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A direct method for finding the solution of variational problems using a hybrid function
is discussed. The hybrid functions which consist of block-pulse functions plus Chebyshev
polynomials are introduced. An operational matrix of integration and the integration of
the cross product of two hybrid function vectors are presented and are utilized to reduce
a variational problem to the solution of an algebraic equation. Illustrative examples are
included to demonstrate the validity and applicability of the technique.
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1 INTRODUCTION

Orthogonal functions and polynomial series have received considerable
attention in dealing with various problems of dynamic systems. The main
characteristic of this technique is that it reduces these problems to those
of solving a system of algebraic equations, thus greatly simplifying the
problem and making it computationally plausible. The approach is based
on converting the underlying differential equations into integral equa-
tions through integration, approximating various signals involved in
the equation, by truncated orthogonal series and using the operational
matrix of integration P, to eliminate the integral operations. The form
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of P depends on the particular choice for the orthogonal functions.
Special attention has been given to applications of Walsh functions [1],
block-pulse functions [2], Laguerre series [3], Legendre polynomials [4],
Chebyshev polynomials [5], Fourier series [6] and Bessel series [7].

The direct method of Ritz and Galerkin in solving variational prob-
lems is well known. Chen and Hsiao [1] introduced the Walsh series
method to variational problems. Due to the nature of the Walsh func-
tions, the solution obtained were piecewise constant. References [3—5]
used Laguerre polynomials, Legendre polynomials and Chebyshev poly-
nomials respectively to derive continuous solution for the first example
in [1]. Furthermore, Razzaghi and Razzaghi [6,8] applied the Fourier
series and Taylor series respectively to derive continuous solutions to
the second example in [1], which is an application to the heat conduc-
tion problem. It is shown that to obtain the Taylor series coefficient,
an ill-conditioned matrix commonly known as Hilbert matrix is used.
Hence the Taylor series is not suitable for the solution of the second
example in [1].

In the present paper we introduce a new direct computational
method to solve variational problems. The method consists of reduc-
ing the variational problem into a set of algebraic equations by first
expanding the candidate function as a hybrid function with unknown
coefficients. The hybrid functions, which consist of block-pulse func-
tions plus Chebyshev polynomials are introduced. The operational
matrix of integration and the integration of the cross product of two
hybrid function vectors are given. These matrices are then used to
evaluate the coefficients of the hybrid functions in such a way that the
necessary conditions for extremization are imposed. Here we will dem-
onstrate the results by considering the illustrative examples discussed
in [3] and the second example in [1]. It is shown that while the same
results are obtained in the first example, the hybrid series approach
produces an exact solution for the heat conduction problem.

2 PROPERTIES OF HYBRID FUNCTIONS

2.1 Hybrid Functions of Block-Pulse and Chebyshev Functions

Hybrid functions b(n,m,t), n=1,2,...,N, m=0,1,...,M —1 have
three arguments, n and m are the order for block-pulse functions and
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Chebyshev polynomials respectively and ¢ is the normalized time. They
are defined by

2N n—1 n
T —=t—2n+1), forte |(——)t; <t),
b(n,m,z>={ ’”(tf ”*) or e[( N )fo) (1)

0, otherwise.

Here, T,,(¢) are the well-known Chebyshev polynomials of order m
which are orthogonal in the interval [—1, 1] with respect to the weight
function w(z) = 1/v/1 — ¢2 and satisfy the following recursive formula:

Timi1(t) = 2tTp(t) — Ty (1), m=1,2,3,...

Since b(n, m, t) consists of block-pulse functions and Chebyshev poly-
nomials, which are both complete and orthogonal, the set of hybrid
functions is complete orthogonal set.

2.2 Function Approximation

A function f(#) defined over [0, #;) may be expanded as
f() = c(n,m)b(n,m, 1), (2)
where

c(n, m) = (f(t)ab(n’ma l))

in which (-, -) denotes the inner product.
If the infinite series in Eq. (2) is truncated, then (2) can be written as

N
f(t) ~ Z c(n,m)b(n,m, t) 3)

or
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where
C=1c(1,0),...,c(1, M —1)|c(2,0),...,c(2,M = 1)| - --
|e(N,0),...,¢(N, M —1)]",

B(t) = [b(1,0,1),...,b(1, M — 1,1)|b(2,0,1),...,b(2,M — 1,1)]| - - -
|b(N,0,7),...,b(N,M —1,0)]". (4)

The integration of the vector B(f) defined in Eq. (4) can be approxi-
mated by

/ "B(¢')de’ ~ PB(0), (5)
0

where P is the NM x NM operational matrix for integration and is
given by

E H H H
0 FE H . H
p=|0 0 E H (6)
0 0 O E
In Eq. (6), we have
0 00 0
-1
N _ ’
M
(=1) ! 00 ... 0
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and E is the operational matrix of integration for Chebyshev poly-
nomials on the interval [((n — 1)/N)tz, (n/N )tr] given in [5] by

E=
1 1
5 5 00 0 0 0
-1 1
< 0 ¢ 0 0 0 0
-1 -1 1
v < 05 0 0 0
N
-1 -1 1
2(M = 1)(M = 3) 0 00 .. 4(M -3) 0 aM-1)
1 0 0 0 0 —1 0
2M(M =2) 4(M-2)

The integration of the cross product of two hybrid function vectors is
obtained as

_ [ T
D= /0 B(1)B™(¢)d1, )

where D is a diagonal matrix, given by

In Eq. (8) L is M x M nonsingular symmetric matrix given by

i
L=—"(L L
2N( 1+ L),
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where
L=
. 0 -1 (-M-1 -y (=¥ -1
3 2(M —1)(M =3) 2M(M -2)
0 -1 0 (=11 (-=1)M+
3 2M(M - 2) M+ 1)(M-1)
1 0 _1 (_I)MH 1 (_1)M+2_1
3 15 2M+1)(M—1) 2(M +2)M
0 -1 0 (_1)M+2_1 (_1)M+3_1
15 2AM +2)M 2(M+3)(M+1)
(=M1 (=M -1 (=1)M+ -1 0
AM-—1)(M—-3) 2MM-2) 2AM+L)M—-1) =~ @M-3)2M-5)
(- -1 (=1)M*+ (=nM+2 _q 0 -1
IMM=2) 2M+O)(M-1) 2M+2)M @M -1)2M -3)
and
L2 =
. 0 -1 (=M1 -1 (=™ -1
3 T 2M-1)(M=3) 2M(M-2)
0 X o (_I)M—Z _1 (_I)M-l ~1
CAM-2)(M—4) 2(M—1)(M-3)
-1 0 . (-nM3 1 (-1)M2 1
3 T M -3)(M-5) 2(M-2)(M-4)
0 -1 0 (=M -1 (=" -1
3 T 2M-4)(M—-6) 2(M—-3)(M-5)
(=DM -1 =n*? -1 (=" -1 ) 0
2IM-1)(M=3) 2(M-2)(M—-4) 2(M-3)(M-5 "
(G (=¥ -1 =2 -1 0 1
MM —2) 2M-1)(M-3) 2(M-2)(M—-4) "

3 HYBRID FUNCTIONS DIRECT METHOD

Consider the problem of finding the extremum of the functional

1
J(x) =/0 Flt,x(t), x(¢)] dz.

©)
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The necessary condition for x(f) to extremize J(x) is that it should
satisfy the Euler—Lagrange equation

or_s(2r) _y
Ox dt\0x
with appropriate boundary conditions. However, the above differential
equation can be integrated easily only for simple cases. Thus numerical
and direct methods such as the well-known Ritz and Galerkin methods
have been developed to solve variational problems. Here we consider a
Ritz direct method for solving Eq. (9) using the hybrid functions of
Section 2.
Suppose the rate variable x(¢) can be expressed as

x(1) = CTB(¢). (10)
Using Eq. (5), x(¢) can be represented as

x(f) = /Ot)'c(t’) dt’ + x(0)

= CTPB(1) + [x(0),0,...,0]x(0),0,...,0]---|x(0),0,...,0 " B(z).

(11)
We can also express ¢ in terms of B(¢) as
1 1 3 1
t—[m,—z—ﬁ,o,...,ﬂm,ﬁ,...,o,...,o---
2N—1 1 T T
_, —,0,... = . 1
o a0 0] B = () (12)

Substituting Eqs. (10)—(12) in (9) the functional J(x) becomes a func-
tion of ¢c(n,m),n=1,2,...,N,m=0,1,2,..., M — 1. Hence, to find the
extremum of J(x) we solve

oJ
_9 _ =1,2,...,N, m=0,1,...,.M—1. 13
Beln) 0 n=12,...,.N,m=0 (13)

The above procedure is now used to solve the following variational
problems.
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4 ILLUSTRATIVE EXAMPLES

Example 1 Consider the problem of finding the minimum of the func-
tional [3]

1
J(x) =/0 [+ 12+ 2] dt (14)

with boundary conditions
x(0) =0, x(1)=1. (15)

Using Egs. (10)—(12) in (14) we get
J(x) = / 1 [CTB(t)B'(t)C + CTB(t)B'(t)d + CTPB(¢)B* (1) P*C] d¢
0

or
J(x) =C"DC+ C"Dd+ CTPDP'C (16)
where

1
— T
D= /0 B(1)B™(¢) dt.

Equation (10) and the boundary conditions in Eq. (15) imply

x(1) = CT/OIB(t)dt:%.

PR GG Vet O O R T O Vet !
e TV 1Y) | R e By 7o vaup )| B
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hence we have
T, 1

We now minimize Eq. (16) subject to (17) using the Lagrange multi-
plier technique.

Suppose
J(x) = J(x) + A(CTv - 1)

where ) is the Lagrange multiplier. Using Eq. (13), we solve

aJ aJ
5c=0 z;=0

or

2DC+ Dd+2PDP'C+ X v=0, CTlyv=1.

By choosing M =3 and N =4 we obtain

and

0.3]"

-

=1
,0, 12>

Bl—

—f1 =11 =1
v=[30,3,4.0 3,

]

Table I gives the approximate values of x(¢) using the hybrid approach
for M =3 and N =4, together with the exact solutions.

Example 2 Application to the heat conduction problem Consider the
extremization of

JZ/(;]BXZ——xg(t)] dt=/01F(t,x,5c)dt, (18)
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TABLE I Estimated and exact values of x(7)

t Hybrid Exact

0.0 0.000000 0.000000
0.1 0.041949 0.041950
0.2 0.079318 0.079317
0.3 0.112472 0.112473
0.4 0.141750 0.141750
0.5 0.167444 0.167442
0.6 0.189805 0.189806
0.7 0.209065 0.209065
0.8 0.225412 0.225413
0.9 0.239011 0.239012
1 0.249999 0.250000

where g(?) is a known function satisfying

with the boundary conditions
x(0) =0, x(1)=0. (19)

Schechter [9] gave a physical interpretation for this problem by noting
an application in heat conduction and [1] considered the case where
g(?) is given by

,3<t<l,
(20)
<

-1, 0<¢
g(l‘)={

vbJ
Bl
IA
NI—= =

and gave an approximate solution using Walsh functions.
The exact solution is

12, 0<t<y,
x(t)=q —32+1-1, 1<i<)

=
-~
N
I
-~
+
ool
.
ESTN
IN
~
IN
—
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Here, we solve the same problem using hybrid functions. First we
assume

(1) = CTB().

In view of Eq. (20), we write (18) as

1 /! 1/4 1/2 1
J=—/ x2(z)dt+4/ x(t)dt—4/ x(t)dt+/ x(#)dt
2 0 0 0 0

or
1 1 1/4
=3 / CTB(1)BTCdt +4CTP / B(r)dt
0 0
1/2 1
—4CcTp B(t)dt+CTP / B(?)dt.
0 0
Let

then, using Eqgs. (7) and (21) we have
J=31CTDC+ CTP[4v(}) — 4v(}) + v(1)]. (22)

The boundary conditions in Eq. (19) can be expressed in terms of
hybrid functions as

CTB(0)=0, CTB(1)=0. (23)

We now minimize Eq. (22) subject to (23) using the Lagrange multiplier
technique. Suppose

J* =T+ NCTB(0) + 1 CTB(1),
where \; and )\, are the two multipliers. Using Eq. (13) we obtain

%= DC+ Plav(}) — 4v(3) +v(D)] + MB(0) + 22B(1) =0. (24)
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By choosing M =3 and N =4, Egs. (23) and (24) define a set of 14 simul-
taneous linear algebraic equations from which the coefficient vector C
and the multipliers \; and ), can be found. The vector CT Pis

T
CTP [3’19:1532 "397_37%5_%,—19 %] . (25)

Further, to define x(¢) for ¢ in the interval [0, 4], we map [0,%] into
[-1,1] by mapping ¢ into 8¢ — 1 and similarly for the other intervals.
Using Eq. (25), we get
614[ +(8r—1)+1 [%(8[— 1)? —%” =112
0<r<g

={ 150
x(t) =
ﬁg{;[—% (8t—5)+3[(8t—5) ——”:%tz t+3,
3<t<3
a[-3- @D +ifiE-7 ]| =1 -4,
| i<e<t

which is the exact solution.

5 CONCLUSION

The hybrid function operational matrix P, together with the integration
of the product of two hybrid function vectors D, are used to solve the
variational problems. In the present method the hybrid functions con-
sist of block-pulse functions plus Chebyshev polynomials and reduce a
variational problem into a set of algebraic equations. The matrix D
introduced in Eq. (8) is a diagonal matrix, hence making hybrid func-
tions computationally very attractive. It is also shown that the hybrid
functions provide an exact solution for the heat conduction problem
presented in [1].
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