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The flow of a multiphase mixture consisting of a viscous fluid and solid particles between
two vertical plates is studied. The theory of interacting continua or mixture theory is
used. Constitutive relations for the stress tensor of the granular materials and the inter-
action force are presented and discussed. The flow of interest is an ideal one where we
assume the flow to be steady and fully developed; the mixture is flowing between two
long vertical plates. The non-linear boundary value problem is solved numerically, and
the results are presented for the dimensionless velocity profiles and the volume fraction
as functions of various dimensionless numbers.
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INTRODUCTION

Study of multiphase flows has become a strong field of research
and interest due to its immense number of applications. The classical
theories, primarily based on some type of an ‘averaging technique’
[itself based on continuum mechanics] has been presented in many text
books (cf. Soo, Ishii, Wallis). These theories, when applied to two-
phase flows have also become known as the two-fluid approach. In
general, solid particles or bubbles are dispersed in a liquid or a gas. To
assume that an assembly of solid particles behaves as a fluid is one of
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the limitations of the two-fluid model. An alternative approach to
study the multicomponent systems, similar in many ways to the
averaging technique, is the theory of interacting continua which is
based on the ideas of diffusion proposed by Fick (c¢f. Truesdell, 1962).
This theory has been used successfully in many interesting and diverse
fields such as phase transition (¢f. Gray and Svendsen, 1997), im-
miscible mixtures (¢f. Drumbheller, 2000), incompressible mixtures
(Costa Mattos et al., 1995), mushy zone (cf. Hills and Roberts, 1988),
debris flows (cf. Iverson, 1997), polymer-fluid mixtures (c¢f. Lusitg
et al., 1992; Kaloni et al., 1997), avalanches (Hutter, 1983), flow
through elastic layers and rubbers (¢f/. Rajagopal and Tao, 1995 for
this and many other applications of the theory), particulate mixtures
(¢f. Nunziato et al., 1983; Johnson et al., 1991; Massoudi et al., 1999).
The foundation of the theory is given in books by Truesdell (1984);
Dobran (1991) and Rajagopal and Tao (1995).

To use the mixture theory to study flows of solid particles entrained
in a fluid, we require the particles to be modelled as granular materials.
In recent years there has been considerable interest in understanding
the behavior of flowing granular materials. The situations encountered
include handling of substances such as coal, agricultural products, and
other particulate solids, and more complicated processes such as
fluidization, combustion, avalanches, ezc. (¢f. Gudhe et al., 1993). In
earlier studies, Johnson et al. (1991a,b) and Massoudi et al. (1999)
have formulated a two-phase flow theory based on the theory of
interacting continua. In this paper we will give a brief review of their
formulation. The objective is to study the flow of a mixture of a
linearly viscous fluid infused with small solid spherical particles,
flowing downward between two vertical plates. First, we present the
basic equations of mixture theory and then discuss the constitutive
relations for the granular stress tensor and the interaction force. The
emphasis in this paper is to give a brief review of the important issues
and the various mechanisms for the interactive force.

GOVERNING EQUATIONS

The details of the mixture theory is given in books by Truesdell (1984)
and Rajagopal and Tao (1995). At the same time review articles by
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Atkin and Craine (1976); Bowen (1976) and Bedford and Drumheller
(1983) shed light on specific issues and the important problems in
mixture theory. One of the most comprehensive continuum theories
developed for polycrystalline mixtures, granular composites, and fluid
suspensions is that of Twiss and Eringen (1971, 1972). The theory
of interacting continua, i.e., mixture theory, is well established, and
therefore we only present the equations of motion for the problem we
are investigating. The mixture theory, is in a sense, a homogenization
approach in which each component is regarded as a single continuum
and at each instant of time, every point in space is considered to be
occupied by a particle belonging to each component of the mixture
(cf. Truesdell, 1984). Balance laws are then written for each compo-
nent which takes into account interaction with other constituents.
Therefore, the way we see or imagine that the mixture is being formed
is that the fluid phase in its original configuration has the density p,
and volume ¥, and the solid phase in its original configuration con-
sists of ‘chunks’ of materials, with various shapes and sizes, with
voids separating them, in a given volume V5. The solid phase is then
‘homogenized’ by introducing the volume fraction field where the solid
materials are now distributed, in a sense crushed, over the control vol-
ume V,, and therefore the solid phase acts as a continuum with
density p,. We call this configuration the reference configuration for
the granular materials. Now the mixture is formed by the motion of
this ‘new’ granular phase and the fluid phase. Figure A shows the
details. It is important to notice that before the homogenization
process, the volume fraction is either zero or one; zero if we happen to
be in the void space, and one if we are on a solid material. After the
homogenization process, 0 <v < 1.

Since thermal, chemical, and electro-magnetic effects are not
considered in the present problem, the balance laws reduce to the con-
servation of mass and the conservation of linear momentum. And
since we are only considering a two-component mixture, we are left
only with four governing equations. The conservation of mass and the
conservation of linear momentum for the fluid phase and the solid
phase are:

o .
—apt—l+dlv(p1v1) =0 1)
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where b represents the body force, f; represents the mechanical
interaction (local exchange of momentum) between the two compo-
nents, p; and p, are the bulk densities of the fluid and solid con-
stituents, and T, and T, denote the partial stress tensors of the fluid
and solid respectively. In the above equations, v; and v, are the
velocity of the fluid and solid particles, respectively, (8/9t) denotes the
partial derivative with respect to time, (D;/Df) and (D,/Dt) are
the material time derivatives following the motion of constituent 1
and 2, i.e., the fluid and solid phases, respectively. The densities p;
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and p, are related to the pure densities of the fluid and solid phases
through the volume fractions. For a saturated mixture, the sum of
the volume fractions is equal to one, and therefore p; and p, are
related to prand p; via

P1=Pf(1_1’), (5)

P2 = ps, (6)

where v is the volume fraction of the solid particles and 0 <v <wv,, < 1,
where v,, is the maximum packing limit for the particles, and v=0
implies that there are no particles.

Equations (5) and (6), in a sense, follow from the definition
of mixture density, ie., pmix=p1+p2, and the ‘volume additivity
constraint’. This puts a restriction on the motion of the mixture (cf.
Mills, 1966), where it is assumed that the volume of the mixture is the
sum of the volumes of the individual constituents in their reference
configurations. Therefore,

Vtot = V] ‘+‘ V2 (7)
But

B Vtot
R (®)
Vtot

p1

P2

M ©)

Substituting (9) in (7) we have:

M, M
Vtot = —‘-1' + ‘—2 (10)
Pr o Ps

Substituting (8) in (10) we get the volume additivity constraint:

Py (11)
pPr Ps
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CONSTITUTIVE RELATIONS

Looking at Egs. (3) and (4), it is clear that in order to close the system
of equations, we need to provide constitutive relations for T;, T,, and
f;. Since, in our previous studies (¢f. Johnson et al., 1991a, b; Massoudi
et al., 1999) we have given the rationale and the justification for the
forms of the constitutive equations for the stress tensors, we will not
mention this here. Instead we will focus on an appropriate form for
the interactive force f;. Therefore, we assume that the stress tensors
for the fluid phase and the granular materials are given by:

Ty = [=p(p1) + Ar(p1)trD1 ]I + 246 (p1 ) D1, (12)

T, = [,30(1/) + ﬁ](l/)VI/ Vv + ﬂ2(V)trD2]I + ,34(1/)VI/ Q Vv + ﬂj,(l/)Dz,
(13)

where p is the fluid pressure, \sand pyare the viscosities of the fluid, D,
and D, are the symmetric part of the velocity gradients associated with
the fluid motion and the granular particles, respectively. Rajagopal
and Massoudi (1990) give the following interpretation for the various
material parameters: So(v) is similar to the pressure in a compressible
fluid and is given by an equation of state, B»(v) is like the second
coefficient of viscosity in a compressible fluid, 51(v) and B4(v) are the
material parameters connected with the distribution of the granular
materials and B;(v) is the viscosity of the granular materials. Fol-
lowing Rajagopal and Massoudi (1990), we assume that the mate-
rial parameters corresponding to the solid to be of the form

Bo(v) = Bov

Bi(v) = Bi(1 + v +17)

Ba(v) = By (v +17) (14)
Bs(v) = B3(v+17)

Bs(v) = B4(1 + v +17)

In their study, Rajagopal and Massoudi (1990) advocate using an
orthogonal rheometer to measure some of the material properties,
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specifically 8, and (. Through a simple analysis they show that if Eq.
(13) is to apply at equilibrium (static) case, then By < 0. Also, Bj is
related to the shear viscosity of the material and is therefore assumed
to be positive. B, is related to the second coefficient of viscosity and we
have no information about the sign of this parameter; however, since
for the flow of interest here tr D, =0, this term does not appear in
the equations. With regard to B; and B, individually, we have no
information (about the sign or the relative magnitude), as these terms
appear in the equations as a sum, i.e. (B, + By). Johnson et al. (1991)
assume that B; + B4 < 0. Later, Rajagopal et al. (1992) prove existence
of solutions when B;+ (34> 0, i.e., assuming that 3, and (4 are con-
stants. In our study, since we are assuming quadratic variations for
B, and B4, we follow the analysis given by Johnson et al. (1991) by
assuming B;+ B4 < 0. However, in the absence of any experimental
evidence, one should also do a parametric study for cases when
B+ B4 > 0, and then perform a stability analysis to see if indeed solu-
tions corresponding to positive or negative values are stable. And
since we have limited our analysis to isothermal cases, we do not
have any thermodynamic restrictions on these material coefficients.
Furthermore, since we expect T,— 0 as v— 0, i.e., when there are
no particles, there should be no stress, then we can see that the con-
stant terms in 3, and (3 have been set to zero. Finally, we should
mention that the structure given by Eq. (14) is only an assumption and
is by no means the most general approximation.

With the above formulation, we have already assumed that the
individual grains are incompressible in the sense that p; is constant.
And therefore, the material parameters [y—(34 now depend on v
instead of p,. We now turn our attention to the formulation of a
general constitutive relation for the interaction force in two-phase
flows. In general, these flows consist of a large number of solid par-
ticles or gas bubbles suspended in a fluid medium (such as air or
water). Most of the momentum exchange relations that have been
proposed for these types of two-phase flows are based on general-
izations of the force balance on a single particle moving through a
fluid (¢f. Zuber, 1964). First, a discussion and an overview of the
dynamics of a single particle in a fluid is presented. Then, a constitute
relation suitable for continuum theories of mixtures is proposed. The
details are given in Johnson et al. (1990).
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Tchen' (1947) synthesizes the work of Basset, Boussinesq, Stokes
and Oseen on the motion of a sphere settling under the force of gravity
in a fluid at rest. The resulting force balance, sometimes known as the
Basset-Boussinesq-Oseen (BBO) equation, is given by:

dra® | 2ra’

U= a u—=6 au
3 psU = 3 pr Wi

3
—6musa 4ma

-3 glps —pr), (15)

/ dr
\/ﬁ‘ 00 t——t1

where u is the velocity of the particle, prand p, are density of the fluid
and particle, respectively, a is the particle radius, g is the acceleration
of gravity, urand vy are viscosity and kinematic viscosity of the fluid,
respectively. The terms on the right hand side of Eq. (15) reflect the
presence of virtual mass, Stokes drag, Basset history effects, and
buoyancy. Tchen (1947) modified Eq. (15) to describe unsteady Stokes
motion of a solid spherical particle in a fluid with a uniform flow field.
His modifications include replacing the particle velocity by its relative
velocity, and the addition of a term accounting for pressure gradients
in the fluid. The resulting expression is:

4va® | 4md® | 2mdd . .
O A pf(u—v)—smfa(u—v)
tl) 4ma’
- _ - 16
6musa / —t_tl 1 3 glps — pr), (16)

where v is the velocity of the fluid in the neighborhood of the particle
but far enough away to be unaffected by it. We should note that Eq.
(16) is a scalar component of a more general vector equation. Corrsin
and Lumley (1956), noting that Eq. (16) applies only in the absence of
fluid velocity gradients, propose a more general equation, which takes
velocity gradients into account in its expression for the pressure
gradient. The source of disagreement over the form of the single
particle force balance concerns the pressure gradient term. Tchen
(1947) originally proposed the addition of a term accounting for the
pressure gradient based on an intuitive argument. Corrsin and Lumley
(1956) argued that, for a nonuniform flow field, the full Navier—
Stokes equations should be used to determine the pressure gradient.

"Tchen’s theory is studied extensively by Gouesbet et al. (1984).
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Buevich (1966) criticizes both previous studies (Tchen, 1947; Corrsin
and Lumley, 1956) in pointing out that adding a term to the BBO
equation is not necessary. Soo (1975,1976) argues that the pressure
gradient force is exactly balanced by fluid inertia forces and should
not appear in the force balance in any form. Maxey and Riley (1983),
based on an analysis similar to that of Buevich, propose the following
equation for the force on a sphere in a nonuniform flow:
m @z(m —my)gi+m E)—'|
st s i ) 8i i Dt YO
1 d 1 , 5
—sza{ui(t)—v,-[Y(t),t]—-Taa \Y% v,-|Y(t)}
—6map () ~nlX (0.~ ¥(0)}

((d/df){ui(ﬂ—v,-wv),ﬂ—(1/6>a2v2v,-|Y<r>})

t
+67ra2pf/ dr
0

Vv (t—T)
(17)

Note that the inclusion of velocity gradients in their analysis results
in modifications to the virtual mass, Stokes drag, and Basset history
terms. These velocity gradients correspond to the physical effect
known as Faxen forces.

Though Eq. (12) appears to be complete for a single particle in
Stokes flow, there are, in general, other forces that must be considered
(even for a purely mechanical system). In flows with high relative
velocity between phases, or large velocity gradients in the fluid phase,
lift may become an important effect (McLaughlin, 1989). Also, spin of
the particle is not taken into account in the above equations.

After this brief review, the question remains: What should be an
appropriate form for the interactive force f; where now we have an
assembly of particles? The general tendency has been to generalize
Eq. (17) by appropriately generalizing the coefficients appearing in
that equation. As Table I indicates there has been a great deal of
disagreements on the appropriate form of the pressure term, and in
fact, even on the form of the constitutive relations in general. In
the generalization approach, taken by many authors, for example
Anderson and Jackson (1967), terms proposed for the relative
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TABLE I Force due to pressure gradient

Author Pressure term

Tchen, 1947 Vpr((0v/0t) + v(dv/0x))
Corrsin and Lumley, 1956  Vp:((6v/0f) + (gradv)v — vV?2v)
Buevich, 1966 Vor((0v/0t) + (gradv)u)

Soo, 1975, 1976 0

Maxey and Riley, 1983 Vpr((0v/01) + (gradv)v)|,_y(,

acceleration term (virtual mass force) were not frame invariant (cf.
Truesdell and Noll, 1992). These were pointed out and corrected by
other authors (¢f. Drew, Homsy). A detailed review of these issues are
given in the report by Johnson ez al. (1990). We will only present the
form for f; based on their findings, recalling that the chemical, thermal,
and electro-magnetic effects have not been included.

A summary of the available results for each interaction force is

given below:

Drag acts parallel to the direction of flow and should always be
included in any model of two-component flow. This is the most
studied interactive force, and many experimental correlations for
different flow regimes are available in the literature.

Diffusion acts in the direction of density gradients. Little is known
about the form of the coefficients, but based on Miiller’s (1968)
analysis, we speculate that a term of this form should be included
for all situations.

‘Slip-Shear’ Lift acts perpendicular to the direction of flow. Its
importance increases with increasing volume fraction, relative
velocity, fluid density, fluid viscosity, and fluid velocity gradients.
It cannot be neglected in most situations. This is usually referred to
as Saffman’s lift force.

‘Spin’ Lift acts perpendicular to the direction of flow. Though
typically a much smaller effect than ‘slip-shear’ lift, it may become
significant at some points in the system (especially for larger particle
sizes, because W;—W, becomes larger). Its magnitude increases
with increasing volume fraction, fluid density, and relative velocity.
This may become important where the vorticity is large.

Virtual Mass effects are present only if there is relative acceleration
between the mixture components. The virtual mass force acts in
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the direction of flow and becomes larger with increasing volume
fraction and particle size. Its relative magnitude, in comparison to
the other forces accelerating the particles, depends upon the relative
densities of the components. It is especially important for large par-
ticles that have smaller densities than the fluid, for example large air
bubbles in a liquid medium.

e Basset Force is present only in unsteady (or accelerating) flows. It
acts in the direction of flow and increases with increasing particle
size, fluid density, and fluid viscosity. It has been suggested (but not
verified) that it also increases with volume fraction. This force
basically includes the history effects.

Therefore, a general (and yet simple enough for computational
purpose) constitutive relation for the mechanical interaction between
the mixture components, f;, is written as (Johnson et al., 1990):

fi =A;gradv + A F(v)(v2 — v1) + A3v(2 ter)_l/“Dl(vz -vi)
+A4I/(W2 - Wl)(Vz —_ Vl) + Asayy (18)

where a,,, is a properly frame invariant measure of the relative
acceleration between the mixture components and F(v) represents the
dependence of the drag coefficient on the volume fraction. The terms
in Eq. (18) reflect the presence of density gradients,” drag, “slip-shear”
lift, “spin” lift, and virtual mass, respectively. Miiller’s (1968) work
indicates that a term of the form A4; grad v must be included in the
interactions in order to get well-posed problems. The term multiplying
Az is a generalization of Saffman’s (1965, 1968) single-particle result
proposed in this form by McTigue et al. (1986). In the above equation,
W, and W, denote the spin tensor (the skew-symmetric part of the
velocity gradients) associated with the fluid and solid motions. As we
explained earlier, within the framework of mixture theory developed
here, we cannot directly account for particle size, or different particle
sizes, or particle shape, or surface roughness, or... However, since the

2The actual form of this interaction should include the terms o grad p; +a; grad p,
where ) and a; are constants. If we assume that the system is a saturated mixture with
incompressible components, this expression simplifies to 4, grad v, where 4;=as—a;.
Since no information concerning the coefficients a; and a; is available and a term of the
same form arises from the granular solid stress tensor, this term will be neglected in the
present work.
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coefficients in Eq. (18) are determined either by performing simple
experiments on an assembly of known size and known shape particles,
or by extrapolating and extending the results of a single particle, as a
result material or geometrical properties can enter in the constitutive
relation, through these coefficients. Therefore, we have, for example
(cf. Johnson et al., 1990):

Ok
A=5p
. 3646) 0 "

j=—F——

4 a (19)
3

A4=pr

_ T3 1420
A5-23a v -2

where a is particle radius. If the particles are non-spherical, such as
fibers, then the directionality may become an important element, and
in that case we need to use (or develop) the constitutive relations which
take the microstructure and directionality, i.e., anisotropic nature of
the material, into account.

For the present study, we assume A;=A,=As=0, and therefore
Eq. (18) becomes:

f; = A F () (V2 — Vi) + Asv(2tr D2) 74Dy (va — wy), (20)

In the previous studies (c¢f. Johnson et al., 1991; Massoudi et al.,
1999) we have used the following relation for F(v):

F(v) = v(1 + 6.55v) (1)

This correlation was proposed by Drew (1976) and is based on the
work of Batchelor (1972) for sedimentation of particles. In the present
study (following Johnson ef al., 1990), we assume F(v) to be of the
form given by (¢f. Apazidis, 1985)

F(v) = v(4+3v+3V 8;/ —312) (22)
(2-3v)

Notice that the above equation diverges as v — (2/3).
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A mixture stress tensor can be defined as (¢f. Green and Naghdi,
1969):

Tn =T +Ts, (23)

where,
Ti=(1-v)Ty, and T, =T, (24)

so that the mixture stress tensor reduces to that of a pure fluid as
v— 0 and to that of a granular solid as »— 1. Obviously this is an
idealization. At a certain v,,, called the maximum packing fraction, the
particles are in such a close proximity to each other that unless they
are crushed or deformed, » can no longer change. Therefore, in the
numerical solution to all the practical problems of interest, we have to
set certain limits or restrictions on v so that v can never be greater than
V. One of the advantages of having formulated the mixture theory as
presented here is that in the limit where there are no particles, the
momentum equations reduce to the appropriate form for a pure fluid,
in this case the Navier—Stokes Equation, and in the limit where
v — vy, ie., a dense flow, the equations reduce to that of a flowing
granular materials. In this case, the effect or the presence of the fluid in
the interstices is ignored.

FLOW BETWEEN TWO VERTICAL PLATES

We now consider the flow of fluid—solid mixture down a vertical
channel due to the action of gravity (c¢f. Fig. 1). The plates are assumed
to be infinitely long, and therefore the edge effects are ignored. The
flow is assumed to be steady, one dimensional, fully developed flow.
Let X denote the direction of motion and let the vertical plates be
located at Y= —1 and Y=1. The flow field is assumed to be of the
form:

v=v(y)
vi = V()i (Fluid) (25)
v, = u(y)i (Solid)

With the above flow field the equations for conservation of mass
are automatically satisfied. The balance of linear momentum in the
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[
=

FIGURE 1 Flow between two infinite plates.

non-dimensional form reduces to

BV _dvd®V  d*vdV Rdu

1- B Y SN A Nt
IG5 d N

du dv dF dv
+D1[F(V)(;y—?y) +ZITI;( V)d‘] 0
d*u dvdu 7
2% = - —_ =
(1/+1/)d}7+(1+2 )d_d_+RzV DF(v)(u—V)=0
3
21 +v+ 2) dy +(1+2 )(Z,Z)
dV "2 gy =
+B Ly ‘dy dy(u—V)—O

(26a)

(26b)

(26c)
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where,
-y - u - Vo P
= = =—, V= -, = -, = — 27
y h u Yo ™ P1 2% P2 2 (27)
and
A 2 — By _ B
C2=—2h; Fr=20, Re:'oouOh; Bo=‘—q7§ 1=_21‘5
PoUo hg Kr poUy prugh 28
5_ B g _ B _A3h'/? (28)

3=—— By=—7rs; G=—775.
potioh pough? pouy”

where A is some characteristic length, for instance half the space
between the plates, u is a characteristic velocity, and p, is a char-
acteristic density. A look at Eq. (28) reveals that as a result of our
formulation we end up with two different kinds of dimensionless
numbers. The first is due to material parameters in the constitutive
relations for each stress tensor, and the second kind is due to the
coefficients appearing in the interactive force. Therefore, we can see
that C, and Cj arise because of the interaction mechanisms of drag
and lift, respectively, while the other dimensionless numbers are due
to material parameters. Also we need to mention that there is no
dimensionless number due to pressure (gradient) because the pressure
term is eliminated by cross differentiating the two momentum equa-
tions for the fluid phase, and therefore we are left with only one
momentum equation for the fluid component; however, the order
of the equation is raised, as we can see from Eq. (26(a)).

For the sake of simplicity, let us define the following non-dimen-
sional parameters.

2C R 255
Di=CyRe; Dy =22, R =—; Ry=—2.
B Fr FrB;
_ (29)
_ By . L= -G
B + By’ B +B,

Unlike the list of the dimensionless numbers given in Eq. (28), the
ones given in Eq. (29) are not ‘real’ dimensionless numbers in the sense
that they represent combination of various effects, and it is only a tool
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to reduce the number of parameters in the problem. Equations
(26(a)—(c)) are to be solved numerically subject to appropriate
boundary conditions. Looking at Eq. (26) we can see that we need
three boundary conditions for the fluid velocity ¥, two boundary
conditions for the solid velocity u, and two boundary conditions for
the volume fraction v. Assuming the no-slip boundary condition for
both phases on both walls, we have:

=0
V=0 at7=-1 (30)
=0
V=0 at¥=1 (31)

For the volume fraction, we can see that due to the symmetry in the
problem, the value of v at the two walls can be assumed to be equal,
and this gives us one condition, given by Eq. (34). The other condition
is obtained by providing an integral condition given by Eq. (32). This
is simply a measure of the amount of granular materials fed into the
system. We still need one more boundary condition for V. We assume
that we know the flow rate of the mixture, Q, given by Eq. (33).

1
N= / il (32)
1 _
Q:[l[(l —v)V + valdy (33)
v(1) = v(-1) (34)

We realize that Egs. (32) and (33) would make the numerical scheme
more complicated, but we think both of these conditions are ex-
perimentally controllable parameters and therefore more realistic
values can be assumed a priori.

NUMERICAL RESULTS

Equation (26(a)) represents the momentum equation in the direction
of the flow for the fluid phase, recalling that the pressure term has been



VERTICAL FLOW OF MULTIPHASE MIXTURE 521

eliminated via cross-differentiation. Equations (26(b)—(c)) are the
momentum equations for the solid phase in the direction of the
flow, and normal to the direction of the flow, respectively. It is
important to note that Eq. (26(c)) basically gives us the volume
fraction distribution, and in the absence of lift forces, this equation
is not coupled to the other two equations and can be integrated
directly.

The system of Eq. (26(a)—(c)) subject to the boundary conditions
(30) through (34) are solved numerically using a collocation code
COLSYS (c¢f. Ascher et al., 1981). Collocation is implemented by
COLSYS using B-spline basis functions. COLSYS also features an
adaptive mesh-selection procedure based on error estimates. The mesh
points are repositioned to roughly equidistribute the error, which is
estimated using mesh halving and checked against user prescribed
tolerances. The integral conditions are implemented using a secant
shooting method to refine the initial guesses. Here, we carry out a
parametric study of the equations and delineate how the two of the
non-dimensional parameters affect the solution.

In this paper, we will focus our attention only on two dimensionless
numbers, B and R,. We can see from Eq. (29) that B is the ratio of
the so-called ‘pressure term’ (related to By) to the ‘distribution term’
(related to (B1+34). Therefore, an increase in B implies either an
increase in the pressure term, i.e., 3y becomes larger, or a decrease in
the parameters responsible for the distribution of the particles, i.e.,
81+ Ba. Therefore, a smaller B could mean larger density (or volume
fraction) effects. The manner in which the volume fraction profiles
change with B are shown in Figure 2. Notice, that as B increases the
volume fraction increases towards the center of the channel and
decreases towards the walls of the channel. This means that as B
increases the particles have a tendency to accumulate (or to gather) in
the center of the channel, with fewer particles being at the two plates.
Also, it is interesting to note that all the profiles cross each other
at two locations, a distance of approximately 0.6 unit from the center
of the channel. It is hard to say whether this has any relation to the
Segre —Silberberg effect (also known as the tubular pinch).

Next we consider the effects of R,, on the velocity profiles. This
number is a combination of three separate factors: (i) It is a measure of
the gravitational effects via the Froude number, Fr (where larger Fr
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means that gravity is less important, or that the fluid has more inertia),
(ii) it is a measure of the heaviness (higher densities) of the particles,
(iii) and it is a measure of how ‘viscous’ the granular material is.
Therefore, when R, is increased, it could be due to any or a com-
bination of the following factors: the particles are heavier, i.e., p; is
larger; Bj is smaller, i.e., the granules are less viscous (Bj is the inverse
of the solid’s Reynolds number); Fr number is smaller. Figure 3 shows
the effect of R, on solid velocity profile. Here, the velocity increases as
R, is increased; the profiles start to ‘flatten out’ and they begin to look
like turbulent velocity profiles for a viscous fluid. The manner in which
R, affects the fluid velocity profile is shown in Figure 4. Notice, that
the fluid velocity decreases as R, is increased. A look at Eq. (26(a))
indicates that R, does not directly enter into the picture, and therefore
any change in the velocity of the fluid is through a change in the
velocity of the solid phase, given by Eq. (26(b)).
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