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The boundary value problem for the Laplace equation outside several cuts in a plane is
studied. The jump of the solution of the Laplace equation and the jump of its normal
derivative are specified on the cuts. The problem is studied under different conditions
at infinity, which lead to different uniqueness and existence theorems. The solution of
this problem is constructed in the explicit form by means of single layer and angu-
lar potentials. The singularities at the ends of the cuts are investigated.
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1. INTRODUCTION

In the jump problem for the Laplace equation outside cuts in a plane,
we specify the jump of the solution and the jump of its normal
derivative at the cuts. This problem is closely related to the Dirichlet
and Neumann problems outside cuts in a plane, which are used to
model cracks in solids or screens in fluids [1-10]. This problem is also
closely related to a transmission problem for the Helmholtz equation,
where the jump of unknown function and the jump of its normal
derivative are given on the closed curves [11-14]. The attempt to
formulate the jump problem outside an open arc for the 2-D Laplace
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equation with one boundary condition of jump type is contained in
[10], but the problem in [10] was not uniquely solvable and so was not
well-posed. In the present paper we give a well-posed formulation of
boundary value problem outside cuts in a plane for the Laplace
equation with two boundary conditions of jump type. Moreover, we
construct an explicit solution of our problem in the form of a single
layer potential and an angular potential [4, 10]. It should be stressed
that our solution is explicit for cuts of an arbitrary shape. This is the
basic advantage of the jump problem over Dirichlet and Neumann
problems outside cuts in a plane, since the explicit solution can not
be obtained in Dirichlet and Neumann problems for cuts of an arbi-
trary shape. In the present paper we also give explicit formulas for
singularities of the solution gradient at the ends of cuts. It appears
that these singularities are weaker than in the Dirichlet and Neumann
problems outside cuts in a plane [4, 5]. It is found that singularities in
the jump problem are logarithmic, while in the Dirichlet and Neumann
problems they are generally of power 1/2. The jump problem for the
Laplace equation presented in this paper can be effectively used to
model different physical phenomena in cracked media. Our results can
be also helpful in problems on crack determination [15-17,20].

The jump problem for analytic complex functions has been studied
in [21]. However, our problem cannot be reformulated in terms of
analytic complex theory, because complex function related to real
harmonic solution of our problem is not analytic outside cuts, it may
have logarithmic branching point at infinity. So, the theory of analytic
complex functions [21] does not apply. If one requires that the solution
in our problem to be bounded at infinity, then our problem may be not
solvable, more precisely, it is solvable under the special solvability
condition. The related jump problem in analytic complex theory [21] is
always solvable, even if it is required that its solution tends to zero at
infinity.

2. FORMULATION OF THE PROBLEM

By a simple open curve we mean a non-closed smooth arc of finite
length without self-intersections [5]. In the plane x = (x;,x,) € R* we
consider simple open curves I'y,...,['ve C**, Ae(0, 1], so that they
do not have common points. We put I' = Uﬁ:’:l T',. We assume that
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each curve T, is parametrized by the arc length s:
Ty = {x:x=x(s) = (x1(5), x2(5)),5€ [an, bn]}, n=1,...,N,

so that a; < b; < --- < ay< by. Therefore points x € I" and values of
the parameter s are in one-to-one correspondence. Below the set of the
intervals on the Os axis ULI [an, by] Will be denoted by I' also.
The tangent vector to I' at the point x(s) we denote by 7, = (cos a(s),
sin a(s)), where cos a.(s) = x;(s), sin a(s) = x3(s). Let n, = (sin a(s), —
cos a(s)) be a normal vector to I" at x(s). The direction of n, is chosen
such that it will coincide with the direction of 7, if n, is rotated
counterclockwise by an angle of n/2. We consider I" as a set of cuts.
The side of T" which is on the left when the parameter s increases will be
denoted by ' and the opposite side will be denoted by I'~.

We say that the function u(x) belongs to the smoothness class K if
the following conditions are satisfied:

(1) u(x) e CO(R2\T)NC*(R?\T') and u(x) is continuous at the ends
of T;

(2) VueC%(R2\ T \ X), where X is a point set, consisting of the end-
points of T': X = UY_, (x(an) U x(by));

(3) in the neighbourhood of any point x(d) € X, for some constants
C>0 and € > —1, the inequality

[Vu| <Clx — x(d)[ (1)
holds, where x — x(d) and d=a, or d=b, forn=1,...,N.

Remark 1In the definition of the class K we consider I' as a set of cuts
in a plane. In particular, the notation C°(R2\T') denotes a class of
functions, which are continuously extended on I' from the left and
right, but their values on I" from the left and right can be different, so
that the functions may have a jump across I'.

We introduce 3 classes of functions M;, M,, M3 with the different
behaviour at infinity.

The function u(x) belongs to M, if there exist constants C;, Cs, C3,
C4 such that the estimates

lu(x) — Ciln|x| — Co| < Ca|x|™",  |Vu(x)| < Calx| ™

hold as |x| = y/x? + x3 — oo.
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The function u(x) belongs to M, if for some constants Cy, C;, the
estimates

lu(x)| < C1, |Vu(x)| < Calx|™

hold as |x| = 1/x3 + x} — oo.

The definition of the class M3 can be formulated in the same way as
the definition of M,, but instead of the first inequality from M, we
require the following inequality

lu(x)| < Ci]x| .

Let us formulate the jump problem for the harmonic functions in
RAT.

Problem (U;(j=1,2,3)) Find a function u(x) of class K, so that u(x)
satisfies the Laplace equation in R*\I'

Au=0, A=0;+02, (2)

satisfies the jump boundary conditions

u(X) |y er+ — (X)) er- =11(5), (3a)
ou ou
- - = fa(s), (3b)
on| gere  OM|yyer-

and meets the following conditions at infinity

ux)eM; (j=1,2,3). 4)

All conditions of the problem must be fulfiled in a classical sense.

Thus, we consider 3 problems U;, U, and Us,. They differ in con-
ditions at infinity (4). In case of the problems U,, Us; the solution
must be bounded at infinity. In case of U; the solution may have a
logarithmic singularity at infinity.

Conditions (1) at the ends of I" in the formulation of the class K
ensure the absense of point sources at the ends of T'. If f1(s) =f2(s) =0
on v CT, then Eq. (2) holds on « and u(x) is analytic on +.
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TueoreM 1 (1) The solution of the problem U, is defined up to an
arbitrary additive constant. (2) The necessary condition for the sol-
vability of the problems U,, Us is

/ F(s)ds = 0. (5)
T

The solution of U, is defined up to an arbitrary additive constant. There
is at most one solution of the problem Us.

>/
n=1van

Now we prove the theorem. The limit values of functions on I'* and
I'™ will be denoted by the superscripts ““‘+** and ““—” respectively.

Let u;(x) be a solution of the problem U;(j=1,2,3). To apply
energy equalities for harmonic functions, we envelope open curves by
closed contours, tend contours to the curves and use the smoothness of
the solution of the problem U;. In this way we arrive at two identities

6uj + Buj - 2”6uj _
[lGe) - (Ge) Jass [ Girae=o
”V“j”iz(c,\r) =
_ Ou; Ou; ™ Qu
_/ruj( ) /ruj(anx) afs+/0 ujardcp_
_ Ou; Ouj Ou;
- oo (m) o [(m) - () jee

2n a
+ [ wGhnp, (6)
0

By [r-:-do we mean

where C, is the circle of the large radius r with the center in the origin,
and ¢ is a polar angle. We suppose, that ' C C,. Putting boundary
conditions (3b) in the first identity we obtain

_ 27!‘%
/F fa(s)ds = /0 L )
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If j=2,3, then the necessary condition (5) follows from (7) and
conditions at infinity (4) as r — oc.

Now let u}’(x) be a solution of the homogeneous problem
U;(j=1,2,3). Substituting uj‘.’ (x) in (6) and taking into account homo-
geneous boundary conditions (3) we get:

02 0
IVl = | 2 rde ®

Let j=1. Putting r — oo and using notations from the definition of the
class M;, we have

2 . 2
||V"(1)”L2(R2\r) = }L‘g Hvu(l)”Lz(C,\l") =

0
= lim {(C1 In r+Cz)/ %—lrdtp+
0

r—00
ao
(ul —C[ In r-—Cz)a—l rd }

It follows from (7) that the first integral is identically equal to zero,
because f>(s)=0 in case of the homogeneous problem. The second
integral tends to zero as r — oo thanks to the definition of the class M;.

Thus, ”V”?”iz(m\r) = 0 and therefore #}(x) = const.

Let j=2 or j=3. Putting r— oo in (8) and using definitions of
classes M, and M, we obtain |V} ”LZ(RZ\F =0. If j=2, then
u3(x) = const. If j=3, then u3(x) =0 accordmg to the definition of
the class M;. Now the statement of the theorem follows from the
linearity of the problem U;(j=1,2,3).

3. THE SOLUTION OF THE PROBLEM

To construct a solution of the problem U;(j=1,2, 3) suppose that

fl(S)ECI’)‘(F), fZ(s)GCOJ‘(FL ’\E(Oa l]a (93)
fl(an) =f1(bn)=0, n=1,...,N. (9b)

At first we obtain a solution of the problem U,. The explicit solution
of this problem can be constructed in the form of a sum of a single
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layer potential and an angular potential [4, 10] for the Laplace Eq. (2).
Consider a function

u(x) = v[f{](x) + wlfl(x) + ¢, (10)

where c is an arbitrary constant,
1
WA = = 3- [ 5(0) I = y(o)ldo
TJr

is a single layer potential for the Eq. (2), and v[f{](x) is the angular
potential [4, 10] for the Eq. (2)

A = 5 [ A@VEo)do, £(0) = Al

The kernel V(x, o) is defined (up to indeterminancy 27m, m==+1,
+2,...) by the formulae

_x2—y(0)

x1 —y1(0) _
|x —y(o)|’

cosV(x,0) = Xy’

sin V(x, o)

where y(0) = (y1(0), y2(0)) €T,

I = y(@)] = /(x1 = () + (%2 — y2(0))>.

One can see, that V(x, o) is the angle between the vector »o)x and the
direction of the Ox; axis. More precisely, V(x,o0) is a many-valued
harmonic function of x connected with In |x— y(c)| by the Cauchy—
Riemann relations. Below by V(x,o) we denote an arbitrary fixed
branch of this function, which varies continuously with o along each
curve I, (n=1,...,N) for given fixed x¢I". Under this definition of
V(x,0), the potential v[f{](x) is a many-valued function. In order that
the potential v[f{](x) be single-valued, the following additional
conditions [10] must hold

bn
fi(o)do = fi(b,) —f(an) =0, n=1,...,N.

Clearly, these conditions are satisfied due to our assumptions (9b).
Integrating v[f{](x) by parts and using (9b) we express the angular
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potential in terms of a double layer potential
1) = 5 [ Aio) gt x = 3(o)id
1 - 27‘_ . 1\0 any X y g g.

Consequently, the angular potential v[f{](x) satisfies Eq. (2) outside T’
and belongs to the class M3. The single layer potential w[ f,](x) belongs
to the class M;.

So, it follows from properties of single layer and angular potentials
[4,14,18] that the function (7) belongs to the class K, satisfies Eq. (2)
and meets conditions of class M;. It can be checked directly that the
function (10) satisfies the boundary conditions (3) of the problem Uj.
Indeed, according to [4, 10], normal derivative of the angular potential
v[f{](x) is continuous across I'. The single layer potential w[/f;](x) is
continuous across I' in our assumptions. On the basis of the jump
relations on I for the angular potential and for the normal derivative
of the single layer potential, we obtain [4, 10]

u(x)lx(s)EI‘,T - “(X)lx(s)er; =v[f{] (X)lx(s)er; —v[f]] (x)lx(s)er; =

Z/a,, (%fl((ﬂ)du:fl(s), n=1,...,N,

Ou(x) Ou(x) 0
- SR 3 1)
anx x(s) e+ Ony x(s) e~ anx [ 2] x(s) eT+
0
—=—w[A](x) =£(s),
ony x(s)el-

where conditions (9b) for fi(s) have been employed. Thus, the function
(10) is a solution of the problem U;. Note that (10) is an explicit
solution of the problem Uj for curves I'y, ... ,I'y of an arbitrary shape.
It can be verified by direct calculations that the condition (1) for |Vu|
is fulfied for any £€(0,1), i.e., for any small positive £. In other
words, Vu(x) does not have power singularity at the ends of I'. It will
be shown in next section that Vu has logarithmic singularity or, in
certain cases, does not have singularity at all. Explicit formulas for
singularities of Vu at the ends of I will be presented and discussed in
the next section.

THEOREM 2  If conditions (9) hold, then the solution of the problem U,
exists and is given by the explicit formula (10).
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Let us consider the problems U,, U,. Suppose that functions fi(s),
f2(s) from (3) meet conditions (9) and satisfy the necessary condition
(5) for the solvability of these problems. Since U,, Uj; differ from U; by
more hard conditions at infinity (4), the solution of U; satisfies U, (or
Us,), if corresponding conditions at infinity hold. The function (10)
belongs to M, and so satisfies the problem U,, if

Aﬁ®ﬂ=m

but this condition holds, because it coincides with the necessary
condition (5), which is assumed to be valid. If, in addition, the
constant ¢ in (10) is equal to zero, then the function (10) belongs to Mj;
and so satisfies Us. We arrive at the assertion.

THEOREM 3 If the conditions (9) and (5) hold, then the solution of the
problem U, exists and is given by the explicit formula (10). If, in
addition, ¢ =0 in (10), then this solution satisfies Us.

As stated in the Theorem 1, the solution of the problems Uy, U, is
defined up to an arbitrary additive constant, while the solution of the
problem Us is unique.

4. SINGULARITIES OF A GRADIENT
OF A SOLUTION AT THE ENDS OF I'

In this section by u;(x) we denote the solution of the problem
U;(j=1,2,3) ensured by the Theorems 2, 3. According to (1), Vu; may
be unbounded at the ends of I'. The explicit expressions for sin-
gularities of Vu; can be obtained from the formulas for singularities of
derivatives of single layer and angular potentials near edges [4, 5].
Let x(d) be one of the end-points of I'. In the neighbourhood of x(d)
we introduce the system of polar coordinates x;=|x—x(d)| cosey,
Xp = |x —x(d)| sinp. We will assume that ¢ € (a(d), a(d)+27) if d=a,
and p€(a(d)—m, a(d)+m) if d=b, (n=1,...,N). Recall that a(s)
is the angle between the tangent vector 7, to I at the point x(s) and
the direction of the Ox; axis. Hence, a(d) = o(a,+0) if d=a, and
a(d) = a(b, —0) if d= b,.. Consequently the angle ( varies continuously
in the neighbourhood of the point x(d), cut along the contour I'.
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Recall that X is a set of end-points of I'. Computing singularities of
Vu; in the same way as in [4, 5] we arrive at the following assertion.

THEOREM 4 Let x — x(d) € X. Then in the neigbourhood of the point
x(d) the derivatives of the solution of the problem U;(j=1,2, 3) have the
following behaviour

at(x) = (= "D [ sin o(d) n |x — x(d)] +  cos a(d)]-
— (-1 )'"fZ( )[cos a(d) In |x — x(d)|+
+ o sin a(d)] + 0(1),
a—i;uj(x) = —(—l)mfl( )[cos a(d) In |x — x(d)| + ¢ sin a(d)]+

+ (-1 )'"fZ( )[ sin a(d) In |x — x(d)|+
+ ¢ cos a(d)] + O(1),
where m=0 if d=a, and m=1 if d=b, (n=1,...,N).

Remark By O(1) we denote functions which are continuous at the
point x(d). Furthermore, the functions denoted by O(1) are
continuous in the neighbourhood of the point x(d), cut along the
contour I'.

According to the Theorem 4, Vu; has logarithmic singularities at the
ends of cuts I" in general. However, if f{(d) = f2(d) = 0 at the end
x(d)€ X, then there is no any singularity of Vu; at the end x(d).
Moreover, Vu; is continuous at this end. If f{(d) # 0 or fo(d) # 0, then
Vu; has a logarithmic singularity at x(d) € X.

Let us compare our results with singularities of a solution gradient
in the Dirichlet and Neumann problems at the exterior of cuts in
a plane. In these problems either Dirichlet or Neumann boundary
condition has been specified on the cuts instead of (3). It was shown
in [4,5] that the solution gradient in the Dirichlet and Neumann
problems in general tends at infinity as O(]x—x(d)|~'?) when
x— x(d) € X. According to Theorem 4, the edge singularities of Vu;
in the jump problem are generally logarithmic. Thus, the jump
problem and Dirichlet/Neumann problem have as a rule different
orders of singularities at the ends of cuts, so that the singularities in the



JUMP PROBLEM FOR LAPLACE EQUATION 11

jump problem are weaker. We can conclude that the behaviour of the
solution in the jump problem is essentially different from behaviour
of the solution in the Dirichlet/Neumann problem. The discussed
properties of singularities may be effectively used to select adequate
model describing an appropriate physical model in cracked media,
since cuts model cracks in solids.

In conclusion we stress that in the present paper we obtained an
explicit solution of the jump problem. The explicit solutions were not
obtained either for Dirichlet or for Neumann problems outside cuts in
a plane if cuts have an arbitrary shape.

5. APPLICATIONS

Many models in different fields of physics are based on Laplace
equation Au=0. For example, this equation is used to describe
electrostatics, ideal fluid, stationary heat distribution, stationary
electric current in semiconductors and so on. In these models « is a
potential which is defined up to an arbitrary constant. It can be
potential of an electric field in electrostatics or pressure in an ideal
fluid. So, the real physical meaning has difference of potentials, and
this difference is measured in experiments, for instance, voltage in
the theory of electricity. The 1-st boundary condition in our jump prob-
lem is just a difference of potentials (jump) on sides of cuts. Wings,
screens, cracks, electrodes in semiconductors are modeled by cuts in a
2-D case [22, 23]. The second boundary condition in our jump problem
is the difference of du/On on sides of the cuts. In the dynamics of an
ideal fluid this condition means the jump of normal velocities on
wings. In the model of an electric current from electrodes in a
semiconductor film this condition is the jump of normal density of
electric current on electrodes [23] (in case of absence of a magnetic
field).

Conditions at infinity discussed in our jump problem also have
natural physical sense. Consider a model on stationary electric current
from electrodes in a semiconductor [23]. If function u has a logarithmic
growth at infinity (Problem Uy), then the model admits electric sources
at infinity. Electric current may move from electrodes in the form
of cuts to these sources. If function u is bounded at infinity (Problems
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U,, Us), then the system of electrodes is closed, there are no electric
sourses at infinity, and the electric current exists only between
electrodes, since it may not move to infinity. The necessary solvability
condition (5) reflects the conservation law of total current from all
electrodes, because the system is closed. In the problem Uj the
semiconductor is earthed at infinity, i.e., potential u tends to zero
there.

Problems, where potential u has logarithmic growth at infinity are
used in fluid dynamics also [24-26], though they are not so well-
known as classical problems with potential bounded at infinity. For
example, the problem on flow of an ideal fluid over a wing has been
numerically studied in engineering research [24] in assumption that
u is logarithmically singular at infinity.

The research was partially supported by the RFBR Grant 99-01-
01063.
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