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In this paper, we deal with linear neutral functional differential systems. Using an
extended state space and an extended control operator, we transform the initial neutral
system in an infinite dimensional linear system. We give a sufficient condition for
admissibility of the control operator B, conditions under which operator B can be
acceptable in order to work with controllability and stabilizability. Necessary and
sufficient conditions for exact controllability are provided; in terms of a gramian of
controllability N(u). Assuming admissibility and exact controllability, a feedback control
law is defined from the inverse of the operator N(w) in order to stabilize exponentially the
closed loop system. In this case, the semigroup generated by the closed loop system has
an arbitrary decay rate.

Keywords: Linear neutral systems; Boundary control systems; Extended state space;
Admissibility; Exact controllability; Exponential stabilizability

AMS Subject Classifications: 93C30, 93C25, 93D15

1. INTRODUCTION

The problem of feedback stabilization of linear infinite dimensional
systems is an important domain of investigation since eighties. Several
authors consider the case of linear systems with delays. The monograph
by Curtain and Zwart [1] contains main references known at that time.
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68 X. DUSSER AND R. RABAH

The case of linear systems of neutral type is of special difficulty because
of the possible presence of a chain of an infinite number of unstable
modes [9]. This situation implies to use derivative in the feedback
control law. In [9] the exact controllabilty is used in order to stabilize the
neutral type systems. The main idea is to shift the unstable roots by
using state feedback which contain the delayed derivative.

In [2] we used the controllability gramian in order to stabilize linear
systems in Hilbert spaces with arbitrary exponential decay rate.

Our purpose is to use the same framework based on semigroup
theory for delay systems of neutral type. As exact controllability is
possible for this kind of systems, this notion is here described via the
controllability gramian (in an extended form) and used to define the
feedback insuring exponential stabilizability with arbitrary decay rate.
This approach make clear the stabilizability of neutral type systems
under the condition of exact controllability which was used in [9] as a
sufficient condition.

This paper deals with linear neutral functional differential equations
that can be written:

{(d/dt) (x(0) =K A ix(t—hi)) =K o Awx(t—he)+ [, E(8)x(1+8)d6+Bu(t)
x(t)=¢(t), te[-h0).

(1)

First, let us mention simple notations used later in the paper.

1.1. Notations

" denotes the space of the complex column n-vectors with norm |x| =
()“c‘x)l/ 2 and inner product (x,y) = X'y where x’ denotes transpose and
X denotes complex conjugate. Wz(k)z Wék)([—h,o]; E*) is the Sobolev
space of E’-valued absolutely continuous functions on [—#A,0] with
square integrable kth derivatives on [— A, 0]. Norm associated with the
Sobolev space Wz(l) is defined by (see [4]):

0 1/2
ol = [P+ [ ioPas]

L2 ([0, 400); E") is the space of E"-valued functions on [0, +00) whose
restrictions to finite intervals are square integrable. The space
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My([—h, 0}; E™) is the product space E* x Ly([—h,0]; E*). If Y and Z are
normed linear spaces, we define the normed linear space £(Y,Z) to be
the space of bounded linear operators from Y to Z. The class of
Lebesgue Z-valued functions with [ |f(f)|dt < 4 oo is denoted by
L1(9,Z) where Q is a closed subset of R.

In the system (1), K stands for a positive integer, 4 is a fixed finite
delay, 0<h < +00,0< hy<:--<hg=h. Ay and A_j are real n xn
matrices, B is a real n X m matrix and E is a real n x n matrix-valued
square integrable function. The initial data ¢ is an element in Wél) and
the control term u is an element in £},,([0, +-00); E™); in the paper, this
space is denoted by I

In the second section, necessary mathematical results are recalled.
From a Banach space X, two other Banach spaces X; and X_,
complete with respect to adequate norms, are built up. At the end of
this section, we recall results needed later for admissibility.

In the third section, we transform the initial neutral system and
explain various solutions in order to define an equivalent abstract
differential system. For that, we especially used results of Henry [4],
O’Connor and Tarn [8] and Weiss [18] and [19].

In the next section, we limit the definition domain of the control
operator B in order to obtain an admissible control operator. The
definition of a gramian of controllability allows us to give two
theorems, one for admissibility and the other for exact controllability.
The last section before conclusion is devoted to the stabilization of the
neutral system when it is exactly controllable and thus admissible.

2. MATHEMATICAL PRELIMINARIES

In this section, we recall some mathematical results used in the sequel
of the paper. The first part is devoted to closedness and extended
space. After that, we only recall fundamental results needed for criteria
of admissibility.

The first mathematical facts can be find in [16, 18] or [20]. These
results are applied to the specifical case used later.

DerFmNiTiON 2.1 [18] Let X be a Banach space and S(7), 1>0 a
strongly continuous semigroup on X with generator 4: D(4)— X.
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Let B € p(4), the resolvent set of 4. We define the space X; to be D(A)
with the norm

lixlly = (61 — A)xlIx

and the space X _; to be the completion of X with respect to the norm

%l = 1081 = )" x]lx.

From this definition, we can classify the three spaces X, X; and X _:
XiCcXcCX,.

If X is a reflexive space then X _; can be defined equivalently as the
dual of (X*);, where (X*);=D(4*) with the graph norm. The
definition of a closed operator (see [1]) and the following remark
about norm ||-||; serve to prove the completion of space X;.

Remark 2.2 [18] 1t is easy to verify that for different values of 3, we
get equivalent norms || -||; and ||-|| _;. In particular, |-||; is equivalent
to the graph norm on D(4), so X; is complete.

Dual space of the space X _; is explained especially by Salamon in
[16]. The space X* _ is equal to D(A4*) and it becomes an Hilbert space
with the graph norm ||

A*

ProposiTION 2.3 [18]  With the notation of Definition 2.1, let p € p(A).
Then the operator

R, = (ul -4

has a unique continuous extension to an operator in L(X_1), which we
denote by the same symbol. R, is an isomorphism from X _ to X and
from X to X;.

If Le L(X) commutes with A, i.e., if

LAx =ALx, VxeD(A),

then the restriction of L to X belongs to L(X,) and is the image of L via
any of the isomorphisms R,. Further, L has a unique continuous
extension to an operator in L(X_,), which is the image of L via any of the
isomorphisms R;,'.



STABILIZABILITY OF NEUTRAL SYSTEMS 71

Taking L = S(2), t > 0 in the above proposition, we deduce that S(7),
¢t > 0 has an extension to a semigroup on X _; whose generator is an
extension of 4 with domain X that is to say A€ L(X,X_;).

In [15], Salamon explains widely existence and relation between
spaces X; and X defined before. A majority of results about
semigroups and infinitesimal generators are also studied.

Results of Weiss stated above are for a Banach space. Similar
results can be proved for a Hilbert space (see for example [14] or
[16]). In the following, results formulated for Banach spaces are
used in the paper for Hilbert spaces with the same associated
norms.

The following important theorem states the particular conditions to
extract an operator from an integral.

THeOREM 2.4 [1] Let Z, and Z, be separable Hilbert spaces, let A be a
closed linear operator from D(A) C Z, to Z, and let S} be a closed subset
of R. If feL1(Q;Z1) with fe D(A) almost everywhere and Af € L,
(4 2,), then

A/Ef(t)dt= /EAf(t)dt

for all measurable subset E C ).

Proof See Hille and Phillips [6], Theorem 3.7.12 [ |

3. DETERMINATION OF THE SOLUTION

The initial system (1) is now transformed in a boundary control system
then in a control system with an extended control operator. Successive
transformations allow us to define for the neutral functional
differential equation (1) a solution, a semigroup, and its infinitesimal
generator.

We can rewrite the system (1) in terms of Stieltjes integrals

(see [8])

(@/de)(x(1) = %, du(@)x(t +6)) = [2 dn(O)x(r+ 6) + Bult) o,
x(t) = ¢(t)a te ["'ha O]
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where p and n are n x n matrix functions of bounded variation,
continuous from the left, defined by

K K 0
w0) = =S A (®), 1(6) = Acxe(®) + / E(¢)de
k=1 k=0 —h

where x, is the characteristic function on the interval ]— oo, — A).
This formulation with Stieltjes integrals allows to describe more
general systems as those depicted by Eq. (1).
The solution of such systems can be written with the variation of
constant formula on the interval [0,4]. With this computation, we
easily find for all £ €[0, 4]

x(t) = CXp(A()t)x()

t K K
+ / exp(AO(t — T)) [ZA_ké(T — hk) + ZAM]ﬁ(T - hk)
0 = =1
0
+ /_ E@)(r +0)db + Bu(r)] dr.

The step-by-step method gives the solution for all # > 0. We refer to
[12] for neutral delays systems or [17] for delay differential equation
without neutral terms. By the linearity of (1), Henry shows in [4] that
there exist bounded linear operators S(¢), ¢t > 0, and K(t,s), t > s >0,
such that

x(t) = S(t — 8)o(s) + K(t,5)u(t), 0<s<t<h.
With #=0 in the last equation, we easily verify that operator S(),

t >0 is a strongly continuous semigroup. Its infinitesimal generator 4
is given by (see [8])

0 0
D(A) = {we Wb ews i) = [ auoio+ [ dn(0)¢(9)}
and

AY =1, VypeD(A).
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We can also define the spectrum of 4, o(A), which coincides with
the roots of the characteristic equation, det(A(\))=0, where the
characteristic matrix is defined by

0 0
A(A):)\(I— /_ hdu(a)exp()\ﬂ)) _ /_ dn@)ep(x0). (3

The system (2) cannot be directly transformed in a “classical”
distributed system on the space Wz(l) because of the neutral terms. If
we use the space M,([—h,0]; E"), we can find a transformation from
the neutral system to the distributed system with an extended state like
in works of Yamamoto and Ueshima (see [21]). Since we chose to stay
in the space Wél), we transform, as O’Connor and Tarn in [8], system

(2) in the following abstract boundary control system:

(d/dt)z(t) = Az(1), t>0,
Ez(t) = Bu(1), t>0, 4)
z(0) = ¢,

where A € E(WZ(”, Wz(l)) is a closed linear operator defined by

dy

_4y —w
==5 WeD(M) =W

Ay

—_

Ee E(Wzm, ") is a linear operator expressed by
. 0 . 0 (2)
=0 =0) - [ au®i®) - [ anoue), voenE) =w.

The system (4) allows us to define a strongly continuous semigroup,
which is also S(z), > 0. In this case, the infinitesimal generator is
defined by

Az =Az, VzeD(A)Nker(Z).

Now, we explain the relation between systems (2) and (4). Let z be a
restriction of x from Wél) to Wéz) such that

z2(t) = x(t+90), 6€[-h,0], ¢>0.
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From the first equation of (4), we have

dx(t+6)

dx(t+0)
dt '

=Ax(t+6) = 70

This equality is trivial for € [0, 4] but not for all positive 7. The general
case has been proved by O’Connor and Tarn in [8].
From the second equation of (4), we obtain

Ex(t+ 0) = Bu(1),

which gives

i’ﬁ;ie_ /d(0 ’*0 /dn x(t+6) = Bu(f)
W /_hd (o)’—“’ /d(a x(t + 6) = Bu(f)

( /du t+6’) /dn x(t+ 0) + Bu(t).

From now, we can easily cross from system (2) to system (4) and
conversely.

In order to explain the solution of the system in terms of the
semigroup S(¢), ¢t > 0, we make the following definition.

DEeriNTION 3.1 [8] The auxiliary boundary operator B, associated
with system (4) is a bounded linear mapping from E” into W2(1) defined
by

(Bou)(0) = exp(A0)A(N) 'Bu, 6e[—h,0]
where A is in the resolvent of A, p(4)=C\o(4) and A()) is the
characteristic matrix defined by (3).

The verification of the boundedness of the operator B, is trivial. It is
also easy to verify that the new operator B, lies in the space WZ(Z) and
that for all ve E”

Z(Byv) = Bv
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Assuming that the solution z can be expressed z(?) = v(¢) + Byu(?), t > 0,
with v€W§2) , O’Connor and Tarn, in [8], rewrite equations of the
abstract boundary control system to prove the following theorem:

TueoREM 3.2 [8] For all ue £2 ([0, 4+00); E™) and ¢ € Wz(l), the state is

loc
given by the following variation of constant formula:

x(t) = S(t)p + (M — A) /OIS(t — 8)Bu(s)ds, t>0. (5)

We cannot differentiate (5) to obtain an abstract differential
equation for the state x since an unbounded operator (Al — A4) operates
on the integral term. However, we can associate the state x with the
system in Wz(l)

(d/dt)y(t) = Ay(t) + Byu(t), t>0
{y(O) =M -4)"¢
x() = (M = A)y(2),

where the last relation is the output equation. Then, the solution of
this new system can be written

t
() = SOOI - 4)"9+ [ St —9Bauls)ds, 120
0
As the operator B, is compact (see [1]), the operator

ur— /OT S(7 — 8)Byu(s)ds

is also compact. In this case, we cannot reach the infinite dimensional
space W2(1) through this operator. So, we adopt another way to use
Eq. (5).

Using results described in section (2) and taking X = W(l), we can
easily define spaces X; and X _. In this new space X _;, we can define
the system associated with the solution described by (5). We have:

{ (d/dt)x(t) = Ax(t) + (M — A)Bu(t), t>0 (©)
x(0) = ¢.

As the operator B, is bounded in X, the operator (A/—A)B)
is bounded in X _;. With this formulation, the state is in the space
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X when computations are in the extended space X_;. The
following definition of Weiss allows us to define the system
lik(e above in the space X_; although the solution is in the space
wiV.

DermiTioN 3.3 [18] Let X be a Banach space, let S(¢), >0 be a
semigroup on X with generator 4, and let

€ Liye([0,+00), X-1).
Then we say that the function
x€ L}, ([0, +00),X)
is a strong solution of the differential equation

x(t) = Ax(t) + £(¢)

if for any 1> 0

x(0)-x0) = [ TAx(s) + F()lds. )

If additionally, x is continuous in X, i.e., if
x€C([0,+00),X)

then we say that x is a continuous state strong solution of the
differential equation above.

The assumption (7) is necessary to obtain from system described by
(6) the solution (5) of the neutral system (1). This definition of Weiss
follows the one of Pazy ([11], page 109) if spaces X_; and X are
respectively replaced by X and X;.

4. ADMISSIBILITY

Now, we must verify in which case the control operator (AI— A4)B)
is admissible or not. The problem is: for which operators B)
admissibility of (A—A)B, is verified. The following definition of
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Weiss explicits in which cases operator B and semigroup S(z), ¢ >0
generate an abstract linear control system.

DEerNITION 4.1 [18] Let U and X be Banach spaces, let p€[l, +o0)
and let 2 be L7 ([0, +00); U). Let S be a strongly continuous semigroup
on X and let B€ L(U,X_,). For any 7 > 0, we define the operator ¥
Q—-X_ 1 by

V,u= /OT S(T — s)Bu(s)ds

Then we say that B is admissible for the semigroup S if for any 7> 0,
U, eL(Q,X).

In Eq. (5), the integral term is as
(A —A) / S(r — 5)Byu(s)ds (8)
0
and not as in the above definition

/OT S(1 — 5)(M — A)Byu(s)ds. 9)

Before applying the definition of Weiss, we must show that the two
operators (8) and (9) are equivalent. We must show that the operator
(A[— A) can be applied inside or outside of the integral and we must
show that the range of the operator B, is in the definition space of the
operator 4.

All conditions of Theorem 2.4 are verified: separable Hilbert spaces,
closed operator, integrable operators. Therefore, the first part of the
problem is solved. As operator B, is defined from E” into X=
{D(4),]|-||x}, semigroup S(z), ¢ >0, and isomorphism R;' = (M — A)
can switch.

Remark 4.2 1n the proof of the Theorem 3.2, O’Connor and Tarn
cross from one expression to the other, extracting the operator (A — 4)
of the integral term.

From now, we have the same condition as in the Definition 4.1. So,
we can define a criteria for admissibility of the control operator B, of
the neutral system.
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DerNiTION 4.3 Let @, be the operator defined from I" to X_; by
Du= (M- A)/ S(r — s)Byu(s)ds.
0

Then, we say that the control operator B of the system (1) is admissible
if for any 7> 0, ®,€ L(T,X).

Actually, if the operator B is admissible for the semigroup S(?),
t >0, the operator @, is bounded in the space X. For more details
about admissibility of unbounded control operator, see for example
[16,18] or [19].

5. EXACT CONTROLLABILITY

Now, we will consider that the operator B is admissible, that is
to say that condition of Definition 4.3 is verified. In this section,
we search conditions for exact controllability of the neutral system

M.

DEerINITION 5.1 [13] A system is said to be exactly controllable if there
exists a positive time 7 such that for all xo, x; € X and for some control
u, we have:

x(1) = x(1, x0,u) = x1.

So, from Eq. (5), we can state that the system is exactly controllable
if there exist a positive time 7 and some control u such that operator
. is onto that is to say

Ran{®,} = X. (10)

This last relation is not easy to use and to transform. The follow-
ing one is better and we prove in the next theorem a necessary
and sufficient condition for exact controllability. This theorem,
as well as the proof, follows the one given by Curtain and Zwart
(see Theorem 4.1.7 in [1]) where authors take a bounded control
operator.
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THEOREM 5.2  The state space linear system (A, (M — A)B)) is exactly
controllable on [0, 7] if and only if for some ~ >0 and for all x€ X:

(@27 x,x) 2 7|Ixllx-

As we saw before, operator @, is in £(T', X). With the boundedness
given by admissibility, we are practically in the same situation as a
system with a bounded control operator. The most important is not
the boundedness of the control operator but that of the control
gramian. If the control operator is bounded, it is relatively easy to
show the boundedness of the gramian. In our case, admissibility
ensures the boundedness of the control gramian. All these remarks
allow us to say that our proof will be similar with the one used by
Curtain and Zwart in [1].

Let ®,,(u) be the operator defined for all scalar 4 and for all ueT
by

Do (u)u = (M —A) /Ooo exp(—pus/2)S(—s)Bu(s)ds.

ProposiTION 5.3  If the control operator B, is admissible, the operator
S () is in L(T,X).

Proof

[ Boo ()il = H(M ~4) [ exp(ps/2)s(-oBruls)ds

X

< H(M —A) / " exp(—pus/2)S(—s)Bruls)ds
0

X

+ ”()\I —A) /oo exp(—pus/2)S(—s)Bu(s)ds

T

X

< ”(M ) /0 " S(=s)Byu(s)ds

X

n ”(AI ~4) [ expl-us/DS(-)Brus)ds

X

For all >0, for all x € X, there exist scalars M, and w such that the
semigroup S(¢) verifies

[15(2)x]lx < Muexp(wt).
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Using this inequality, we obtain

| @0 ()]l < Myexp(—wr)||(M — A) /0 ' S(r — 5)Byu(s)ds

(M —A) /Too exp(—pus/2)S(—s)Bxu(s)ds
<M exp(—wr)||®ulx
(M — 4) / ™ exp(—5/2)S(—s)Byu(s)ds
< Mwexog(_“”)”q)rullx

+ / M — A)exp(—pus/2)S(—s)Brus)l|s.

+

+

X

For all function f integrable on [T, 4 00),

lim /oof(s)ds =0.
T

T—+00

So, for all constant ¢ > 0, there exists a T, > 0 such that

oof(s)ds <ec.

Tc
In our case, for all ¢ > 0, there exists a 7. > 0 such that
(o]
/ (M — A)exp(—ps/2)S(—s)Bu(s)| xds < c||ul|r.
Te
As the operator B, is admissible, there exists a positive scalar § such
that
[|®rullx < 6|ullp-
Finally, we have

[Poo(m)ullx < (Mubexp(—wre) + c)|ullp-
]

Let the extended gramian of controllability N(u) be defined for all
x€ X by

N(p)x = oo (1) D5 (k). (11)

The next proposition follows from the Theorem 5.2.
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ProposITION 5.4  The system (1) is exactly controllable if and only if the
operator N(p) is an uniformly positive definite operator, that is:

(N(u)x, x) > 6||x|ly, VxeX,6>0. (12)

Proof Let Nt(u) be the operator defined for all x in X and for all
positive scalar 7 by

Ny (p)x = &7 () @7 (p)x,

where
@, (uu=(NM—A) /OT exp(—ps/2)S(—s)Bu(s)ds.

If the controllability assumption (®,®} is positive definite) then the
operator N, (u) has the same property. The converse can also be
checked.

Since

(Nr(1)x, x) < (N(p)x, x),

we easily find that the operator N(u) is uniformly positive definite if

No(p) is.
For the converse, we define the operator R,.(u) for all # in T" and for
all positive scalar 7 by

R (p)u= (A — A) /oo exp(—us/2)S(—s)Bu(s)ds
We have

(N(u)x,x) = (N-()x,x) + (R ()R ()" x, x).

For the same reason as in the proof of the Proposition 5.3, for all
constant ¢ and for all x in X, there exists a 6. > 0 such that

IR, (w)x|IE < ellx]3-

As the operator N(u) is supposed to be uniformly positive definite, we
obtain

(6 = O)xlx < (N (1), x).
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If we choose 6.>0 such that 6—c >0, we have N, (x) uniformly
positive definite for all = >4.. [

Remark 5.5 If the relation (12) is true then the operator N(u) admits
a bounded inverse N(y) .

Exact controllability implies complete stabilizability. The converse
does not always hold true. In particular conditions, complete
stabilizability implies exact controllability. When the system is
stabilizable, a feedback can be found in order to put the eigenvalues
in the left half plane. For neutral system, another condition of stability
is needed: the so called formal stability, defined below for a neutral
system like (1) with only one lag (K= 1) and without distributed delay:

{ (d/dt)(x(t) — A_1x(t — h)) = Aox(t) + A1x(t — h) + Bu(z) (13)
x(t) = ¢(t), te[-h,0]

DEeFmNITION 5.6 [5] The system (13) is said formally stable if the
operator D, defined by DV =W¥(0)— A4 _U(—h), is stable (in the sense
of the formal stability), that is, if there exists § >0 such that all
solutions of the characteristic equation

detAg(A) = det[l — A_jexp(—M)] =0

satisfies Re(\) < — 6. In other words, the system is formally stable iff
ap < 0, where ap = sup{Re(z)/detAy(z) = 0}.

The lack of formal stability means that, in order to stabilize the neu-
tral type systems, we need to modify the neutral term. In [8], O’Connor
and Tarn use another approach for exact controllability. They give
necessary and sufficient algebraic conditions of exact controllability
for a neutral system like (13). They obtain the following result.

ProrosITION 5.7 [8] System (13) is exactly controllable if and only if

Rank[B,A_1B,...,A"]'Bl=n

Rank[A()\),B] =n, for all Aeo(A). (14)

The first item is equivalent to (see [9])

Rank[zl —A_;,B]=n, forall z.
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which involve that for all eigenvalues )y, ..., \,, we can find an m x n
matrix Fy such that the n x n matrix 4 _,+ BF verifies

o(A_1 +BF) = {\1, ..., -

The condition (14) proves that we can find a feedback F; such that the
closed loop system is formally stable by changing the neutral term
(see for example [5] or [9]). This means that exact controllability is
a sufficiently strong condition to insure stabilizability.

6. STABILIZABILITY

This section deals with exponential stabilization. Exact controllability
proves complete stabilizability. So, we search a feedback control law
which can stabilize the neutral system (1) via the abstract differential
system (6).

THEOREM 6.1 Let the system (1) be exactly controllable and let the
operator F be defined by:

F=—B,(M—A)N(u)".

Then, the closed-loop system with u=Fx is exponentially stable.
Moreover, by means of the choice of ., the decay rate may be arbitrary:

VweR, 3Jpu, |ISF()Il < Moexp(wt). (15)

Proof A first step of the proof is to show that the operator F is
bounded in appropriate space. Indeed, from a bounded operator, we
are sure to be able to generate a semigroup.

We have seen that the operator (A/— A)B, is bounded in X_;. So,
there exists a constant ¢ such that:

IBY(M — A)"x|jp < €||x]

X,

The gramian of controllability N(u) is positive definite. In this case,
there exists a constant ¢; such that:

-1
IN () x”x:, SCI”’““X-.-
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The two above inequalities allow us to conclude about the bounded-

ness of the operator F. In this case, a semigroup Sr(f), t >0 with

A+ BF as infinitesimal generator can be generate in the space X _;.
The relation

X X1 ={DA),-lx.} (16)

between spaces X and X _; allows us to say that the semigroup Sr(?),
t >0 also exists in the space X. From now, we must show that this
semigroup is exponentially stable.

The closed loop system with u = Fx can be written:

{ (d/dt)x(t) = [A — (M — A)B\BL(M — A)*N(p) '|x(¢), t>0
x(0) = ¢.

For a bounded control operator, Korobov and Sklyar in [7] show that
the extended gramian of controllability verifies an Algebraic Riccati
Equation. The control operator (A\/— A)B, is not bounded in the space
X but is in the space X _; this equation would be explained in this
extended space. After this remark, it is easy to prove that the operator
N(p) defined by (11) verifies the following Algebraic Riccati Equation

AN(p) + N(p)A* + uN () = (M — A)BABY (M — A)*, inX*,.

After a multiplication from the right by the operator N(x)~', we
obtain:

A+ N(u)A*N(p)™" + ul = (M — A)BABi(M — A)*N(p)™' in D(A).
Then we can obtain

A— (M —A)B\B(M — A)*N(p)™"
= N(u)[-A" = uIN(u)™"  in D(A). (17)
From now, we are exactly in the same condition as in [2]. Using the

same progression as in the last proof of [2], the semigroup Sz(7), >0
generated by the closed loop system verifies:

ISF(D)llx < erc2Maexp((e — p)t)
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where ¢, ¢2, @ and M|, respectively verify
IN(w) " lix <er,  INWIIx ez [1S()llx < Maexp(a).

Choosing p such that w < a—p and putting M, = c;c,M,, we get (15),
which ends the proof. |

Remark 6.2 Let us precise that a direct use of Theorem 6.1 is not
easy. It is an extension of results by authors in [2] and [3]. Several
authors show that for delay system one need use of distributed delays
[9,10] which are not also easy to compute. However, in our case, the
fact that the used extended gramian is the solution of an Algebraic
Riccati Equation gives the opportunity to make use of numerical
methods of approximation of this solution. This problem is under
investigation.

7. CONCLUSION

We have derived conditions for admissibility of the control operator B
and for exact controllability of the neutral functional differential
system. We also found a feedback control law which can stabilize the
neutral system in the exponential sense.
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