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A nonlinear robust control-system design framework predicated on a hierarchical switch-
ing controller architecture parameterized over a set of moving nominal system equilibria
is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical
nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear
system over a prescribed range of system uncertainty by robustly stabilizing a collection
of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller
architecture is designed based on a generalized (lower semicontinuous) Lyapunov func-
tion obtained by minimizing a potential function over a given switching set induced by the
parameterized nominal system equilibria. The proposed framework robustly stabilizes a
compact positively invariant set of a given nonlinear uncertain dynamical system with
structured parametric uncertainty. Finally, the efficacy of the proposed approach is
demonstrated on a jet engine propulsion control problem with uncertain pressure-flow
map data.
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1. INTRODUCTION

Since all physical systems are inherently nonlinear with system nonlin-
earities arising from numerous sources including, for example, friction
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(e.g., Coulomb, hysteresis), gyroscopic effects (e.g., rotational motion),
kinematic effects (e.g., backlash), input constraints (e.g., saturation,
deadband), and geometric constraints, plant nonlinearities must be
accounted for in the control-system design process. However, since
nonlinear systems can exhibit multiple equilibria, limit cycles, bifurca-
tions, jump resonance phenomena, and chaos, general nonlinear sys-
tem stabilization is notoriously difficult and remains an open problem.
Control system designers have usually resorted to Lyapunov methods
[1-3] in order to obtain stabilizing controllers for nonlinear systems.
In particular, for smooth feedback, Lyapunov-based methods were
inspired by Jurdjevic and Quinn [4] who give sufficient conditions for
smooth stabilization based on the ability of constructing a Lyapunov
function for the closed-loop system [5]. Unfortunately, however, there
does not exist a unified procedure for finding a Lyapunov function can-
didate that will stabilize the closed-loop system for general nonlinear
systems. This is further exacerbated when addressing robustness in
uncertain nonlinear systems.

In a recent paper [6], a nonlinear control design framework pred-
icated on a hierarchical switching controller architecture parameter-
ized over a set of moving system equilibria was developed. In this
paper we extend the results of [6] to address the problem of robust sta-
bilization for nonlinear uncertain systems. Specifically, using equilibria-
dependent Lyapunov functions or, instantaneous (with respect to a given
nominal parameterized equilibrium manifold) Lyapunov functions, a
hierarchical robust nonlinear control strategy is developed that stabilizes
a compact positively invariant set of a nonlinear uncertain system using
a supervisory robust switching controller that coordinates lower-level
stabilizing subcontrollers (see Fig. 1). Each robust subcontroller can
be nonlinear and thus local set point designs can be nonlinear. Fur-
thermore, for each nominally parameterized equilibrium manifold, the
collection of the robust subcontrollers provide guaranteed domains of
attraction with nonempty intersections that cover the region of opera-
tion over the prescribed range of system uncertainty of the nonlinear
uncertain system in the state space. A hierarchical robust switching
nonlinear controller architecture is developed based on a generalized
lower semicontinuous Lyapunov function obtained by minimizing a
potential function, associated with each domain of attraction, over
a given switching set induced by the parameterized nominal system
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FIGURE 1 Robust switching controller architecture.

equilibria. The hierarchical robust switching nonlinear controller guar-
antees that the generalized Lyapunov function is nonincreasing along
the closed-loop system trajectories for all parametric system uncer-
tainty with strictly decreasing values at the switching points, establish-
ing robust asymptotic stability of a compact positively invariant set.
Furthermore, since the proposed robust switching nonlinear control
strategy is predicated on a generalized Lyapunov framework with
strictly decreasing values at the switching points, the possibility of a
sliding mode is precluded. Hence, the proposed nonlinear robust stabili-
zation framework avoids the undesirable effects of high-speed switch-
ing onto an invariant sliding manifold which is one of the main
limitations of variable structure controllers.

The contents of the paper are as follows. In Section 2 we establish
definitions, notation, and several key results used later in the paper.
Then in Section 3, in order to address stability of uncertain closed-loop
switching systems, we develop generalized Lyapunov and invariant
set theorems for nonlinear uncertain closed-loop feedback dynamical
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systems wherein all regularity assumptions on the Lyapunov function
and the closed-loop system dynamics are removed. In particular, local
and global robust stability theorems are presented using generalized
Lyapunov functions that are lower semicontinuous. Furthermore, gen-
eralized invariant set theorems are derived wherein closed-loop system
trajectories converge to a union of largest invariant sets contained on
the boundary of the intersections over finite intervals of the closure of
generalized Lyapunov level surfaces. In Section 4 we concentrate on
nonlinear robust stabilization of local set points over a set of param-
eterized nominal equilibria of the nonlinear uncertain system. In
Section 5 a nonlinear connective stabilization framework predicated
on a hierarchical robust switching controller architecture is developed.
In Section 6, the proposed framework is used to design robust switch-
ing controllers to control the aerodynamic instabilities of rotating stall
and surge in multi-mode axial flow compressor models with uncertain
pressure-flow compressor performance characteristic maps. Finally, we
draw some conclusions in Section 7.

2. MATHEMATICAL PRELIMINARIES

In this section we establish definitions, notation, and several key results
used later in the paper. Let R denote the set of real numbers, let R”
denote the set of n x 1 real column vectors, let R”*™” denote the set of
real n x m matrices, and let (-)T denote transpose. Furthermore, we
write ||-|| for the Euclidean vector norm, V’(x) for the Fréchet
derivative of V(-) at x, and 4 >0 (resp., 4 > 0) to denote the fact that
the Hermitian matrix 4 is nonnegative (resp., positive) definite. For a
subset S C R”, we write 8S,S,S for the boundary, the interior, and
the closure of S respectively. A set S C R”, is connected if there does
not exist open sets @7 and O, in R” such that S C Q1 U 0, SN O # 0,
SN0,y #0,and SN Oy N O, = . Recall that S is a connected subset
of R if and only if S is either an interval or a single point. Finally, let
C? denote the set of continuous functions and C" denote the set of func-
tions with n-continuous derivatives.

In this paper we consider nonlinear controlled uncertain dynamical
systems of the form

x(t) = F(x(1),u(r)), x(0)=xo, F(,-)€F, t€Ly, (1)
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where x(¢) € D C R", t € Z,,, is the system state vector, Z, C R is the
maximal interval of existence of a solution x(-) of (1), D is an open
set, 0 € D, u(t) e U CR™, t € Z,,, is the control input, U is the set of
all admissible controls such that u(-) is a measurable function with
0cU, and F C {F:DxU— R": F(-,-) € C°} denotes the class of
uncertain nonlinear dynamics. Furthermore, we introduce the nominal

controlled dynamical system
x(t) = Fa(x(2),u(t)), x(0)=x, t €Iy, 2
where Fy (-, -) € F represents the nominal system dynamics.

DEFINITION 2.1  The point X € D is an equilibrium point of (1) if there
exists # € U such that F(X,u) = 0.

In this paper we assume that given an equilibrium point ¥ € D of (2)
corresponding to # € U and a mapping p:Dx A > U, ACRI, 0€A,
such that ¢(X,0) =, there exist neighborhoods D, C D of X and
A, C A of 0, and a continuous function ¥ : A, — D, such that X = 1(0),
and, for every A € A,, x,=1()) is an equilibrium point of (2); that is,
Fa(v(N), p(¥(X), A)) =0, X € A,. This is a necessary condition for nomi-
nal parametric stability with respect to A, as defined in [7,8]. Note that
the connected set A CR? corresponds to a parameterization set with
the function (- ) parameterizing the nominal system equilibria. In the
special case where g =m and (x, A) = A, it follows that the parameter-
ized nominal system equilibria are given by the constant control
u(f) = \. A parameterization that provides a local characterization of
the nominal equilibrium manifold, including in neighborhoods of bifur-
cation points, is given in [9]. Alternatively, the well-known Implicit
Function Theorem provides sufficient conditions for guaranteeing the
existence of such a parameterization under the more restrictive condi-
tion of continuous differentiability of the mapping (- ).

THEOREM 2.1 [10] Assume the function Fy(x,)) 2 Fu(x, o(x, X)),
x €D, AeA, is C' at each point (x,\) € D x A. Suppose Fy(%,0) =0
for (%,0) € D x A and the Jacobian matrix F,(%,0)/0x is full rank.
Then there exist open neighborhoods D, C D of X and A, C A of O such
that ﬁ,,(x, A) =0, A€ A,, has a unique solution x) € D,. In particular,
there exists a unique C' mapping : Ay — Dy such that x,=11p(\),
A€ A, and x = 9(0).
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Next, we consider nonlinear feedback controlled uncertain dynami-
cal systems. A measurable mapping ¢:D — U satisfying ¢(X) = u is
called a control law. Furthermore, if u(f) = ¢(x(t)), where ¢(-) is a
control law and x(2), ¢ € Z,, satisfies (1), then u(-) is called a feedback
control law. Here, we consider nonlinear closed-loop uncertain dynam-
ical systems of the form

x(1) = F(x(1), o(x(1))), x(0) =x0, F(-,-) € F, t€In. (3)

A function x:Z,, — D is said to be a solution to (3) on the interval
Z,, C R with initial condition x(0)=x,, if x(#) satisfies (3) for all
t € Zy,. Note that we do not assume any regularity condition on the
function ¢( - ). However, we do assume that for every y € D there exists
a unique solution x( - ) of (3) defined on Z, satisfying x(0) = y. Further-
more, we assume that all the solutions x(2), ¢ € Z,, to (3) are contin-
uous functions of the system initial conditions xo € D, which, with the
assumption of uniqueness of solutions, implies continuity of solutions
x(1), t € Iy,,to (3)[10, p. 24].

Remark 2.1 1If F(-,4(-)), F(-,-) € F, is Lipschitz continuous on D
then there exists a unique solution to (3). In this case, the semi-group
property s(t + 7, xo) = s(t, s(7, Xo)), t, T € Ly,,and the continuity of s(z, -)
on D, t € Z,,, hold, where s(-, xo) denotes the solution of the nonlinear
feedback controlled uncertain dynamical system (3). Alternatively,
uniqueness of solutions in time along with the continuity of F(-, ¢(-))
ensure that the solutions to (3) satisfy the semi-group property and
are continuous functions of the initial condition xo € D even when
F(-, #(-))is not Lipschitz continuous on D (see [11, Theorem 4.3, p. 59]).
More generally, F(-,#(-)) need not be continuous. In particular, if
F(-, ¢(-)) is discontinuous but bounded and x( - ) is the unique solution
to (3) in the sense of Filippov [12], then the semi-group property along
with the continuous dependence of solutions on initial conditions
hold [12].

Next, we introduce several definitions and key results that are
necessary for the main results of this paper.

DEFINITION 2.2 Let D, C D and let V:D, — R. For a €R, the set
V) £ {x € De: V(x) =} is called the o-level set. For a,BER,
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a<B, theset V-'([a, B]) & {x € D¢: a < V(x) < B} is called the [, B}
sublevel set.

DEFINITION 2.3 A set Mt CDCR" (resp., M™) is a positively
(resp., negatively) invariant set for the nonlinear feedback controlled
uncertain dynamical system (3) if xo € M™ (resp., M) implies that
[0, +00) C Z,, (resp., (—00,0] C Z,,) and x(t) € M™ (resp., M™) for
allt>0 (resp., t<0) and F(-,-) € F. A set M C D C R" is an invariant
set for the nonlinear feedback controlled uncertain dynamical system (3) if
X0 € M implies that T,, = R and x(t) € M foralltcR and F(-,-) € F.

DEFINITION 2.4 p € D C R" is a positive limit point of the trajectory
x(1), t € Iy, if [0, +00) C Iy, and there exists a sequence {ty},,, with
t,— 00 as n— oo, such that x(t,) — p as n— oco. The set of all positive
limit points of x(1), t € L, is the positive limit set P} of x(2), t € I,.

The following result on positive limit sets is fundamental and forms
the basis for all the generalized robust stability and invariant set theo-
rems developed in Section 3.

LEMMA 2.1 [3] Suppose the forward solution x(t), t>0, to (3) corre-
sponding to an initial condition x(0) = x, exists and is bounded. Then the
positive limit set P} of x(t), t € I,, is a nonempty, compact, connected
invariant set. Furthermore, x(t) — P} as t— oo for all F(-,-) € F.

Remark 2.2 1t is important to note that Lemma 2.1 holds for time-
invariant nonlinear feedback controlled dynamical systems (3) possess-
ing unique solutions with solutions being continuous functions of
the system initial conditions. More generally, Lemma 2.1 holds if
s(t+ 7, x0) = s(t, (1, x0)), t,7 € Ly,, and s(-, xo) is a continuous func-
tion of xo € D.

The following definition introduces three types of stability as well as
attraction of (3) with respect to a compact positively invariant set.

DEFINITION 2.5 Let Dy C D be a compact positively invariant set for
the nonlinear feedback controlled uncertain dynamical system (3). Dy is
robustly Lyapunov stable if for every open neighborhood O; C D of Dy,
there exists an open neighborhood O, C O; of Dy such that x(t) € Oy,
t>0, for all xo € O, and F(-,-) € F. Dy is robustly attractive if there
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exists an open neighborhood O3 C D of Dy such that P;“O C Dy for all
xo € O3 and F(-,-) € F. Dy is robustly asymptotically stable if it is
robustly Lyapunov stable and robustly attractive. Dy is robustly globally
asymptotically stable if it is robustly Lyapunov stable and P}, C Dy for
all xo€R” and F(-,-) € F. Finally, Dy is unstable if it is not robustly
Lyapunov stable.

Next, we give a set theoretic definition involving the domain, or
region, of attraction of the compact positively invariant set D, of (3).

DEFINITION 2.6 Suppose the compact positively invariant set Dy C D
of (3) is robustly attractive. Then the domain of attraction Dy of Dy is
defined as

Da 2 {xo € D: P}, C Dy} 4

Recall that D, is an open, connected invariant set [13, Proposition
4.15, p. 88].

Next, we present a key theorem due to Weierstrass involving lower
semicontinuous functions on compact sets. For the statement of the
result the following definition is needed.

DEFINITION 2.7 Let D, C D. A function V: D, — R is lower semicon-
tinuous on D if for every sequence {xn},-, C D, such that lim,_, x,=x,
V(x) <liminf,_,. V(x,).

THEOREM 2.2 [14] Suppose D, C D is compact and V:D, — R is
lower semicontinuous. Then there exists x* € D, such that V(x*) < V(x),
x € De.

3. GENERALIZED ROBUST STABILITY THEOREMS FOR
NONLINEAR UNCERTAIN FEEDBACK SYSTEMS

Most Lyapunov stability and invariant set theorems presented in the
literature require that the Lyapunov function for a nonlinear dynami-
cal system be a C' function with a negative-definite derivative (see
[1,3,15-18]and the numerous references therein). However, even though
in the case of discontinuous system dynamics with continuous motions
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standard Lyapunov theory is applicable, it might be simpler to con-
struct discontinuous “Lyapunov” functions to establish closed-loop
system stability. In particular, as mentioned in the introduction, the key
step in obtaining a general nonlinear robust stabilization framework is
to use several different robust controllers designed over several fixed
operating points covering the system’s operating range in the state
space, and to switch between them over this range. Even though for
each operating range one can construct a C' Lyapunov function, to
show closed-loop system robust stability over the whole system operat-
ing envelope and prescribed range of system uncertainty for a given
switching robust control strategy, a generalized Lyapunov function
obtained by minimizing a potential function associated with domains
of attraction for each operating range is constructed. As will be shown
in Section 5 the generalized Lyapunov function is nonsmooth and non-
continuous. Hence, in this section we develop generalized Lyapunov
and invariant set theorems for nonlinear feedback controlled uncertain
dynamical systems wherein all regularity assumptions on the Lyapunov
function and the closed-loop system dynamics are removed. The fol-
lowing result generalizes the Barbashin—Krasovskii—LaSalle invariant
set theorems [3,17,19-21] to the case where the Lyapunov function is
lower semicontinuous. For the remainder of the results of this paper
define the notation

R, 2 7 ), 5

>y

for arbitrary V: D C R" — R and y € R, and let M, denote the largest
invariant set (with respect to (3)) contained in R,,.

THEOREM 3.1 Consider the nonlinear feedback controlled uncertain
dynamical system (3), let x(t), t € L,, denote the solution to (3), and let
D. C D be a compact positively invariant set with respect to (3). Assume
that there exists a lower semicontinuous function V:D. — R such that
V(x(®)) < V(x(1)), 0<1<t, for all xg € De. If xo € De, then x(t) —
M2, g My ast— oo forall F(-,-) € F.

Proof Let x(1), t € I,, be the solution to (3) with xo € D, so that
[0, +00) C Z,,. Since V(-) is lower semicontinuous on the compact
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set D, there exists 3 € Rsuch that V(x) > 3, x € D.. Hence, since V(x(1)),
t > 0, is nonincreasing, 7y, EY lim, ., V(x(2)), %o € D, exists. Now, for
all p € P} there exists an increasing unbounded sequence {,},2,,
with #,=0, such that lim,_ . x(#,) =p. Next, since V(x(t,)), n>0, is
nonincreasing it follows that for all n>0, vy, < V(x(t,)) < V(x(tw)),
n> N, or, equivalently, since D, is positively invariant, x(z,) €
V=" ([yxe» V(x(2x))]), n > N. Now, since lim,,_,, x(t,) = p it follows that
P € V-1 ([xys V(x(t4))]), n>0. Furthermore, since lim,_, V(x(t,)) =
~x, it follows that for every ¢ > ~,,, there exists »>0 such that
Yxo < V(x(t,)) < ¢ which implies that for every ¢> vy, pE€

“1([Yx ¢]). Hence, p € R, which implies that P} C R, . Now,
since D, is compact and positively invariant it follows that the forward
solution x(#), >0, to (3) is bounded for all xy € D, and hence it
follows from Lemma 2.1 that ’Pjo is a nonempty, compact, connected
invariant set which further implies that P} is a subset of the largest
invariant set contained in Roys that is, 73;’0 - M%. Hence, for all xy €
D., P;LO C M. Finally, since x(t) — ’P;"o as t—oo it follows that
x(t) > Mast—ooforall F(.,-) € F. O

Remark 3.1 Note that since V7I([y,c]) = {x € De: ¥(x) >+}N
{x € D.: V(x) < ¢} and {x € D.: V(x) < ¢} 1s a closed set, it follows
that R, C {x € De: V(x) < v}, where R 2 V117, D\V ([, ¢])s
¢ >, for a fixed v € R. Hence,

Ry= [V d) UR,) = V(1) UR,,

>y

where ’f% 2 = Nesy R,y,c, is such that V(x) <+, x € 7?, Finally, if V(-)
is Cothen Rye=0,7€R,c>~,and hence R, = V'~ 1('y)

Remark 3.2 Note thatif V:D. — R is a lower semicontinuous func-
tion such that all the conditions of Theorem 3.1 are satisfied, then for
every xo € D, there exists v, < V(xo) such that P} C M, C M.

Remark 3.3 1t is important to note that as in standard Lyapunov
and invariant set theorems involving C' functions, Theorem 3.1 allows
one to characterize the invariant set M without knowledge of the closed-
loop system trajectories x(f), ¢ € Z,. Similar remarks hold for the
remainder of the theorems in this section.
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Next, we sharpen the results of Theorem 3.1 by providing a refined
construction of the invariant set M. In particular, we show that the
closed-loop system trajectories converge to a union of largest invariant
sets contained on the boundary of the intersections over finite intervals
of the closure of generalized Lyapunov level surfaces.

THEOREM 3.2 Consider the nonlinear feedback uncertain controlled
uncertain dynamical system (3), let D, and Dy be compact positively
invariant sets with respect to (3) such that Dy C D, C D, and let x(t),
t € I,,, denote the solution to (3) corresponding to xy € D.. Assume that
there exists a lower semicontinuous function V : D, — R such that

V(x) =0, xe€Dy, (6)
V(x) >0, xé&D,, x¢Dy, (™)
V(x(t)) < V(x(1)), 0<7<t. (8)

Furthermore, assume that for all xy € D,, xo¢ Dy, there exists an
increasing unbounded sequence {#,},-,, with 7o =0, such that

V(x(tht1)) < V(x(tn)), n=0,1,... 9)

Then, either M, C R, = RA,\V '(9), ¥> 0, or M., = §. Furthermore,
if xp € Dc, then x(f) -» M = U7€g M, as t—oo for all F(,-) € F,
where G 2 {7 > 0: R, NDy # 0}. If, in addition, Dy C D, and V(-)is
continuous on Dy, then D, is locally asymptotically stable for all
F(-,-) € F and D, is a subset of the domain of attraction.

Proof Since D, is a compact positively invariant set, it follows that for
all xo € D, the forward solution x(¢), £ >0, to (3) is bounded. Hence,
it follows from Lemma 2.1 that, for all x, € D, P;, is a nonempty,
compact, connected invariant set. Next, it follows from Theorem 3.1,
Remark 3.2, and the fact that V() is positive-definite (with respect to
D:\Dy), that for every xy € D, there exists 7, > 0 such that P+
M,, SR, . Now, given x(0) € ¥V!(yx,), 1% >0, (9) implies that
there exists 7,>0 such that V(x(t1)) <vx, and x(t1)¢ V"' (7x)-
Hence, V~!(yy,) C R, does not contain any invariant set. Alter-
natlvely, if x(0) € va then V(x(0)) < vy, and (9) implies that x(z) ¢
~!(x,), 1 > 0. Hence, any invariant set contained in R.,, , is a subset of
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R, » Which implies that M, C R, , vy > 0.1f9 > 0is such that § #
x> for all Xo € D, then there does not exist xo € D, such that P}, C
R4 and hence My =0. Now, ad absurdum, suppose Do NP}, = 0.
Since V(-) is lower semicontinuous it follows from Theorem 2.2 that
there exists £ € P}, such that a = V(%) < ¥(x), x € P},. Now, with
x(0) = %¢ D, it follows from (9) that there exists an increasing
unbounded sequence {#,},oo, With 7 =0, such that V(x(t,+1))<
V(x(t,)), n=0,1,..., which implies that there exists >0 such that
V(x(f)) < o which further implies that x(¢) ¢ P}, contradicting the fact
that P+ is an invariant set. Hence, there exists ¢ € Dy such that g €
Py < ’RA,X which implies that R., N Dy # 0. Thus, v, € G forall xo €
D whxch further implies that P} C M. Now, since x(f) — Pr C M
as 1 — oo it follows that x(7) — M ast— oo forall F(-,-) € F.

Next, we show that if V{(-) is continuous on D, C’Dc, then the
compact positively invariant set Dy of (3) is robustly Lyapunov stable.
Let Oy C D, be an open neighborhood of Dy. Since 00, is compact
and V(x), x € D, is lower semicontinuous, it follows from Theorem 2.2
that there exists & = minyego, V(x). Note that o >0 since Dy N O; = 0
and V(x)>0, x € D;, x¢ Dy. Next, using the facts that V(x)=0,
x € Dy, and V(-) is continuous on Dy, it follows that the set O, =
{x € Oy: V(x) < a}° is not empty. Now, it follows from (8) that for
all x(0) € O,

V(x() < V(x(0) <e, t>0,

which, since V(x) > a, x € 80, implies that x(¢) ¢ 00, ¢ >0. Hence,
for every open neighborhood O; C D, of Dy, there exists an open
neighborhood O, C O; of Dy such that, if x(0) € O,, then x(t) € Oy,
¢t > 0, which proves Lyapunov stability of the compact positively invari-
ant set Dy of (3) for all F(-,-) € F. Finally, from the continuity of V()
on Dy and the fact that V(x) =0 for all x € Dy, it follows that G = {0}
and M = M,. Hence, Pj{o C Dy for all xy € D, establishing local asymp-
totic stability of the compact positively invariant set Dy of (3) for all
F(-,-) € F with a subset of the domain of attraction given by D.. [

Remark 3.4 1f in Theorem 3.2 M C Dy, then the compact positively
invariant set Dy of (3) is attractive for all F(-,-) € F. If, in addition,
V(-) is continuous on Dy C D, then the compact positively invariant
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set Dy of (3) is locally asymptotically stable for all F(-,-) € F. In both
cases, D, is a subset of the domain of attraction.

A lower semicontinuous function V(-), with V() being continuous
on Dy, satisfying (6) and (7) is called a generalized Lyapunov function
candidate for the nonlinear feedback controlled uncertain dynamical
system (3). If, additionally, V() satisfies (8), V(-) is called a general-
ized Lyapunov function for the nonlinear feedback controlled uncertain
dynamical system (3). Note that in the case where the function V(-) is
C' on D, in Theorem 3.2, it follows that V(x(£)) < V(x(r)), for all >
7>0, is equivalent to V(x) 2 V'(x)F(x,$(x)) <0,x €D, F(:,-) € F.
In this case conditions (6)—(8) in Theorem 3.2 specialize to the
standard Lyapunov stability conditions [3,15,17].

Next, we present a generalized global invariant set theorem for guar-
anteeing global robust attraction and global asymptotic robust stability
of a compact positively invariant set of a nonlinear feedback con-
trolled uncertain dynamical system.

THEOREM 3.3 Consider the nonlinear feedback controlled uncertain
dynamical system (3) with D =R" and U = R™ and let x(1), t € Iy,
denote the solution to (3). Assume that there exists a compact positively
invariant set Dy with respect to (3) and a lower semicontinuous function
V:R" — R such that

V(x)=0, xe&D,, (10)
V(x) >0, xeR", x¢D,, (11)
V(x(t)) < V(x(1)), 0<7<1, (12)
V(x) = 0o as ||x|| — oo. (13)

Then for all x0€R", x(t) - M 2 U0 My, as t—oo for all
F(-,-) € F. If, in addition, for all xo€R", xo¢ Dy, there exists an
increasing unbounded sequence {1, } -, with to =0, such that

(x(t,,+1)) < V(x(ts)), n=0,1,..., (14)

then, either M CRy= ’R»,\V '(y), or My =0, v>0. Furthermore,

x(t) » M = U Leg My as t—oo for all F(.,-)€F, where g2
{y>0: R,NDy # 0}. Finally, if V(-) is continuous on Dy then the
compact positively invariant set Dy of (3) is robustly globally asymptoti-
cally stable.
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Proof Note that since V(x) — oo as ||x|| — oo it follows that for every
B3>0 there exists >0 such that V(x)> g for all ||x|| >r, or, equiva-
lently, ¥~1([0,8])C {x: ||x|| <r} which implies that ¥~'([0,3]) is
bounded for all 3> 0. Hence, for all xo € R", ¥~1([0, B,]) is bounded,
where [y, 2 V(xo). Furthermore, since ¥{(-) is a positive-definite lower
semicontinuous function, it follows that ¥~1([0, 3,,]) is closed and,
since V(x(£)), t> 0, is nonincreasing, ¥ ~1([0, B,,]) is positively invari-
ant. Hence, forevery xo € R”, V1 ([0, S,]) is a compact positively invari-
ant set. Now, with D, = V~1([0, B,]) it follows from Theorem 3.1 and
Remark 3.2 that there exists 7y, € [0, By,] such that P} C M, C ’f%%
which implies that x(t) - M as t—oo for all F(-,-) € . If, in
addition, for all xo € R", x¢ ¢ Dy, there exists an increasing unbounded
sequence {#,},, With 7o=0, such that (14) holds then it follows from
Theorem 3.2 that x(¢) — M as t — oo for all F(-,-) € F.

Finally, if V() is continuous on D, then robust Lyapunov stability
follows as in the proof of Theorem 3.2. Furthermore, in this case,
G = {0} which implies that M = M,. Hence, P}, C Dy establishing
global asymptotic robust stability of the compact positively invariant
set Dy of (3). O

Remark 3.5 1If in Theorems 3.2 and 3.3 the function ¥(-)is C' on D,
and R”, respectively, Dy = {0}, and V'(x)F(x,¢(x)) <0, x € D¢, x#0,
F(-,-) € F, then every increasing unbounded sequence {t,},c,, With
to=0, is such that V(x(t,.1)<V(x(t,), n=0,1,... In this case,
Theorems 3.2 and 3.3 specialize to the standard Lyapunov stability
theorems for local and global asymptotic robust stability, respectively,
as applied to a closed-loop feedback controlled uncertain system.

It is important to note that even though the robust stability condi-
tions appearing in Theorems 3.1-3.3 are system trajectory dependent,
in Section 5 we present a hierarchical robust switching nonlinear con-
troller guaranteeing nonlinear system stabilization over a prescribed
range of system parametric uncertainty without requiring knowledge
of the closed-loop system trajectories. Finally, we note that the concept
of lower semicontinuous Lyapunov functions has been considered in
the literature. Specifically, lower semicontinuous Lyapunov functions
have been considered in [13,22] with [22] focusing on viability theory and
differential inclusions. However, the present formulation provides new
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invariant set stability theorem generalizations characterizing system
limit sets in terms of lower semicontinuous Lyapunov functions not
considered in [13,22].

4. PARAMETERIZED NOMINAL SYSTEM EQUILIBRIA, SYSTEM
ATTRACTORS, AND DOMAINS OF ATTRACTION

The nonlinear robust control design framework developed in this paper
is predicated on a hierarchical robust switching nonlinear controller
architecture parameterized over a set of nominal system equilibria. It
is important to note that both the nominal dynamical system and the
robust controller for each parameterized nominal equilibrium can be
nonlinear and thus local set point designs are in general nonlinear.
Hence, the nonlinear controlled uncertain dynamical system can be
viewed as a collection of controlled uncertain subsystems with a hier-
archical robust switching controller architecture. In this section we
concentrate on robust nonlinear stabilization of compact positively
invariant sets, parameterized in D, of the nonlinear closed-loop uncer-
tain subsystems. Specifically, we consider the nonlinear controlled
uncertain dynamical system (1) with the origin being an equilibrium
point of the nominal system corresponding to the control =0, that is,
F,(0,0)=0. Furthermore, we assume that given a mapping ¢:D X
A — U, ¢(0,0)=0, there exists a continuous function ¢: A, — Do,
where D, C D,0 € D,,and A, C A, 0 € A,, such that F,(x,, p(x), N))=0
with x) = ()\) € D, for all A€ A,. As discussed in Section 2, this is a
necessary condition for nominal parametric stability with respect to A,
as defined in [7,8] while Theorem 2.1 provides sufficient conditions for
guaranteeing the existence of such a parameterization.

Next, we consider a family of stabilizing feedback control laws for
the nominal system given by

® 2 {¢y:D - U: ¢y € COha(xn) = p(x0,A), A€ As}, As C A,
(15)

such that, for ¢,(:)€®, A€ Ag, the nonlinear closed-loop nominal
system

X(2) = Fa(x(2), oA(x(2))),  x(0) = x0, 1 € I, (16)
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has an asymptotically stable equilibrium point x) € D, C D with a
corresponding Lyapunov function V,(-). Hence, in the terminology
of [7,8], (16) is (nominally) parametrically asymptotically stable with
respect to As C A,. Here, we assume that for each A € Ag, the linear or
nonlinear feedback controllers ¢,(-) are given. In particular, these
controllers correspond to local set point designs and can be obtained
using any appropriate standard linear or nonlinear stabilization scheme
with a domain of attraction for each A € As. For example, appropriate
nonlinear stabilization techniques such as feedback linearization [23],
nonlinear H, control [24], constructive nonlinear control [25], optimal
nonlinear control [26], and nonlinear regulation via state-dependent
Riccati techniques [27], as well as linear-quadratic stabilization schemes
based on locally approximated linearizations, can be used to design
the controllers ¢,(-) for each A € Ag. It is important to note that even
though x,, A € Ag, is an equilibrium point of the nominal system (2),
in general, x,, A € Ag, is not an equilibrium point for the uncertain
system (1). Hence, V,(-) is not a standard Lyapunov function for the
nonlinear closed-loop uncertain system

(1) = F(x(2), r(x(2))),  %(0) = xo, F(,) € F, t€Is. (17)

However, under an additional assumption on the structure of the sys-
tem uncertainty, it can be shown that u = ¢,(x) is a robust control law
that robustly asymptotically stabilizes a compact positively invariant
set N), containing the nominal equilibrium point x), A€ Ag, with
domain of attraction D,. In this case, V,(-) serves as a Lypunov func-
tion of the uncertain system guaranteeing stability with respect to a
compact positively invariant set. In particular, defining AF(x, ) 2
F(x,u) — Fy(x,u) and assuming that V;(x)AF(x, ¢r(x)) < —V;5(x) x
F,(x, ¢x(x)) for all x € Dy such that ||x — x,|| > r, r> 0, it follows that
¢x(-) is a robustly stabilizing feedback controller of a compact
positively invariant set ' of (17).

Next, given a stabilizing feedback robust controller ¢,(-) for each
A€ Ag, we provide a guaranteed subset of the domain of attraction D),
of a compact positively invariant set A/, for the nonlinear closed-loop
uncertain system using Lyapunov stability theory.

THEOREM 4.1 [15] Let A € Ag. Consider the nonlinear uncertain closed-
loop system (17) with ¢\(-)€® and let Ny be a compact positively
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invariant set of (17). Furthermore, let X\ C D be a compact neighbor-
hood of N'x. Then Ny is a robustly asymptotically stable set of (17) for
all F(-,-) € F, if and only if there exists a Cofunction Vy: X\ — R, with
V C' on X\\N'y, such that

VA(x) =0, x€eN,, (18)
Va(x) >0, x€X\N), (19)

V(%) & Vi(x)F(x,5(x)) <0, x€X\Nx, F(-,)) € F. (20)
In addition, a subset of the domain of attraction of N y is given by
Dy £ V5 (0,03), (21)
where ¢, £ max{8 > 0: ¥;1([0, 4]) C X»}.

Remark 4.1 1t follows from Theorem 4.1 that for all x, € D) and each
open set O such that Ny, C O C D,, there exists a finite time 7> 0 such
that x(¢) € O for all t> T and F(.,-) € F. Alternatively, Theorem 4.1
can be restated by requiring V() to be a C! function on X such that
conditions (19) and (20) hold and V,(x) >0, x € N). In this case the
compact positively invariant set A, is defined by 'y £ ¥51([0, 55]),
where by 2 inf{8 > 0: Vx(x) <0, x € V;1([B,c:])}-

Note that conditions (18)—(20) imply that V(x) is a Lyapunov func-
tion guaranteeing robust stability of a compact positively invariant set
Ny of the closed-loop uncertain system (17). However, Condition (20)
is unverifiable since it is dependent on the uncertain system dynamics
F(-,-) € F. This condition is implied by the conditions

V() F(x, px(x)) < VA(X)Fa(x, 9a(x)) + Tax, #a(x)),
x € XA\\W), F(-,) € F, (22)
V;\(X)Fn(x, ¢,\()C)) + I‘)\(xﬁ (b,\(X)) < 09 X € X)\\N,\, (23)
where T'): D) x U—R, A€ Ag. It is important to note that condi-

tion (23) is a verifiable condition since it is independent of the uncer-
tain system dynamics F(-,-) € F. To apply Theorem 4.1, we specify a
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bounding function T',(:,) for an uncertainty set F such that I',(-,-)
bounds F. In this case conditions (22) and (23) are satisfied. Hence, if
the V,(x) satisfying (18), (19), and (23) can be determined, then robust
stability of a compact positively invariant set A’y of (17) is guaranteed.
For further details see Section 6 and [28]. For the remainder of the
paper we assume that the structure of the system uncertainty is such
that there exists I'y(:, ) such that (22) and (23) hold.

We stress that the aim of Theorem 4.1 is not to make direct compari-
sons with existing methods for estimating domains of attraction, but
rather in aiding to provide a streamlined presentation of the main
results of Section 5 requiring estimates of domains of attraction for local
set point designs. Since D, given in Theorem 4.1 gives an estimate of
the domain of attraction using closed Lyapunov sublevel sets, it may
be conservative. To reduce conservatism in estimating a subset of the
domain of attraction several alternative methods can be used. For
example, maximal Lyapunov functions [29], Zubov’s method [15,30],
ellipsoidal estimate mappings [31], Carlemann linearizations [32], com-
puter generated Lyapunov functions [33], iterative Lyapunov function
constructions [34], trajectory-reversing methods [3], and open Lyapunov
sublevel sets [35], can be used to construct less conservative estimates
of the domain of attraction.

5. ROBUST NONLINEAR SYSTEM STABILIZATION VIA
A HIERARCHICAL SWITCHING CONTROLLER
ARCHITECTURE

In this section we develop a nonlinear robust stabilization framework
predicated on a hierarchical switching controller architecture param-
eterized over a set of moving nominal system equilibria. Specifically,
using equilibria-dependent Lyapunov functions or, instantaneous (with
respect to a given parameterized nominal equilibrium manifold)
Lyapunov functions, a hierarchical nonlinear robust control strategy is
developed that stabilizes a compact positively invariant set by robustly
stabilizing a collection of nonlinear uncertain closed-loop subsystems
while providing an explicit expression for a guaranteed domain of
attraction. A switching nonlinear robust controller architecture is devel-
oped based on a generalized lower semicontinuous Lyapunov function
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obtained by minimizing a potential function, associated with the
domain of attraction of each controlled uncertain subsystem, over a
given switching set induced by the parameterized nominal system equi-
libria. In the case where one of the compact positively invariant sets
parameterized by the nominal system equilibria is globally robustly
asymptotically stable with a given robust subcontroller and a struc-
tural topological constraint is enforced on the switching set, the pro-
posed nonlinear robust stabilization framework guarantees global
asymptotic robust stability of a compact positively invariant set asso-
ciated to any given parameterized nominal system equilibrium.

To state the main results of this section several definitions and a key
assumption are needed. Recall that the set As C A,, 0 € Ag, is such that
for every ) € Ag there exists a robust feedback control law ¢,(:) € ®
such that a compact positively invariant neighborhood N, C D of the
nominal equilibrium point x) € D, of (16) is robustly asymptotically
stable with an estimate of the domain of attraction given by D,. Since
N, A€ Ag, is a positively invariant set, it follows from Theorem 4.1
that there exists a Lyapunov function V() satisfying (18)—(20), and
hence, without loss of generality, we can take D), A € Ag, given by
(21). Furthermore, we assume that the set-valued map U:Ag~2P,
where 2P denotes the collection of all subsets of D, is such that Dy =
U()), A€ Asg, is continuous. Here, continuity of a set-valued map is
defined in the sense of [22, p. 56] and has the property that the limit of
a sequence of a continuous set-valued map is the value of the map at
the limit of the sequence. In particular, since D), A € As, is given by (21),
the continuity of the set-valued map ¥(-) is guaranteed provided that
V\(x), x € D), and c) are continuous functions of the parameter A € Ag.
Next, let S C Ags, 0 € S, denote a switching set such that the following
key assumption is satisfied.

ASSUMPTION 5.1 The switching set S C Ag is such that the following
properties hold:

(i) There exists a continuous positive-definite function p:S — R such
that for all A € S, \#0, there exists \; € S such that

P(M) <p(X), Ny CDy,. (24)

(i) If A\, A\ €S, A# Ny, is such that p(\) = p(\1), then Dy N Dy, = 0.
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Note that Assumption 5.1 assumes the existence of a positive-
definite potential function p()), for all A in the switching set S. It fol-
lows that, for each A € S, there exists an equilibrium point x, with an
associated domain of attraction D,, and potential value p(\). Hence,
every domain of attraction has an associated value of the potential
function such that, according to (ii), domains of attraction correspond-
ing to different local set point designs intersect each other only if their
corresponding potentials are different. In particular, given D)y, X €
S\{0}, it is always possible to find at least one intersecting domain of
attractlon Dy, A1 € S, such that the potential function decreases and
’D,\l contains N'. This guarantees that if a forward trajectory x(),
t>0, of the controlled uncertain system approaches A, then there
exists a finite time 7> 0 such that the trajectory enters D,,. Finally, it
is important to note that the switching set S is arbitrary. In particular,
we do not assume that S is countable or countably infinite. For exam-
ple, the switching set S can have a hybrid topological structure involv-
ing isolated points and closed sets homeomorphic to intervals on the
real line.

Next, we show that Assumption 5.1 implies that every level set of
the potential function p(-) is either empty or consists of only isolated
points. Furthermore, in a neighborhood of A =0 every level set of p(-)
consists of at most one isolated point. For the statement of this
result, let By, A € U,, denote the largest open ball centered at x, and
contained in D,, that is By = {x € D: ||x — x,|| < r\}, where ry 4
Mminyesp, ||x — xa||-

PROPOSITION 5.1 Let S C Ag be such that Assumption 5.1 holds. Then
for every a >0, p~ () is either empty or consists of only isolated points.
Furthermore, there exists 3> 0 such that for every o. < 3, p~ () consists
of at most one isolated point.

Proof  Suppose, ad absurdum, that there exists Aep(a),a>0,such
that \ is not an isolated point in p~!(e). Now, let Nc p~'(a) be a
neighborhood of ) and note that, by continuity of ¥(-) and the fact
that \ € g“‘(a) is not an isolated point, for every ¢ >0, there exist
A1, A2 € N such that ||x), — x),|| <€ and p(\)=p()=ca. Now,
choosing € <ry +r), yields Dy ND,, # 0 contradicting (ii) of
Assumption 5.1. Hence, if p~'(a), a >0, is non-empty, it must consist
of only isolated points.
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Next, suppose, ad absurdum that for all §>0 there exist two iso-
lated points Aj, )\ € N5 2 {X € S: ||A|| < 6} such that p(\))=p()\2).
Now, repeating the above arguments leads to a contradiction. Hence,
there exists 4 > 0 such that if \; € Vg, then N;Np~' (p(A1)) = {\1}.
Now, since p(-) is continuous and positive definite, it follows that
there exists 8>0 such that p~'(a) C N;, a<f3, and hence r o),
a < f3, consists of at most one isolated point. O

Note that Proposition 5.1 implies that, if p~'(a;), a > 0, is bounded,
then there exists a finite distance between isolated points contained in
P~ (o) which consists of at most a finite number of isolated points.
Finally, since in a neighborhood of A =0 every level set of p( - ) consists
of at most one isolated point, a particular topology for S, in a neigh-
borhood of the A=0, is homeomorphic to the interval [0,a], a>0,
with 0 € S corresponding to 0OeR.

Now for every x € D, = U)\E s Dy, define the viable switching set
Vs(x ) = {)X € §: x € D)}, which contains all A € S such that x € D,.
Note that if we consider a sequence {\,},-; C Vs(x), that is, x € Dy,
such that lim,_., A, = J, it follows from the continuity of the set-
valued map () that x € Dj. Thus, A € Vs(x) which implies that Vs(x)
is a nonempty closed set since it contains all of its accumulation points.

Next, we introduce the switching function As(x), x € D, such that
the following definitions hold

V(x) 2 p(As(x)), As(x) 2 argmin{ p(A): A € Vs(x)}, x € De. (25)

In particular, As(x), x € D,, corresponds to the value at which p()) is
minimized wherein A belongs to the viable switching set. The following
proposition shows that “min” in (25) is attained and hence V(x) is well
defined.

PROPOSITION 5.2 Let SCAs and let p:S — R be a continuous
positive-definite function such that Assumption 5.1 holds. Then, for all
X € D, there exists a unique As(x) € Vs(x) such that p(As(x)) =
min{ p(A\): X € Vs(x)}.

Proof Existence follows from the fact that p(-) is lower bounded and
Vs(x), x € D, is a nonempty closed set. Now, to prove uniqueness
suppose, ad absurdum, Ag(x) is not unique. In this case, there exist
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A1, A2 € S, A # Ay, such that p(A)) =p(Ay) and x € Dy, N Dy, # @ which
contradicts (ii) in Assumption 5.1. O

The next result shows that V(-) given by (25) is a generalized
Lyapunov function candidate, that is, V(-) is lower semicontin-
uous on D..

THEOREM 5.1 Let 8 C Ag be such that Assumption 5.1 holds. Then the
Sfunction V(x) = P(As(x)), x € De, is lower semicontinuous on D, and
continuous on D (x).

Proof Let the sequence {X,},oy C D. be such that lim, . X, = %
and define A £ liminf, . As(xn). Here we assume without loss of gen-
erality that {As(x,)},c, converges to J; if this is not the case, it is
always possible to construct a subsequence having this property. Since
p(+) is continuous (and hence p(lim,_.o As(xy)) = lim,—o p(As(x4))),
it suffices to show that V(%) < p(}). Suppose, ad absurdum, that V(%) >
p(X). In this case, there exists a positive integer o such that V(&) >
V(xn), n>ng. Now, since by definition As(%) minimizes p()\) for
A € Vs(%), it follows that V(%) < p(X), A € Vs(%). Hence, since V(%) >
V(xn) = p(As(xn)), n > no, it follows that }\g(x,,) & Vs(%) and X¢ Dy y(x,)»
n>ny. Now, define the closed set D=2 Un_n0 Dig(x,y such that
{%n}nen, C D. Since D is closed, it follows that % € D which implies
that there exist n; > ng such that £ € D,\s(xn which is a contradiction.
To show that V(x) is contmuous on 'D,\S(x it need only be shown that
V(X) is upper semicontinuous on D,\s(x), or, equivalently, V(%) > p(}).
Since lim,—,c X, = X and X € D) (z), there exists a positive integer ny
such that x, € Dy z), n>ny. Hence, /\s(x) € Vs(x,) and V(%) >
V(%n), n > na, which implies that V(%) > p()). O

Next, we show that with the hierarchical nonlinear robust feedback
control strategy u = ¢)(x)(x), x € D, V(-) given by (25) is a general-
ized Lyapunov function for the nonlinear feedback controlled uncer-
tain dynamical system (3). The controller notation ¢,(x)(x) denotes a
switching nonlinear robust feedback controller where the switching
function Ag(x), x € D, is such that definition (25) of the generalized
Lyapunov function V(x), x € D., holds for a given potential function
p(+) and switching set S satisfying Assumption 5.1. Furthermore, note
that since @yy(x)(x) is defined for x € D, it follows that the solution
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x(+) to (3) with xo € D; and u = @)(x)(x) is defined for all values of
t € I, such that x(¢) € D.. However, as will be shown, since D, is a
positively invariant set, [0, +00) C Z,,, while if xo € D, is such that
x(#), t <0, is always contained in D, then Z,, = R. Finally, note that
since the solution x(?), ¢ € Zy,, to (3) with xp € D and u = @y (x)(x) is
continuous, it follows from Theorem 5.1 that V(x(2)), t € Z,, is right
continuous. Hence, using the continuity of p(-) and the definition of
V(x), x € D, it follows that As(x(?)), ¢ € Z,, is also right continuous.
Now, the continuity of F(.,-) € F and ¢y(-), A€ As, imply that
F(x(t), drg(x()) (x(1))), F(-,-) € F, t € I, is right continuous.

THEOREM 5.2  Consider the nonlinear controlled uncertain dynamical
system (1) with F,(0,0)=0, and assume there exists a continuous func-
tion: Ao — Do, 0 € A, parameterizing a nominal equilibrium manifold
of (2), such that x) =1(A\), X € A,. Furthermore, assume that there exists
a C° feedback control law ¢x(-), A € As C A, with 0 € Ag, that locally
stabilizes a compact positively invariant neighborhood Ny of x, for all
F(-,-) € F with a domain of attraction estimate Dy and let S C As,
0 € S, be such that Assumption 5.1 holds. If As(x), x € D., is such that
V(x), x € D, given by (25) holds and x(t), t € Iy,, is the solution to (1)
with x(0) = xo € D, and robust feedback control law

u=Pyx(x), x€D,, (26)

then D, is robustly positively invariant and V(x(f)), t >0, is nonincreas-
ing. Furthermore, for all t,,t,>0, V(x(2)) = V(x(ty)), t €[t1, ), if and
only if As(x(2)) = As(x(t1)), t €[t1, t2). Finally, for all t € T, such that
As(x(2)) # 0, there exists a finite time T >0 such that V(x(t+ T)) <
V(x(2)).

Proof First, note that x € 9D, implies x € D) (x). Since ¢y
robustly stabilizes N (,) with domain of attraction D4(x), it follows
that, for all x € 0D, and F(-,) € F, the flow of F(x, ¢)(x)) is directed
towards the interior of D)) and consequently towards the interior
of D., which proves positive invariance of D.. Next, let x(f), t € Iy,
satisfy (1) with u(z) = ¢, (x()), where ), = As(x(2)), and let, for an
arbitrary time ¢, >0, the feedback control law u = ¢'\r| (x) robustly
asymptotically stabilize the compact positively invariant neighbor-
hood N M of X\, with domain of attraction DM . Now, it follows from
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(i) of Assumption 5.1 that x(t;) € Dy, \W, and hence, by Theorem 4. 1
there exists a C' Lyapunov function V,\ () such that V>‘, (x(t))

Ay (D)VE(x(2), Pag(x(ey (x(1)), 120, and M, (x(1)) = VA (x(11))
F(x(t1), ¢a,, (x(t1))) <0, F(-,-) € F. Next, since F(x(t) qﬁ,\s(x(,))(x(t)))
F(.,) € F, t € I,,, is right continuous, it follows that there exists § >0
such that V’v; (x(£)) <0, t€[t1, t; + 6], which implies that V), (x(?)) <
Vi, (x(t1)), t€[t1, 1, +6]. Hence, x(t) € Dy, \W, C D, telti,ti+8],
and ), € Vs(x(¢)), t€[ti,t;+6], which implies that V(x(7)) <
V(x(t1)) =p(A\y), t€[t1, t1+6]. Now, since #; >0 is arbitrary, it fol-
lows that V(x(¢)), t> 0, is a nonincreasing function along the forward
trajectories x(f), ¢ >0, of (1) with u(z) = ¢, (x(2)).

Next, assume that x(¢) € D), and V(x(?)) = I/:(x(tl)), t€ln,n+9].
Now, suppose, ad absurdum, that )\, t € [t1,¢; + 6], is not constant, that
is, there exists #; € [t1, 4 + 5] such that ), # X,,. In this case x(#;) €
Dy, NDy, and p(,) = p(A,), which contradicts (ii) of Assumption 5.1.
Hence, it follows that if V(x(1))= V(x(1)), € 1,11 + 6], then ), =
Ay, LE [, 0 + 6]. Conversely, if for #1,1,>0, A\, = N, t €[t1, 2], then
V(x(£)) = V(x(21)), t €[t1, t2], is immediate.

Finally, for an arbitrary ¢; > 0, suppose, ad absurdum, that V(x(t)) =
V(x(t))#0, t > 1,, or, equivalently, A\, = \,, € S\{0}, > ;. Then the
feedback control law @), (-) = ), (-) robustly asymptotically stabilizes
the compact positively invariant set N’ ), - In this case, it follows from
Assumption 5.1 that there exists A; # ), such that p(\;) < V(x(#,)) and
N ,\,l € 15/\1 , which implies that there exists 0 < a < ¢, such that N/ z C

Y ([0 a]) C D,,.Hence, it follows from Remark 4.1 that x(¢) approaches
the level set V,\ (o) in a finite time 7>0 so that V(x(t; +T)) <
p(A) < V(x(t)), which contradicts the original supposition. O

Next, we show that the hierarchical robust switching nonlinear
controller (26) guarantees that the generalized Lyapunov function (25)
is nonincreasing along the closed-loop system trajectories with strictly
decreasing values only at the switching times which occur when the
closed-loop system trajectory enters a new domain of attraction with
an associated lower potential value.

COROLLARY 5.1  Consider the nonlinear controlled dynamical system (1)
with Fy(0,0)=0 and assume the hypothesis of Theorem 5.2 hold. Then
V(x(2)), t>0, is strictly decreasing only at the switching times which
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occur when the trajectory x(1), t € Ly, , enters a new domain of attraction
with an associated lower potential value.

Proof First, we consider the case where x(;) € ’Zo))\tz, with A, 2
As(x(#2)) and £, > 0. It follows from the continuity of the closed-loop
system trajectories x(-) that there exists #; < f, such that x(t,) € D»,
which implies that \,, € Vs(x(#1)) and V(x(z;)) < V(x(2,)). Since V(x(?)),
t>0, is a nonincreasing function of time, it follows that V(x(f))=
V(x(t2)), t €[t1, 15]. Alternatively, assume that x(#,) € BD,\IZ, and sup-
pose, ad absurdum, that there exists 7, < 1, such that x(¢1) € Dy,,. Then
At = Ay, tE[, 5], and, since Vx, (x),x € Dy,,» attains its maximum at
x(t2) € 8D, it follows that ¥, (x(2)) < Vi, (x(2)), t € [11, 1], which
contradicts the fact that V), (x(#)), t>0, is a decreasing function of
time. Hence, x(7) ¢ D), and V(x(?)) < V(x(z2)), for all 1 < 1. O

Finally, we present the main result of this section. Specifically, we
show that the hierarchical robust switching nonlinear controller given
by (26) guarantees that the closed-loop system trajectories converge to
a union of largest invariant sets contained on the boundary of inter-
sections over finite intervals of the closure of the generalized Lyapunov
level surfaces. In addition, if the switching set S is homeomorphic to
an interval on the real line and/or consists of only isolated points, then
the hierarchical switching nonlinear controller establishes robust asymp-
totic stability of the compact positively invariant set AVy.

THEOREM 5.3  Consider the nonlinear controlled uncertain dynamical
system (1) with Fy,(0,0)=0 and assume there exists a continuous func-
tion: Ay — D,, 0 € Ao, parameterizing a nominal equilibrium manifold
of (2), such that x) =1(\), A € A,. Furthermore, assume that there exists
aC® feedback control law ¢x(-), A€ As C A, with 0 € Ag, that locally
stabilizes a compact positively invariant neighborhood N\ of x) for all
F(.,-) € F with a domain of attraction estimate D) andlet S C Ag,0 € S,
be such that Assumption 5.1 holds. In addition, assume As(x), x € D,
is such that V(x), x € D, given by (25) holds, and, for xy € D, x(2),
t € Iy, is the solution to (3) with the robust feedback control law

u= d’/\s(x) (x), x € D.. (27)
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If xo € D, then x(t) — M2 Uyeg M, as t—oo for all F(.,-) € F,
where G £ {y>0:R,NDy # 0}. If, in addition, Sy 2 {Ae&: DN
Dy # B} is homeomorphic to [0, a], a> 0, with 0 € Sy corresponding to
0€R, or S consists of only isolated points, then the compact positively
invariant set Ny is locally robustly asymptotically stable with an esti-
mate of domain of attraction given by D.. Finally, if D = R" and there
exists A\ € S such that the feedback control law ¢(-) globally robustly
asymptotically stabilizes the compact positively invariant set N5, then
the above results are global.

Proof The result follows from Theorems 3.2, 5.1, and 5.2. Specifi-
cally, Theorem 5.2 implies that if x(7) € D, for an arbitrary 7 > 0, then
V(x(?)) = V(x(7)) = 0, ¢ > i. Hence, As(x(f)) = 0, ¢ > 7, and the feed-
back control law u= @y(x) robustly asymptotically stabilizes Ny with
an estimate of the domain of attraction given by Dy. In this case, Dy is
a compact positively invariant set of (3) with the robust feedback con-
trol law (27). Next, it follows from Theorems 5.1 and 5.2 that V{(-)is a
generalized Lyapunov function defined on D.. Now, it follows from
Theorem 3.2 that, for all xy € D, x(t) — M ast— oo forall F(,ye F.

Next, if Sy is homeomorphic to [0, a], a > 0, with 0 € S correspond-
ing to 0 €R, so that Assumption 5.1 is satisfied, it follows from the
continuity of the set-valued map ¥(-) restricted to Sy that V() is con-
tinuous on Dy = Ry, hence Theorem 3.2 guarantees that M = M,.
Alternatively, if Sy consists of only isolated points with finite pairwise
distance, it follows that G consists of the isolated values of p(-) eval-
uated on the elements of S,. Hence, since 72, 2 RA\V71(v),v€G, is
bounded, V() can only assume a finite number of distinct values on
’fZA,, ~ € G, including the zero value. Now, it follows from Theorems 3.2
and 5.2, respectively, that M, C 7%7 and, for all x¢ € D\Dy, there
exists an increasing unbounded sequence {#,},-,, with 7o =0, such that
V(x(ty41)) < V(x(¥)), n=0,1,... Thus, no forward trajectories can be
entirely contained in R,, v € G\{0}. Hence, M, =0, v € G\{0}, and
M= M. In both the aforementioned cases, since Ny is a compact
positively invariant set with an estimate of the domain of attraction
given by Dy and M is the largest invariant set in Dy, it follows that
My C Ny. Hence, x(f) — Ny as t — oo for all F(-,-) € F establishing
local robust asymptotic stability with an estimate of domain of attrac-
tion given by D..
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Finally, let D = R” and assume S, 2 {\ € §&: D) =R"}isnot empty.
In particular, if X € S, then the feedback control law qu( ) globally
robustly stabilizes N5. Now, Assumption 5.1 implies that if A€ Sy,
M # X, then p()q) 76 p(X2). Furthermore, since D5 =D; =R", we
obtain that A, \; € V.g(x) for all x € R”. Next, assume without loss of
generality that p(A;) < p(},), and note that since As(x) minimizes p(-)
over Vg(x), we obtain that As(x) # Xy, x € R". It follows that V(x) <
min{ p(}): A € Sg} for all x€R” and only the (unique) value X € S,
that minimizes p(-) over S, is assumed by the switching function Ags(-),
so that all the other elements of Sy can be discarded from S. Hence,
without loss of generality, assume that there exists a unique de 8
such that ¢5(:) globally robustly stabilizes 5. Now, define Sa
{xeS:p(\) <p(A)}and D, £ 2 U)eg D which is a compact positively
invariant set. Hence, if xq € Dc, it follows from the first part of the
theorem that M is a local attractor and, if Sy is homeomorphic to an
interval on R or consists of only isolated points, Ny is robustly asymp-
totically stable, with (in both cases) an estimate of the domain of attrac-
tion given by D.. Now, global robust attraction to M as well as global
robust asymptotic stability of Ny is immediate by noting that if
xo¢ Ds, then the forward trajectory of (3) approaches D, in a finite
time for all F(., ) € F.If, in fact, x¢ D, then As(x) = X which implies
that for all x¢ D, the feedback robust control law (27) stabilizes N
and, by Assumption 5.1, N5 € D.. In this case, it follows from
Remark 4.1 that for all x ¢ D, there exists a finite time 7"> 0 such that
x(T) € D.. Hence, global robust attraction as well as global robust
asymptotic stability of the compact positively invariant set Ny is
established for the respective cases. O

Remark 5.1 The switching set S is quite general in the sense that it can
have a hybrid topological structure involving isolated points and closed
sets homeomorphic to intervals on the real line. In the special case
where the switching set S consists of only isolated points, the hierarchi-
cal robust switching control strategy given by (27) is piecewise contin-
uous. Alternatively, in the special case where the switching set S is
homeomorphic to an interval on R, the hierarchical robust switching
control strategy given by (27) is not necessarily continuous.

Remark 5.2 1In the case where the switching set S is homeomorphic
to an interval on R and a robust stabilizing controller ¢y(-) for Ny
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cannot be obtained, that is, c¢o=8y, No C D, still holds. Hence,
Theorem 5.3 guarantees attraction to Ny if Ny NOD, # 0. Alter-
natively, if Ny C D, then Ny is robustly asymptotically stable.

It is important to note that since the hierarchical robust switching
nonlinear controller u = @yy(x)(x), x € D, is constructed such that the
switching function As(x), x € D,, assures that V(x), x € D,, defined by
(25) is a generalized Lyapunov function with strictly decreasing values
at the switching points, the possibility of a sliding mode is precluded
with the proposed robust control scheme. In particular, Theorem 5.2
guarantees that the closed-loop state trajectories cross the boundary of
adjacent regions of attraction in the state space in an inward direction.
Thus, the closed-loop state trajectories enter the lower potential-valued
domain of attraction before subsequent switching can occur. Hence, the
proposed robust nonlinear stabilization framework avoids the undesir-
able effects of high-speed switching onto an invariant sliding manifold.

Finally, to elucidate the hierarchical robust switching nonlinear con-
troller presented in this section, we present an algorithm that outlines
the key steps in constructing the feedback controller.

ALGORITHM 5.1 To construct the robust hierarchical switching feed-
back control ¢)yx())(x(t)), t > 0, perform the following steps:

Step 1 Construct the nominal equilibrium manifold of (2) using
u=(x, X), where ©(-,-) is an arbitrary function of A € A,. Use
Fo(x, p(x,\)) =0 to explicitly define the mapping () such
that xy=1vY(\), A€ A,, is a nominal equilibrium point of (2)
corresponding to the parameter value . We note that the above
parameterization can be constructed using the approaches given
in[7-9].

Step 2 Construct the set As C A, such that, for each X\ € As, there
exists a compact positively invariant set N'y containing the
nominal equilibrium point x,. Furthermore, for each )€ Asg,
construct an asymptotically stabilizing controller ¢,(-) for the
positively invariant set Ny with an associated domain of attrac-
tion D), corresponding to the level set c) and Lyapunov function
V(). Here, the controllers ¢5(-), A€ As, can be obtained
using any appropriate standard linear or nonlinear stabilization
scheme.
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Step 3 Construct the switching set S C As and a potential function
p:S — R such that Assumption 5.1 is satisfied. In particular:
(a) If A € S is an isolated point of S with corresponding com-
pact positively invariant set ./})/' > then there exists \y € S
such that p(A\;) <p(\), N'x C Dy,.
(b) If A € S is an accumulation point of S then Step 3(a) is
automatically satisfied if p(-) does not achieve a local mini-
mum at .
©) If M\MES, A#N, is such that p(\)=p(\,), then
DyNDy, = 0.
Step 4 Given the state space point x(t) at t >0, search for solutions to
Vix(@®)=cy, A €S.
(a) If no solution exists, As(x(t)) is unchanged.
(b) If one solution \; exists and p(\;) <p()\) then switch
As(x(2)) to Ay
(c) If more than one solution exists, repeat Step 4(b) with )\
replaced by the solution that minimizes p(-). Note that mul-
tiple solutions can be avoided by modifying the c)’s.
Step 5 Construct the hierarchical robust switching feedback controller
Prs(x()) (x(2)) where As(x(t)), x € De, constructed in Step 4 is
such that (25) holds.

Note that the existence of a switching set S and a potential function
p(+) such that Step 3 is satisfied, can be guaranteed by modifying the
first part Step 4 as follows:

Step 4 Given the state space point x(t) at t= 1t ékAT, where
AT>0 and k=0,1,..., search for the solutions of V\(x(t))<cy,
A€As.

In this case, the switching set S C Ag need not be explicitly defined
and is computed online.

6. HIERARCHICAL ROBUST CONTROL FOR
PROPULSION SYSTEMS

In this section we apply the hierarchical robust switching nonlinear con-
trol framework to the control of rotating stall and surge in jet engine
compression systems with uncertain compressor pressure-flow maps.
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Rotating stall is an inherently two-dimensional local compression
system oscillation which is characterized by regions of flow that
rotate at a fraction of the compressor rotor speed while surge is a one-
dimensional axisymmetric global compression system oscillation which
involves axial flow oscillations and in some case even axial flow reversal
and can damage engine components and cause flame-out to occur. For
maximum compressor performance, operating conditions require that
the pressure rise in the compressor correspond to the maximum pres-
sure operating point on the stable axisymmetric branch of the com-
pressor pressure-flow map for a given throttle (control) opening [36].
However, unavoidable discrepancies between compression systems
models and real-world compression systems can result in degradation
of control-system performance including stability. In particular, as
shown in [28], feedback controllers that do not account for the pres-
ence of uncertainty in the compressor-flow map can have adverse effects
on compression system performance by driving the compression sys-
tem to a stalled equilibrium or a surge limit cycle.

To capture post-stall transients in axial flow compression systems we
use an ny,-mode Galerkin approximation model for the nonlinear par-
tial differential equation characterizing the disturbance velocity poten-
tial at the compressor inlet proposed by Moore and Greitzer [36]. This
model is given by [37]

d¢ _ dw 1 To
azzAsfﬁ-’rDsl’/)C(d’)“e‘I’, E:m(‘fﬂ_{_%ﬁ), (28)

where ¢ = [p1¢ -+ qS,,f]T is a vector of n¢ 2 2nm + 1 axial flow coeffi-
cients measured around the compressor inlet annulus, ¥ is the nor-
malized total-to-static pressure rise, £ is a nondimensional time, 7y
is a parameter proportional to the control throttle opening, e =
mt--. 1]T € R™, Ic is the characteristic length of the compressor, B
is a nondimensional compliance parameter, c(¢) 2 [c(é)
Pe(da) - ¢c(¢,,f)]T € R is the vector compressor characteristic map,
and the system matrices 4g, Dg € R" ™ are functions of the compres-
sor geometry and mode number. For complete details of the model see
[37]. The compliance parameter B is a function of the compressor rotor
speed and the system plenum size. For large values of B a surge limit
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cycle can occur while rotating stall can occur for any value of B. The
standard nominal model considered in literature [36] for the compres-
sor pressure-flow characteristic map ™ (¢;), i=1,...,ny, is a cubic

function given by
3 (¢ 1 /¢ o
1+2< — )_E( — . l--l,...,nf,

(29)

where ¥c,, H, and W are parameters that can be used to shape the nom-
inal compressor characteristic map. In actual compressor data [38,39]
however, the compressor characteristic map exhibits a noncubic mor-
phology that can drive the compression system to deep hysteresis
during rotating stall. Hence, to account for compressor performance
pressure-flow map uncertainties we assume that

Y& (¢) =Y, + H

Yo (di) £ Y™ (6) + 6(¢1), i=1,...,m (30)

where 61(¢;) is an uncertain perturbation of the nominal compressor
characteristic map g™ (¢;), i=1,...,nz

In the case where n,, =1 and §y(-) =0, the above model collapses to
the low-order three-state Moore—Greitzer model which has been exten-
sively used by researchers in the literature to develop control design
approaches for controlling axial flow compression systems. However,
a fundamental shortcoming of the low-order, three-state Moore—
Greitzer model and, as a consequence, the control design methodol-
ogies based on the model, is the fact that only a one-mode expansion
of the disturbance velocity potential in the compression system is con-
sidered. Since the second- and higher-order disturbance velocity poten-
tial harmonics strongly interact with the first harmonic during stall
inception, they must be accounted for in the control-system design pro-
cess. This is clearly shown in [37] where a globally stabilizing back-
stepping controller predicated on the one-mode Moore—Greitzer
model [40] drives the compression system to a stalled condition in the
cases where two modes are used in the simulation. This clearly shows
that a multi-mode model that accounts for higher mode interactions
with the first mode is necessary for achieving control objectives during
stall inception. The multi-mode modeling problem is further exacer-
bated when addressing compressor pressure-flow map uncertainty.
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In order to address the above challenges for controlling uncertain
multi-mode axial compression system models, we use the hierarchical
robust switching nonlinear control framework developed in the paper.
Here, the locus of the parameterized equilibrium points on which the
equilibria-dependent Lyapunov functions are predicated on, are charac-
terized by the axisymmetric stable pressure-flow equilibrium branch of
the nominal system for a continuum of mass flow through the throttle.
For this development define the shifted flow and pressure state vari-
ables x; = ¢/ W —2eand x, = (\Il 1c,)/H — 2, so that the maximum
pressure point on the nominal compressor characteristic map is trans-
lated to the origin. In this case, the translated nonlinear uncertain sys-
tem is given by

xp(1) = Axe(t) + P[RR (xe(2)) + Aus(xe(2))] — exp (1), (31)

50 = (S0, (32)
where
Aé%C-AS, P.A.ll Ds, ﬂézBH, ué%hf—l (33)
YR () £ [WR™(xn) - YRS ()]
Aap(xr) £ [685s(xn) - 6s(xtm)] (34)

and (") represents differentiation with respect to nondimensional scaled
time ¢ 2 (H/Wic)t.

Next, it follows from (30) that the actual compressor characteristic
¥sc(xg), i=1,...,ng, is given by

Ysc(xn) = Y™ (xg) + 6s(xa), i=1,...,n5 (35)

where Y™ (xg) = —3x% — 1x}, is the nominal compressor charac-
teristic and &s(xg), i=1,...,nq is an uncertain perturbation of the
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nominal characteristic 5™ (xg), i=1, ..., ne. Here, we assume

85() € A 2 {85 :R — R: [8855(3) — m1 ()]
x [61ps(y) —ma(»)] <0, y € R}, (36)
where my, m,: R — R are given arbitrary bounding functions.
Carrying out Step 1 of Algorithm 5.1, let g=m=1 and
©(x¢, X5, A) = A so that the system equilibria are parameterized by the

constant control #(¢) = \. In this case, (31) and (32) with Ays(x¢(2)) =0
have an equilibrium point at (xgy, xp»), where

X2 e, xpy 2N = —1x. (37)

Next, we carry out Step 2 of Algorithm 5.1. Specifically, for the uncer-
tain compression system (31) and (32), we show that there exists A >0
and a robust control law such that a neighborhood A/, of the nominal
equilibrium point (xp,xpx) is locally robustly asymptotically stable
with domain of attraction D). Specifically, consider the equilibrium-

dependent Lyapunov function candidate predicated on the nominal
pressure-flow axisymmetric stable equilibria given by

Va(xe, xp) = gln-f (e — x0) TP (e — xp2) + %52 [xp — x>, (38)
with Lyapunov derivative
V(xts %5) = nlf(xf o) P[Axs + P (452 (xr) + At () — exp]
b — v 0] (S - )

= L (a2 YR (N~ U (x) ~ A
= hx (e, Xp) [xp — P (V)] (39)

where u(xg, xp) = ux(x, Xp) 2 A+ hy(xg,xp) and Ay :R™ xR — R is
such that Ay (xg, xpy) = 0. Now, it follows from Theorem 4.1 that
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requiring V' (xr, xp) <0, (xr,xp) € DA\, guarantees local robust
stability of the compact positively invariant set A for all §i5(-) € A.
However, (39) is dependent on the system uncertainty and needs to be
checked for all 8v5(xg;) € A, i=1, ..., ng, and hence is unverifiable. To
obtain verifiable conditions for robust stability we utilize Conditions
(22) and (23) and introduce an equilibrium-dependent bounding
function T',(-) for the uncertainty set A such that I'y(-) bounds A
Specifically, define T'y : R* — R by

T(xr) £ §lma (o) — m (x0)] " [ma(x6) — m (x0)] + 3 (e = Ae) (3 — Ae)
+ 5 (xr = Xe) [ () + mo(x1)), (40)

where my (xr) 2 [ (xa1) . . .y ()] " and my(xr) 2
[ma(xq1) ... ma(xp,)]". Now, note that if 6)(-) € A then

< 3l (xc) + ma(xc) + xc — de — 280 (x0)] "
X [m1(xc) + ma(x¢) + xp — Ae — 2095 (xr)]
— [Aps(xr) — ma (e0)] T [ A (x1) — 2 ()]
= [ma(xg) — my ()] [ma () — my ()] + & (e — Ae) T (¢ — Ae)

+ 1 (xr = ) [ (x¢) + ma(x¢)] — (% — Ae)T Ay (1),

and hence (x¢— Ae)TAp(x) <Ta(xp), 6¥(xp) € A, i=1,...,n;. Now,
requiring

;r( = Xe) [ (Ve — i&™ (x1)] — ha (e, Xp) Pxp — Y™ (V)]

1
+n—f1‘,\(xf) <0, (x,xp) € Dy\N), (41)

it follows from (39) that Vy(xr, xp) < 0, (xr, Xp) € Dr\N, so that all
assumptions of Theorem 4.1 are satisfied.

Next, for simplicity of exposition we set my(-)=—my(-)=m("),
where m:R— R is a given arbitrary function. In this case, it follows
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from (37) and (41) that

V,\(xfaxp) <
_anfzm:{(Xfi -\’ [(Xfi)2 + (A+3)xp + A(A+3) — %] - 2m2(xf,~)}
i=1

= ha(xt, Xp) Pxp — Y (W] <0, (x1, Xp) € DA\ (42)

Now, a sufficient condition guaranteeing ¥V (xr,xp) < 0, (xr, Xp) €
D,)\W,, is given by

1 &

EZ(X&- - )\)2p1,\(xf,-) > 0, (Xf, xp) € D,, (43)

i=1

1 &
Tm;(xﬁ = %paa(x) + b (vt xp) [p — ™ (V)]
1 &
> mim), (nxp) N, (44)
i=1

A A
where  pia(xg) = ain(xn)® 4+ buxn +cin and  pox(xn) = aan(xn)® +
byxxs; + co) are such that

Pia(xa) + pax(xs) = () + (A + 3)xp + A +3) — 1. (45)

Note that (43) is satisfied in a domain D), # () only if there exists dy > 0
such that pyy(xp) >0, —d) < xp— A< dy, i=1,...,n; and, in order
to satisfy (44), we require that py\(xg) >0, i=1,...,n. Hence, we
require that p;,(A\) >0 and p,y(A) >0. A particular choice of Ay(-, )
satisfying (44) is given by

ha(xt, Xp) 2 wlxp — Y™ (V)] p(x¢ — Ae), (46)

where w: R — R is such that xw(x) > 0, x # 0, and p : R — R is positive
definite. However, note that for x;= e it is not possible to satisfy (44)
and hence by continuity there exists a neighborhood of this point
where (42) cannot be satisfied. Thus, we construct a robust control
law such that a neighborhood N of the equilibrium point (xg, x,,) is
robustly stabilized with a given domain of attraction.
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Next, note that it follows from (45) that for all 0 < A < \/7/_6 -1,
D1A(A) + p2ax(A) <0 and hence the necessary conditions p;(A) >0 and
Poa(A) >0 for satisfying (43) and (44) are violated. Furthermore, if
A>4/14/3 -1, then pu(x)+par(xe) >0, i=1,...,n, which
implies that it is always possible to choose py,(-) such that p1(xg) > 0,
i=1,...,nz More generally, there exists Ao > 1/7/6 — 1 and Agiobat >
v/14/3 — 1 such that D, collapses to the equilibrium point and Dy,
coincides with the whole state space. Note that Ay and Agobar are
dependent on the particular choice of the coefficients a, b1, c1, G2,
b2 Y and Cox.

Next, with u(xy, xp) = ux(xy, X,), we provide an estimate of the domain
of attraction for (31) and (32). In particular, define

A [ LG xp): Valxn xp) S kin}, Ao < A < Aglobal,
Dy = (47)
R* xR, X> Aglobal,
Ny 2 {(x xp): Valxe xp) < kar}, A > Ao, (48)
where
A K A 17\ 7!
ki = 2nfd’\’ b= (m?X{Pﬁ }) > (49)
and
k2 max L(xf x0) TP (xr — xpp) + 152[x —xpl’,  (50)
(x5,%p) €D 21, 2 2 P P
subject to
*——Z(xﬁ A)2paa (x11) + ha(o6p, Xp) xp — YER™(A Zm (xg)-
(51)

The Lyapunov level surfaces Vx(xg, xp) =kix and Via(xg, Xp) = ko are
constructed such that the intersection of the boundary of D), with the
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plane x, = xp, is a closed surface contained in the region {x;: —d) <
xi— A <dy,i=1,...,ns and N contains the region where (44) is not
satisfied, so that ¥y (xr, x,) < O for all (xt, x,) € Dy\ . Note that for
20 <A< Agiobat, K12>0 and k5 >0. Furthermore, since V(xg, xp) is
continuous and radially unbounded Ay and D, are compact sets for
A € [Ag, Agioball, and hence positively invariant. Thus, if the state space
trajectories of (31) and (32) enter D), then N, serves as an attractor.
Now, to ensure that N’y C D, we require that k; > ksy. A typical plot
for the level set values ki, and k») as functions of A is shown in Fig. 2.
Note that there exists Amin such that &y, = koy,,, and hence D), =
N),..- Hence, requiring A > Ayin assures the necessary condition that
Ny C Dy.

The coefficients of the two parabolas p;,(-) and p,,(-) must be such
that (45) is satisfied along with the above stated necessary conditions.
This leaves some degree of freedom in the choice of the coefficients aj ,,
b1y, Cixn a2, b2y, and c,), which can be used to maximize the domain
of attraction D, and minimize the attractor A'y. This leads to the fol-
lowing optimization problem for each \:

max (/\2 - fﬂ) , (52)

a1,b12,C1,822,b23,022

FIGURE 2 Level set values k;, and k», as functions of A.
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subject to

an+an =1, (53)

bix+ by =X+3, (54)

e+ e = AA+3) -1, (55)

(@r — N2 (andh + baagy + c22) = 2ner?, (56)
2a1A + by =0, (57)

ay <0, (58)

b3, —dapciy >0, (59)

b3y —daxcan <0, (60)

where qx é 2(12)\/\—3b2,\ - \/(2a2,\)\——3b2,\)2 - 1602)\(2C2,\ —bz,\)\) 8(12,\
and m(xg) is chosen to be a constant value k€R, i=1,...,n:. Note
that, under the assumption that p;,(-) achieves a maximum at A, the
objective function given by (52) corresponds to maximizing d?. Further-
more, conditions (53)—(55) are obtained by equating the coefficients of
equal powers in (45). Condition (56) guarantees that (xg — A)*pax (x5,
i=1,...,ns is a convex function for all xg; so that Ay is minimized,
while conditions (57)—(59) guarantee that p;,(-) achieves a maximum
at X and p;,(A) > 0. Finally, (60) guarantees that p,,(-) > 0.

To carry out Step 3 of Algorithm 5.1, we consider two topologies
for the switching set S; namely an isolated point topology and a hybrid
topology. For S consisting of countably finite isolated points let
S={)o---, )\q} be such that A\, < Ag < -+ <A1 < Aglobals Ao > Aglobals
and Ny, CD,, i€{0,...,g—1}, and let pQA)=X, A€ S. To guar-
antee that p(-) satisfies Assumption 5.1 construct Ay, k=0,1,...,q,
online by considering the smallest solution to the equation V), (x(#%)) =
Crhe> A kAT, where AT>0 and k=0,1,...,q, and define S 2
{M}_,- Now, with the robust feedback switching control law
U = Pxg(xe,xp) (X1> Xp), Where As(xr, xp) is obtained as described in Step 4
of Algorithm 5.1, it follows from Theorem 5.3 that the compact
positively invariant set N is globally asymptotically stable for
all éys(-) € A. Furthermore, note that As(x(z)), >0, is piecewise
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constant and hence the robust feedback switching control law u =
Brs(xe,xp) (X£> Xp) 18 piecewise continuous.

For S consisting of a hybrid topology let S = [Amin> Aglobal] U {A},
where A > Agobar i such that N € D/\, for at least one
e [Amin> Agiobat], and let p(A)=A, A € S. Since p(-) does not have a
local minimum in S (other than the origin) and every A € [Amin, Agiobail
is an accumulation point for S, we are guaranteed, by Step 3(b) of
Algorithm 5.1, that Assumption 5.1 is satisfied. Now global robust
asymptotic stability of N, for all &)s(-) € A is guaranteed by
Theorem 5.3 with the feedback control law u = @y (x,,x,) (Xt, Xp), Where
As(xg, xp) is obtained as descrlbed in Step 4 of Algorithm 5.1. In
particular, if (x¢(0), xp(0)) € e U/\G[/\mvaglobal] D, then )\s(x(t)) t>0,
is a continuous function. Alternatlvely, if (x¢(0),xp(0))¢D then
As(x(8)) = X, 1 €[0,7), where 7 > 0 is such that (x¢(7), xp(7)) € dD.
In this case, A\s(x(¢)), ¢ >0, is continuous modulo one discontinuity at
t = 1. Note that since N, = Dy, N\, is a global attractor but not
Lyapunov stable (see Remark 5.2 for details).

It is important to note that the proposed robust switching nonlinear
controller framework can be incorporated to address practical actua-
tor limitations such as control amplitude and rate saturation con-
straints. Specifically, since ), 2 As(x¢(t), xp(2)) is proportional to the
throttle opening (actuator) and since the dynamics of )\, indirectly char-
acterize the fastest admissible rate at which the control throttle can
open while maintaining stability of the controlled system, it follows
that by constraining how fast A, can change on the nominal equilib-
rium branch effectively places a rate constraint on the throttle open-
ing. This corresponds to the case where the switching rate of the
nonlinear controller is decreased so that the trajectory (x¢(f), xp(1)),
t>0, is allowed to enter D). Additionally, amplitude saturation con-
straints and state constraints can also be enforced by simply choosing
Amax < Aglobal SUCh that Dpmax £ U,\m<,\< A P2 18 contained in the
region where the system is constrained to operate. In this case, the
hierarchical robust switching nonlinear controller guarantees local
robust asymptotic stability of V', with an estimate of the domain of
attraction given by Dpax. Of course, in practice it is sufficient to imple-
ment controllers with adequate domains of attraction and a priori
saturation constraint guarantees rather than implementing global con-
trollers without realistic actuator limitations.

'min
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To show the efficacy of the proposed control approach, we consider
a two-mode compressor model so that the state space model given
by (28), or, equivalently, (31) and (32) is of sixth order. Furthermore,
we recall from [37] that the axial flow variables ¢;, i=1,...,ng are
explicitly related to the system squared stall mode amplitudes J,, n=
1,...,ny, while the averaged circumferential flow in the compressor is
given by & 2 T /ns. Using the parameter values [c =6, H=0.32, W=
0.18, ¥c, = 0.23, and B=0.1, and the initial condition (J;,J>, ®, ¥) =
(0.15,0,0.36,0.87), corresponding to a perturbation in the first-mode
disturbance velocity potential, the proposed robustly globally stabiliz-
ing controller and the nonrobust equilibria-dependent controller devel-
oped in [37] were used to compare the closed-loop system response.
Here we model the uncertain perturbation to the nominal pressure-
flow compressor characteristic map by

6P(x) =0.1cos[10(x; — 1)], i=1,...,5. (61)

Figure 3 shows the nominal (¢¢°™(¢)) and actual (1)c(¢)) pressure-
flow compressor characteristic maps for k=0.1. For this value of k¥
the optimization problem outlined above for maximizing the domain

o4
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0.6
————— Nominal N
0.5¢ R Bounds Y
_— Actual

0. - - . . .
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Axial Flow Coefficient(d)

FIGURE 3 Actual and nominal compressor characteristics.
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FIGURE 4 Controlled squared stall amplitudes, flow, and pressure versus time.

of attraction D) and minimizing the attractor N, yields
Amin = 0.2547,  Agiobat = 1.1604, d, . = 0.2236, k) = 0.0050.

Finally, we  use  u(x¢(t), xp(2)) = A+ hxa(x¢(2), x5(2)),  where
(1), %p (1) = xp(t) — 42 (N).

Figure 4 shows the controlled responses for the squared stall cell
amplitudes J; and J,, the compressor flow ®, and the pressure rise ¥
for both designs. This comparison illustrates that the robust controller
globally stabilizes the axisymmetric operating point corresponding to
(J1,J2, @, ¥)=(0,0,0.4133,0.8471). Alternatively, the nonrobust con-
troller proposed in [37] drives the system to a limit-cycle instability
induced by the control action. Finally, Fig. 5 shows the throttle open-
ing versus time of the proposed robust controller.
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FIGURE 5 Throttle opening versus time.

7. CONCLUSION

A nonlinear robust control-system design framework predicated on a
hierarchical switching controller architecture parameterized over a set
of nominal system equilibria was developed. Specifically, a hierarchical
robust switching nonlinear control strategy is constructed to stabilize a
given uncertain nonlinear system by robustly stabilizing a collection of
nonlinear controlled subsystems. The switching nonlinear controller
architecture is designed based on a generalized Lyapunov function
obtained by minimizing a potential function over a given switching set
induced by the parameterized nominal system equilibria. The pro-
posed framework was used to design robust switching controllers to
control jet engine compression systems with uncertain pressure-flow
map data.
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