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A new form of the strong law of large numbers for dependent vector sequences using the
“double averaged” correlation function is presented. The suggested theorem generalizes
the well-known Cramer —Lidbetter’s theorem and states more general conditions for
fulfilling the strong law of large numbers within the class of vector random processes
generated by a non stationary stable forming filters with an absolutely integrable impulse
function.
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1. INTRODUCTION

1.1. Problem Formuiation

The strong law of large numbers tackles the problem

Spi=n"! ig,io (P—a.s) (1)
t=1
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of the convergence to zero with probability one the time averaged
process S, generated by a discrete-time centered quadratically
integrable random vector process &,€ R" satisfying at each time
n=1,2,..., the following conditions

E{&} = 0,E{&:, } = Bn(0? := trE, < 00) (2)

In general, the random process {£,} may be dependent in time as well
as may have increasing second moment.

This problem plays a key role in the analysis of the asymptotic
behavior of recurrent algorithms analyzed in the identification [6, 9]
and the stochastic adaptive control [2, 11] theories.

1.2. Motivating Example

This example deals with a simple identification problem. Estimating a
vector parameter c*, bazed on the observations

Yn=C"+&

disturbed by the random (may be, dependent) noises &,, and using the
standart “averaging” estimate

n
U |
Cpi=n E Vi

t=1

it follows that the identification error at time n can be expressed as
n
Api=t—c=n') &=,
=1

The analysis of the conditions, providing the convergence of the
identification error to zero, directly leads to the problem (1)
introduced above.

1.3. Preliminaries

A lot of fundamental results have been obtained for the independent
random processes {£,} (see, for example, [5] and [8]). Later on, several
elegant constructions, generalizing the strong law of large number to
the class of dependent (martingales [7], weak and strong mixing [4] and
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mixingales [3]) processes have been propose. Unfortunately, most of
the characteristics (such as “mixing coefficients”), participating in these
constructions, are extremely complex for the direct calculation and
turn out to be unapplicable in engineering practice. More clear and
practically more useful results on the strong law of large numbers for
dependent processes are contained in the publications operating
with the correlation function as a main characteristic of a statistic
dependence. The most advanced results in this direction have been
obtained in [12] and [1] where the special decreasing conditions for the
corresponding correlation function were introduced to guarantee the
fulfilling of the strong law of large number.

1.4. Main Contribution

This note presents a new form of the strong law of large numbers using
a special characteristic (the “double averaged™ correlation function)
of dependence which can be easily constructed based on correlation
coefficients. This paper generalizes the earlier author’s results [10]
obtained for the scalar case. The well-known Cramer— Lidbetter’s
theorem is shown to be a partial case of the presented result as well as
the intuitively used fact on the validity of the law of large number for
the dependent processes generated by forming (may be, nonstationary)
stable filters with white-noise type centered sequences in the input.

2. MAIN RESULT

Let all random sequences considered below be defined on the
probability pace (2, F, P). For the given centered quadratic-integrable

R"-valued random process {£,}, that is,
&ERVE{(&)} =0, E{&}=02<o0 3)
neN*t :={1,2,...}

introduce the special characteristic, so-called, the “double averaged”
correlation function R, defined by

n n
Ry :=n2Y " " pys = E{S; Sn} 4)
1

=1 s=
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where

prs = E{&] &} (5)
is the corresponding correlation function.

THEOREM 1 (The strong law of large numbers) If for the vector
process {&,} (3) the following series converges:

3 (%\I—R,,-l +%02,,) <0 (6)
neNt

then “‘the strong law of large numbers” holds for this process, that is,

1 as.
Sn = ; E f; =0
t=1

Remark 2 1If the given process {{,} has a bounded variance, that
is, 02<3* < oo and a “double averaged” correlation function R,,
decreasing as R,= O(n~°) (¢ > 0), then the conditions of this theorem
are fulfilled automatically.

Proof Since for any n=1,2,...

1\? 1
a1 = (1 —;) Sl + v < (1 )s,%_l .

n

where

1 1 o+ 1 2
Vp = 2; <1 - ;)Sn_@n + ﬁ”fnu

then the back iterations imply
n
82 < 8% 4 Z v,
=2
with

Ty 1= ﬁ(l -t

=2
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By the Kronecker’s lemma (see, for example, Appendix in [11]) S,
tends to zero if with probability 1 the following sequence

n
I‘S,l) = Z \Z
t=1

converges. To fulfill this, it is sufficient to show that under the con-
ditions of this theorem the series

n hn

1 1
rd = Z,_z||§t||2, Y= ZﬂszT—l‘gtl

1=1 t=1

converge with probability one that is true if

00

1 IS R
2o <00 IS} <o

By the Cauchy-Bouniakovski-Shwartz inequality, it follows
00 1 T o0 1 > 5
Z;E{Ist_l&l} <Y S VEISl)
t=1 =1
that together with the identity
E{[|Si-1["} = Ri1

directly leads to the result of this theorem. The theorem is proven. W

3. IMPORTANT PARTIAL CASES

In this section, two partial cases, most important for the identification
and adaptive control applications, are considered in detail.

3.1. The Cramer-Lidbetter Condition

COROLLARY 3 Assume that the correlation coefficients p,s (5) of the
given random process (3) satisfy the Cramer— Lidbetter’s condition [1],
that is,

°+s*

pol <KL
sl 1+|t—s)
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where K, a, (3-nonnegative constants verifying

2a < min{1, 5}

Then the strong law of large numbers holds, that is,

ln a.s.
SN
nt=l
Proof Since
E{”é.t” } =0, = p, <2Kt*
then
KRS %452
R, <
TP
2K - 1 + s
(e )
=1 =1s<tl — )
2K
< 1~—a+2KI"
where
n ta o
=2 LR )
i T+ (=)
1 & 1
I = — ©
n21=1 ;,l—l—(t—s)ﬂ
n B-1 __ _
cL[efE e oz,
n? Jo In ¢, B=1
B B<l
< Const{ n®*-1, B=1 3,6>0
"l B>1
III _l & sa
" n21=1s<tl+(t“s)ﬂ
n
Si ta 1 =II



STRONG LAW OF LARGE NUMBERS 93

So, finally, the following upper estimate for the “double averaged”
correlation function R, holds:

nmax{a—l,a—,@}’ ,B <1
R, < Const{ note! B=1p,e>0
ne 1, B>1

The substitution of the right-hand side of the last inequality in (6)
implies the result of this corollary. |

3.2. Dependent Processes Generated
by Stable Forming Filters

CoRrOLLARY 4 Consider a centered random independent vector process
{&,} with finite variances o> satisfying

1
Z n(n—1)

neN+t

and generating the random vector sequence {(,} according to the
following expression

Cn = En:hn,lgt
t=0

where the impulse response matrix function h,, for any t < n satisfies
llnll < hin— 1)
i ~
H:= Zh(r) < oo

=0

(such impulse function corresponds to a stable, may be, nonstationary
forming filter). Then for the random sequence {(,} the strong law of
large numbers holds, that is,

1 - a.s.
;; ¢G—0

Proof The inequality

&
IA
:NI mN
i =
(=]
N
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implies

that, together with the accepted assumptions, proves this corollary.
]

4. CONCLUSION

A version of the strong law of large numbers for dependent vector
sequences is presented in this paper. The new characteristics of the
dependence, called the ““double averaged” correlation function, provides
very simple proof of the main result which generalizes the well-known
Cramer — Lidbetter’s theorem and gives the simple explanation why
the intuitively used fact (that the strong law holds for the class of
random processes generated by a non stationary but stable forming
filters with an absolutely integrable impulse function) turns out to be
true.
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