariant measure p*’, i.e.,? =% and %4 = V4s.

For v,(z, i) > 0 define

(TT%v3)(z, 1)

k(z,i,u,v2) = (II*"* log v,)(z, i) — v2(2, 1)

(34)
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and
&(z,i,u,v) = c(z, i u) — L1 |* — k(z, i, 4, v2). (35)

For system (28) and (29) consider the cost functional

- . 1 (7
K(u,v) = lim sup 7,/0 (24, 8¢, Uy, vp) dt. (36)

T—o0

Then since all Markov control policies v are stabilizing

K(u,v) = Z/ &(z, iy u, v) ™’ (dz, i). (37)
icS /R
THEOREM 4 Let u € %45 and assume (A0)—(A2). Then
J(u) = sup K(u,v). (38)
VEV4s

Before we prove Theorem 4 we need the following lemmas. Let
fECR"x S)={f:R"x S—R|f(x,i) € C,(R"), i€ S} and define

()= gim prog B8 [onf [ smarparl]. @0

where (x,, ) is the solution of (1) and (3) corresponding to u € %g;s.

LEMMA 2  Assume (A0)—(A2). Then the limit (39) exists and N\“(f) is
the unique principal eigenvalue of the operator A"+ f. Furthermore,
corresponding to MN(f) is a uniformly positive eigenfunciton
ht € Cp(R" x S).

Proof The proof is similar to the proof of Lemma 2.1 in [8]. We
sketch the main idea. On Cp(R" x S') define the norm

I/ 1| = sup sup | £ (x, §)|. (40)

i€S xeR

For € R and k€ Cy(R" x §) define the operator

(e 0 = B fexo{ [ () - Brasthnard]. @
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Then {K,’"f“ﬂ,t >0} is a positive semigroup of operators on
Cy(R” x 8). Furthermore, since

” K;«»f—ﬂh” < eI/ || 7|
< el1=8%| |, (42)

{K,"’f > 0} is a strongly continuous semigroup on Cyx(R" x S). Here
we have used the easily checked fact that (T7h)(x, i) = EX[h(x;, ;)] is
a contraction semigroup on Cp(R" x S). Let n* be the measure in
assumption (A1) and let Ly(n*) be the Hilbert space with norm

N 1/2
= x, i)*n* ] .
letl, = {Zl | tet i, ,)} (43)

Then {K,f > 0} has a unique extension to Ly(n*) [13]. The
remainder of the proof is similar to the proof in [8] and is based on the
spectral theory for positive semigroups on Ly(n*) and Cy(R"” x S) (see
[12,14)). In particular, it is shown that eX“(/)=#* and (\“(f) — B) are
the principal eigenvalues of K,"’f P and A*+f— B, respectively, with
common eigenfunction Af, and consequently that 4“+f has a prin-
cipal eigenvalue \“(f) and eigenfunction 7. We omit the details.

For p € P(R" x §) and \*(f) defined by (39) define

M= swp [wf) - X)) (44)
feCy(R*%S)
where
wn=3 [ 7 iu(ax.. (45)

LEMMA 3 Assume (A0)—(A2). Then for any u € %gs

ueP(R"xS)

J(u)=sup [Z /R Ce(x i u(x, D)p(dx, ) — ()| (46)
ieS
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Proof The proof is based on the large deviations theory in [13] and is
similar to the proof of Theorem 2.1 in [8]. We omiit the details.

Proof of Theorem 4 Let K*(u)=sup,,, K(u,v). We first show
that J(u) > K*(u). For M >0 define G% = {x € R" maxesc(x, i,
u(x,i)) < M} and

. c(x,i,u), xeG%
CM(X, i, u) = {A(l, ) x¢ Gﬁ:l (47)

Then cpr(x, i, u) € Co(R" X S). Let \*(cps) be the principal eigenvalue of
A"+ cjpr and let Y4, € Cp(R"” x ) be the corresponding strictly posi-
tive eigenfunction. Then ¢%, = log ¢4, satisfies

! (M) T r0dy  T*et

2\ Ox +

u_u
Lidw + Ox e®u

top=MN(cy).  (48)

Adding and subtracting the term v/ o7 (9¢%,/0x) and using a comple-
tion of squares argument and the identity

I % I«
——; - sup [H"’”(ﬁ”M + 2 _ ppure logv,
(gl) >0
we get
A — L P = k(z,4,u,v2) + ear < M(ewr)- (49)

Since cpr <c we have \“(cpr) <J(u). Next note that it follows by a
straightforward approximation argument from Lemma 5.2 in [6] that
for any control policy v € 24s

> [ (i) ez =o. (50)

ieS

Integrating both sides of (49) with respect to x*” and using (50) gives

> /R (emlzi e ) = 3 D — Kz (e ), vale, ) )z

ieS

< N(ey) < J(u). (51)
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Finally, by Fatou’s lemma
K(u,v) = / c(z,d,u(z,i)) — v (z,0)
€S
—k(z,i,u(z,i), va(z, i)))pf""(dz, i)
< 11m1nfz / en(zi,u(z D) = Ln (i)
—k(z,i,u(z,i), va(z, i)))u”’v(dz, i)
< J(u). (52)
We now prove the opposite inequality J(u) < K*(u). Let vM =

oT(0¢%,/0x) and v} = e%i where ¢4, satisfies (48). Then (48) can be
rewritten as

A 4 epr — LM — k(z, i, u, M) = M (cr) (53)
where 4" is the infinitesimal generator of (28) and (29) with control
vM. Let (zM,sM) be the solution of (28) and (29) with control v* and

initial condition (z,s) = (z,i). Pick R>0 and let 7 = inf{z > O:
|zM| = R}. Then by Ito’s formula

Elty(elt stt,)] - e = B[ [ (4) e, 0o
N E[/ " (N ew) — el 54, )

+1M | +k(zM ,s;”,ua,v%)) da].
(54)

Letting R — oo gives
t
E (e 5)] =~ (e, = 00can) = B| [ (cnel o)

— LV — (2, 54, up, i) ) d ] (55)
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Since ¢4, is bounded we get after dividing by ¢ and letting ¢ — co

.1 !
X‘(cM)=11m—E[/ (cM( ;”,s;”,u,,)——|v |
0

t—oo f
— k(z, 5, up, i) ) da] (56)

Define

Ry =sup 3 / (emtzbu(z ) ~ (P
€S

VEV4s

— k(z, i, u, va(z, ) )) @ (dz, i). (57)
Then by the proof of Theorem 5.1 in [6]
X(em) < K(u).

Next note that by Lemma 3 and Fatou’s lemma

hmmf)\"(cM)——hmmf sup Z/ en(x, i, u(x, i) p(dx, i) — I (w)
M- yepRixS)| 45 /R

€S

> lim inf [Z / en(x, i u(x, )p(dx, i) - I”(,u)]

> Z hmlnfcM (2, 4, u(x, i) pu(dx, i) — I*(u)
€S

/ c(x, iy u(x, ) )u(dx, i) — (). (58)

€S

By Lemma 3,
peP(R"xS)

J(u) = sup [ / c(x, i, u(x, i) p(dx, i) — I*(p) | .
€S

Thus since (58) holds for any . € P(R"” x )

lim inf X*(cyr) > J(1). (59)



RISK-SENSITIVE CONTROL OF HYBRID SYSTEMS 475

Recall that since cpr < c we have X\*(cas) < J(u). Therefore, from (59)
we conclude that \*(cys) — J(u) as M — oo. Also, since cpr < ¢ we have
K3, (u) < K*(u). Thus we get

J(u) = Jim X(em) < limsup K (u) < K*(u). (60)

M—o00

The proof is complete.

Remark Consider the original control problem (5) for system (1) and
(3). Let p™" be the invariant measure of (28) and (29) for the Markov
policies u € %, and v € 7;. Then by (37) and (38) we have

T = g S

= inf sup K(u,v)

UE U VEYV4s

= inf sup Z/ (c(z, i, u) —%|v1|2 — k(z,i,u,v2)) ™" (dz, i).
R’l

U vev4s s

(61)

Equation (61) shows that the optimal value of the original optimal
risk-sensitive control problem is equivalent to the upper value of a
stochastic differential game for the auxillary system (28) and (29) with
cost functional (36).

Remark 1In the cost functional K(u, v) the term 1|v;|? represents the
risk sensitivity due to the white noise input in (1). On the other hand,
the term k(z,i,u,v,), and in particular the auxiliary control v,,
represents the risk sensitivity due to the mode variable (jump process)
r,in (1). In the H,, formulation of linear hybrid systems in [10] a term
corresponding to 3| v; |? appears but not a term involving v, i.e. the
formulation in [10] does not incorporate robustness to changes in the
distribution of the mode variable. Therefore, unlike the standard case
(i.e. systems with a single mode), the formulation of H,, control of
linear hybrid systems in [10] is not equivalent to risk sensitive control
of such systems.
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5. EXISTENCE OF OPTIMAL POLICY

We now establish the existence of an optimal control for the optimal
control problem (5) for system (1) and (3). The results in this section
are based on the existence results in [6] where additional technical
details can be found. We begin with the following result for the
auxiliary optimal control problem (28), (29) and (36).

LEMMA 4 Assume (A0)—(A2). Then for each u € %45 there exists a
Vi €Vqs such that

J(u) = K(u,v}) as. (62)

Proof For each fixed u € %4, the optimal control problem (36) for
system (28) and (29) is of the form of the problems considered in [6].
First note that, under assumptions (A0) and (A2) it follows from
Theorem 5.3 in [6] that there exists a v} €4 such that K(u,v) =

SUp,cq, K_(u, v) as. Noting that by Theorem 4 we have J(u) =
SUp,cq,, K(u,v) completes the proof.

We now discuss the existence of an optimal control for the risk
sensitive control problem, i.e., we consider system (1) and (3) and the
optimal control problem (5). Let v €945 be the optimal control in
Lemma 4 and define

&z, i,u) = c(z,i,u) — 1|5, (2, ) = k(z,i,u, Vi (z,0)) (63)

We will concentrate on cost functionals that satisfy the so called near-
monotonicity condition (see [6] for terminology)

(A3) liminfinf ¢(z, i, u) > J*. (64)

|z] 200w

Roughly speaking, if condition (A3) is satisfied then large values of the
system state are penalized, i.e., the optimal control will tend to push
the system state towards some bounded set in the state space.

THEOREM 5 Assume (A0)—(A3). Then there exists a u* € Uqs such
that

J*=Ju") as.
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Proof By Lemma 4 we know that J(u) = K(u,v}) a.s. If the near
monotonicity condition (A3) is satisfied it follows from Theorem 5.2
in [6] that there exists a u* € %45 such that

: = . uv; AN — i 74 * — i — *
“g;‘t;s;/" &(z, i, u)p™"(dz, i) uler;‘f;sK(u, 109 uér%gsj(u) J(u*)

=J* a.s.

6. CONCLUSIONS

In this paper we have analyzed the infinite horizon risk-sensitive con-
trol problem for a general hybrid system comprised of a diffusion pro-
cess that depends on a mode variable modeled by a Markov chain. We
established optimality conditions, obtained an equivalent differential
game representation of the cost, and proved the existence of optimal
controls under the appropriate technical conditions. The analysis in
the paper has shown that even in the simplest cases it is very difficult
to obtain closed form analytical solutions to the optimal risk-sensitive
control problem for hybrid systems. Therefore, future research should
concentrate on developing suboptimal solution methods as well as
numerical techniques. Future research should also address optimal
risk sensitive control of partially observed systems.
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